Yu.A. Kuznetsov: Introduction to Numerical Bifurcation Analysis

Lecture 7: Computation of
codim 1 bifurcations of
equilibria

In this lecture, we will present regular defining systems to compute fold and
(Andronov-)Hopf bifurcations of equilibria in

= f(u,a), u€eR" a€cR. (7.14)
These systems will have the form
F(X)=0, XecR",
where X = (u,...,a)T. A solution Xo = (ug,...,a)" will give the crit-
ical equilibrium wug at the bifurcation parameter value og. We assume for
simplicity that ug = 0 and a9 = 0, and write

F(u,0) = Au+ %B(u,u) +0(3). (7.15)

The regularity of the defining system at Xj, i.e. the non-singularity of its
Jacobian matrix Fy (X)), will guarantee that this solution can be continued
w.r.t. any other system parameter, say S € R. The corresponding solution
curve will (locally) define a bifurcation boundary in the («, 5)-plane.
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7.1 Generic bifurcation points

7.1.1 Simple fold points

Assume that (u, ) = (0,0) corresponds to a limit point (see Lecture 2) of
the equilibrium manifold of (7.14),

flu,a) = 0.

We know that A = f,,(0,0) has the one-dimensional null-space spanned by
qo € R" such that

Ago =0, (q0,90) =1,
while AT also has the one-dimensional null-space spanned by py € R” such

that
ATpy=0 or pOTA = 0.

The matrix
J=(A f2), fa=1a(0,0),

has rank n, which implies that f) ¢ R(A) (otherwise rank J < n). This
condition can be expressed more explicitly using the Fredholm Decompo-
sition

R™ = R(A) @ N(AT), (7.16)
where @ denotes the direct orthogonal sum of two linear subspaces. Since
po € N(AT), the condition f & R(A) is equivalent to

(po, f3) # 0.

Generically, the critical eigenvalue A\; = 0 of A is algebraically simple,
implying (po, qo) # 0. Indeed, in this case, N(A) and R(A) are the comple-
mentary invariant subspaces for A with dim N(A) = 1 and dim R(A) = n—1.
Since gy & R(A) (because qo spans N(A)), (7.16) implies that gy is not or-
thogonal to pg. Thus we can assume

(90, q0) = (Po, qo0) = 1.

If a limit point is quadratic, we also have

a= %(po, B(qo,q0)) # 0.

By definition, a simple limit point (or simple fold) is characterized by
the following conditions:
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(1) A1 = 0 is an algebraically simple eigenvalue of A and is the only
eigenvalue with R(\) = 0;

(ii) (po, ) # 05

(#4i) {po, B(qo,q0)) # 0.

Choose a parametrization of the equilibrium manifold near the simple
fold point

such that «(0) = 0, «(0) = 0, ¥/(0) = qo, &/(0) = 0. Since \y = 0
is algebraically simple, there exists a smooth continuation of the critical
eigenvector, i.e. a smooth vector-function ¢(s) and a smooth function A(s)
satisfying for all sufficiently small |s|

and such that ¢(0) = qp, A(0) = 0. Differentiating the last equation w.r.t.
s, we obtain

fuu(u(s), a(s))[u'(5), q(s)] +  fualu(s), o(s))
+ fulu(s), a(s))q

which at s = 0 gives
foulg0, q0] + £2¢'(0) = X (0)go  or  Bl(go,q0) + Aq'(0) = X'(0)go.
Computing the scalar product of the last equation with pg, we see that

(po, B(qo,q0)) + (po, Aq'(0)) = X' (0)(po, qo)-

Since (po,qo) = 1 and ATpg = 0 implies (py, Aq'(0)) = (ATpo, ¢'(0)) = 0, we
can conclude that

N(0) = (po, B(qo, q0)) # 0

at a simple fold point.

7.2 Simple Hopf points

The point (u, ) = (0,0) is a Hopf point if A = f,(0,0) has a pair of purely
imaginary eigenvalues A2 = +iwp,wp > 0. Generically, these eigenvalues
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are algebraically simple, which allows one to introduce the corresponding
eigenvectors qg, pg € C",
Agqo = iwoqo, A'po = —iwopo,
and assume that
(90:90) = (po, q0) = 1,

where (po, ¢o) := Bg do-

Since A is nonsingular, the Implicit Function Theorem guarantees the
existence of the unique local smooth continuation u.(«) of the critical equi-
librium u.(0) = 0 that satisfies

fue(a),a) =0

for all sufficiently small parameter values. Differentiating this equation w.r.t.
« we obtain

Ala)ug(@) + falue(a),a) =0,
where A(a) := fu(ue(), ). Substituting o = 0 yields
Aug(0) + fa =0

or

ul(0) = —A~1f0. (7.17)

The Jacobian matrix A(«) has a smooth pair of complex-conjugate eigen-
values A(a), A(a), where

Ma) = pla) + iw(a)
with ¢(0) = 0 and w(0) = wp.
Lemma 12 It holds that
1£'(0) = R(po, Aa(0)qo)- (7.18)

Proof:

Since the critical eigenvalues are algebraically simple, there exists a
smooth complex vector-function ¢(a) with ¢(0) = ¢o and a smooth com-
plex function A(a) with A(0) = iwp, such that
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for all sufficiently small |«|. Differentiating this equation w.r.t. o we obtain
Aa(a)g(e) + A()q' (o) = N (a)g(@) + A(@)q (a).
Evaluation at o = 0 gives
Aa(0)go + Aq'(0) = X'(0)go + iwoq'(0)
implying (po, Aa(0)go) = A'(0). Indeed, (po,go) = 1 and
{po, Aq'(0)) = (A" po, ¢'(0)) = —(iwopo, ¢'(0)) = iwo(po. ¢'(0)).
Since 1/ (0) = R(N(0)), (7.18) follows. 0

Taking into account

Aala)q(a) = fuu(ue(a), o) [uc(e), g(@)] + fualue(a), a)q(a),
we get
Aa(0)a0 = B(ug(0),90) + foado,
that leads to
1 (0) = Ripo, —=B(A'f2, 40) + fiao)-

By definition, a simple Hopf point satisfies the following conditions:

(1) A1,2 = %iwp are algebraically simple eigenvalues of A and are the only
eigenvalues with ®(\) = 0;

(i1) 1'(0) = Ripo, —=B(A™'f2, q0) + fiato) # 0.
The second condition is called the Hopf transversality.

Write qo = q1 + ig2 and pg = p1 + ip2 with g12,p12 € R". In the simple
Hopf case one can select these real vectors to satisfy

1
(a7, ak) = (P> a) = 595k, (7.19)
where
S 1 if j=k,
ETN 0 if j £k
We can now write (7.18) in the real form
1 (0) = pi Aa(0)q1 + p3 Aa(0)g2, (7.20)
where by linearity
Aa(O)QQ = B(UQ(O), QQ) =+ fSQQQ-
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7.3 Bordering thechnique II

We need the following generalization of (7.16) to rectangular complex ma-
trices.

Theorem 8 (General Fredholm’s Decomposition) Let C € C"*™ be
a complex n x m matrixz. Then

C" = R(C) @ N(C),

where @& denotes the direct orthogonal sum of two complex-linear subspaces

of C", and C* := o' a

Notice that in the theorem the orthogonality w.r.t. the scalar product
(u,v) := u*v = @v is used for u,v € C". If C is real, we have

R" = R(C)® N(C™),
where @ denotes the direct orthogonal sum of two linear subspaces of R".

Theorem 9 (Construction of Nonsingular Bordered Matrices)
Consider a real (n 4+ m) x (n + m)-matriz

A B
(& D)

where A € R"*", B,C € R™™ D € R™*™ and assume that r = rank A =
n —m, so that m is the rank defect of A.

If R(B) is a complement to R(A) and R(C) is a complement to R(AY),
then M is nonsingular.

Remark:

Theorem 8 implies that it is sufficient to take B such that its columns
span N(AT), and C such that its columns span N(A). By continuity, all
sufficiently small perturbations of M also remain nonsingular.

Proof of Theorem 9:
Suppose that M is singular, i.e.

(&) ()= ()
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for some x € R™ and y € R™ such that

(2)(5)

This is equiavalent to the system

Ax+ By = 0,
C'z+Dy = 0.

In its first equation, Az € R(A) and By € R(B), so that Az = 0 and
By =0, since R(A) and R(B) are complementary. Since dim R(A) = r then
dimR(B) = n —r = m and B has full column rank (equal to m). This
implies y = 0 and the system reduces to

Axr = 0,

C'z = 0.

This means that x € N(CT) and x € N(A).
By Theorem 8, N(C7T) is the orthogonal complement to R(C), while
N (A) is the orthogonal complement to R(AT). Since R(C) is complementary

to R(AT), we conclude that N(C7) is a complement to N(A). Thus, z = 0.
We have x = 0 and y = 0, a contradiction. Hence, M is nonsingular. O

A B
be a nonsingular (n+m)x (n+m) block-matriz with A € R"*", B,C € R"*"™,
and D € R™*™_ Let its inverse be decomposed as

L (P Q
(i 9

with P € R™" Q,R € R™™ "™ and S € R™*™,
If v < min(m,n) then A has rank defect v if and only if S has rank defect

Theorem 10 Let

V.

Proof:

i A BY(P Q\ (I o
MM_"“”‘:’(CTD R s |=\o 1,
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Thus, in particularly,
AQ + BS =0.

If A has a left singular vector p, then pT A = 0 and
pTAQ +p"BS = (p"B)S = (BTp)TS =0.

Thus, ¢ = B'p is a left singular vector of S. Notice that B'p is a linear
combination of the rows of B and must be nonzero, since M has full rank.
Therefore ¢ # 0 and the dimension of the left null-space of S is at least that
of the left null-space of A.

Similarly,

—1ag _ P Q A B
M=M=l & <RTS cT D

Thus, in particularly,

I
/
-
~
3 o
N———

RTA+ScT =o.
If S has a left singular vector ¢, then ¢T.S = 0 and
¢"RTA+¢"SCT = (("R")A = (RT¢)TA = 0.

As above, we conclude that p = RTq # 0 is a left singular vector of A. This
implies that the dimension of the left null-space of A is at least that of the
left null-space of S.

Therefore, the left null-spaces of A and S have equal dimensions. In
the same manner, one establishes the equality of the dimensions of the right
null-spaces of A and S, which proves the result. a

Suppose that matrix A depends smoothly on parameter 5 € R, i.e. we

have
M(B) = ( wer )

where constant B, C, and D are selected as before to make M (0) nonsingular.
Then S = S(8) and there are two obvious ways to compute S(3), namely,
either by solving the bordered system

M() ( ‘s/((g)) ) = ( I?n ) (7.22)

(WE(B) S(B)M(B)=(0 In) (7.23)

or



7.4. MINIMALLY AUGMENETED DEFINING SYSTEMS 51
that is equivalent to
W(p) 0
M7T = :
(m( S(9) ) (Im)

There is an effifcient method to compute the derivative S, (o) using equa-
tions (7.22) and (7.23). Differentiating (7.22) w.r.t. 8 we obtain

Vs(B) Ag(B) 0 ViB) \_ (0
vor (565 )7 0)(55)-(5)
Multiplying this equation from the left by (W™ (8) S(8)) and using (7.23)
we find

Sp(B) = ~WH(B)As(B)V (B). (7.24)

7.4 Minimally augmeneted defining systems

7.4.1 Fold
Using the bordering technique, we can introduce the system
f(u7 a) = 07
{ gwa) = 0 (7.25)

where g(u, «) is defined by solving the linear system

fu (’LL, Oé) Po ’UJ(U, Oé) 0
= 7.26
( w 0 9(u, @) 1 (7.26)
with gg, po € R" satisfying

Ago = A"po =0, {(q0,q90) = (po,qo) = 1,

where A = f0 = £,(0,0). The system (7.26) is a particular instance of the
general bordered system (7.22) with m = 1.

Theorem 11 Let (u,a) = (0,0) be a simple quadratic fold point. Then the
Jacobian matriz of (7.25) at this point

0 0
-(§ %)

s nonsingular.
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Proof:
Theorem 9 (or Lemma 9 from Lecture 3) guarantees that

A po
@ O

is nonsingular. This implies that the matrix of the bordered system (7.26)
is nonsingular for all sufficiently small ||u|| and |a|. Thus, g(u,«) is locally
well defined. Furthermore, it follows from (7.24) (or just from Lemma 10 in
Lecture 3) that

gu(u, 05) = —ponuu(U, Oé)(]o, 9o (ua Oé) = _pOTfua(Uy O‘)QO-

Here we treat the gradient g, as the one-row matrix.
Theorem 9 ensures that matrix J is nonsingular if

£ € R(f)) =R(A) and [g0]" ¢ R([f)]") = R(A").

By Fredholm’s Decomposition these conditions are equivalent to the follow-
ing inequalities:

po fo = (po, f2) #0 and [g9] g0 = —(po, B(qo, q0)) # 0,

which hold since (u, «) = (0,0) is a simple quadratic fold. O

7.4.2 Hopf

At a simple Hopf point, A = fY has a simple eigenvalue \; = iwy with wg > 0.
Its corresponding complex eigenvector gy = q1 + iqe satisfies Aqy = iwpqo.
Moreover, there is a complex eigenvector pg = p1 + ip2 of the transposed

matrix satisfying ATpg = —iwgpe. Thus
Aq +woge = 0, and ATpr —wops = 0,
Ago —woqn = 0, ATpy +wopr = 0,

and the normalization conditions (7.19) are assumed to hold. These systems
imply that

(A2 +wil)q12=0 and ([AT]? +wil)pi2 =0

so that the matrix (4% + w2l,) has rank defect v = 2.
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According to Lemma 9 the matrix

M(u. . r) = ( fﬁ(u%)TwL kI Jg ))

where the columns of B = (b; b2) span a space that is not orthogonal to
N([AT)? + w2I,) and the columns of C' = (¢; cp) span a space that is not
orthogonal to N (A% + w2I,), is nonsingular at the simple Hopf point

(u, o, k) = (0,0, w3).
Consider now the following bordered system

1% 0 v 2
M(u, o, k) = S Mu,o0,k) | 911 g12 | =
G I o g
21 22

O = O
_— o O

and its solution

Vg :’Uj(U,Oé,KJ>, gjk:gjk(uaavﬁ)7 J?k:172

According to Theorem 10 in the case m = 2, the matrix f2(u,a) + kI, has
rank defect v = 2 if and only if G = 0, i.e. g11 = gi12 = g21 = go2 = 0.
Thus g;%(0,0,w3) = 0 for all j,k = 1,2 at a Hopf point (u,«) = (0,0). This
indicates that the system

flu,a) = 0,
Giji (w0, k) = 0, (7.27)
Gisga (’U,, a, "i) = 07

where (i171) and (igj2) are different index pairs, can be considered as a
defining system for Hopf bifurcation.

In practice, the following modification is used. Consider the bordered
system

v 0
M(u,o,6) [ hi | =1 (7.28)
ha 1

and its solution

v=v(u,a,k), hj=hju o k), j=12.
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Since g;x(0,0,w?) = 0 for all j, k = 1,2, we have

hi ) _ [ 91 912 1y_(0
ha g21 922 1 0
at a Hopf point. Thus as a defining system for the Hopf bifurcation one can

use
f(u7 a) = 0,
hi(u,k,a) = 0, (7.29)
ho(u,k,a) = 0.

Indeed, the following theorem holds.

Theorem 12 Let (u,a, k) = (0,0,wd) correspond to a simple Hopf point.
Then the Jacobian matriz of (7.29) at this point

£ 0
J= hgu hga hgﬁ
h2u hQa hsz
s nonsingular.
Proof:
First notice that the derivatives of hj;(u, @, ) w.r.t. any component of

(u, o, k) can be efficiently computed using the bordering technique. Intro-
duce wy 2 = wy 2(u, a, k) € R™ as the solutions of the nonsingular system

T
wq hll h12 o 010
( wlT hu h12 )M(u’k7a) o ( 0 0 1 )

Then
hiw = _wrlr(fi)uvv how = —'wg(fi)uv7
hia = _wrlr(fi)ava haa = —'UJQT(fz)aU
and
hlk = —’UJrlT'U, hgk = —ngU,

where v = v(u, a, k) is defined by solving (7.28).
Suppose that at the simple Hopf point (0,0, wg) there is a vector (U, 3, K) €
R™2 such that

fi fo 0 u 0
h(l)u h(l)a h(l)n B = 0 : (730)
hou h5a Mo ) \ K 0
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The first equation in (7.30) is
fAU + faB =0,
Since A = f? is invertible at the simple Hopf point and f2 = — 9/ (0) (see
(7.17)), we have
U = pul(0).
Using the expressions for the derivatives, we have at (u,«) = (0,0):
(f)uvU = B(fv,U) + fB(v,U) = B[B(Av,ug(0)) + AB(v,ug(0))]
and
(f)avB = B(Fuafu + fulia)v = B(fuaAv + Af o).
At the simple Hopf point v € N (M) and {w1, ws} form a basis in N(M7T).
Therefore (7.21) implies
Aa(0v = B(v,u(0) + faav,
An(0)Av = B(Av,ul(0)) + 2, Av,
so that and the second and third equations in (7.30) can now be written as
—Bwi [AAL(0) + Ax(0)AJv — (wiv)K = 0,
—Bw3 [AA4(0) + An(0) Al — (wiv)K = 0.
Making a linear combination of the last two equations, we have

—Bp1[AAa(0) + Aa(0)Algs — (piq) K = 0,
—Bpa [AA4(0) + Aa(0)Alqr — (py 1)K = 0.

Using the normalization conditions (7.19), we see that these equations are
equivalent to

Q/BP?[A Aa(o) + Aa(O)A]QI + K = 07 (7 31)
ﬁpg[A Aa(o) + Aa(O)A]QI = 0. '
However, Aq1 = —wpgqe and p;FA = —woplT, so that the second equation in

(7.31) reads
ﬁWO[p?Aa(O)Q1 +pgAa(O)Q2] =0
or, taking into account (7.20),

Busor (0) = 0.

Since wop'(0) # 0 at a simple Hopf point, we mast have 5 = 0. Then U =0
and the first equation in (7.31) implies K = 0. Thus (U, 3, K) = 0 is the
only solution to (7.30). Therefore, the Jacobian maitrix J is nonsingular. O
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7.5 Standard augmented defining systems

Here we present without proof some alternative defining systems for the fold
and Hopf bifurcations.
7.5.1 Fold

Consider the system
f(u7a) = 0,
fulu,a)g = 0, (7.32)
(90,9) =1 = 0,

where u, q,qp € R" and o € R. System (7.32) has the form
F(X)=0, XecR",

where N = 2n + 1 and

u f(uva)
X = q s F(X) = fu(u,oz)q
o} (90,9) — 1

Theorem 13 Let (u,a) = (0,0) be a simple fold point and let qo denote a
normalized null-vector of A = f0 = £,(0,0). Then the Jacobian matriz of

(7.32) is nonsingular at (u,q, ) = (0, qo,0). O
7.5.2 Hopf
Consider the system
f(u7 a) = 07
fu(u7 a)q —iwq = 0, (733)

<QO7Q> -1 = 07

where u € R", ¢,q0 € C", o € R, and (qo,q) = ga q¢- This system has the
form
G(Z)=0, ZcR"xC"xR?

where
" flu,a)
z=|1 , G(Z)=1 fulu,a)q—iwq
w
a <qu Q> -1
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Introducing ¢ = v + 1w and qg = vg + 1wy with v, w, vy, wyg € R, we can
re-write (7.33) in the real form

f(u7 a) 07
fulu,)v+ww = 0,
fulu,0)w —wv = 0, (7.34)
(v, v) + (wp,w) —1 = 0,
(wp,v) — (vg,w) = 0,
This system has the form

=
>
Il
=
P
Il
2 & g e

Theorem 14 Let (u,a) = (0,0) be a simple Hopf point and let ¢y € C"
denote a normilized by (qo,q0) = 1 eigenvector of A = f0 = £,(0,0) corre-
sponding to A1 = iwg,wo > 0. Then the Jacobian matriz of (7.33) has the
trivial null-space at (u,q,w,a) = (0,qo,wo,0) and the Jacobian matriz of
(7.34) is nonsingular at (u,v,w,w,a) = (0, vy, wo, wo, 0). O



