Lecture 7: Computation of codim 1 bifurcations of equilibria

In this lecture, we will present regular defining systems to compute fold and (Andronov-)Hopf bifurcations of equilibria in

$$
\begin{equation*}
\dot{u}=f(u, \alpha), \quad u \in \mathbb{R}^{n}, \alpha \in \mathbb{R} \tag{7.14}
\end{equation*}
$$

These systems will have the form

$$
F(X)=0, \quad X \in \mathbb{R}^{N}
$$

where $X=(u, \ldots, \alpha)^{\mathrm{T}}$. A solution $X_{0}=\left(u_{0}, \ldots, \alpha_{0}\right)^{\mathrm{T}}$ will give the critical equilibrium u_{0} at the bifurcation parameter value α_{0}. We assume for simplicity that $u_{0}=0$ and $\alpha_{0}=0$, and write

$$
\begin{equation*}
f(u, 0)=A u+\frac{1}{2} B(u, u)+O(3) \tag{7.15}
\end{equation*}
$$

The regularity of the defining system at X_{0}, i.e. the non-singularity of its Jacobian matrix $F_{X}\left(X_{0}\right)$, will guarantee that this solution can be continued w.r.t. any other system parameter, say $\beta \in \mathbb{R}$. The corresponding solution curve will (locally) define a bifurcation boundary in the (α, β)-plane.

7.1 Generic bifurcation points

7.1.1 Simple fold points

Assume that $(u, \alpha)=(0,0)$ corresponds to a limit point (see Lecture 2) of the equilibrium manifold of (7.14),

$$
f(u, \alpha)=0 .
$$

We know that $A=f_{u}(0,0)$ has the one-dimensional null-space spanned by $q_{0} \in \mathbb{R}^{n}$ such that

$$
A q_{0}=0, \quad\left\langle q_{0}, q_{0}\right\rangle=1,
$$

while A^{T} also has the one-dimensional null-space spanned by $p_{0} \in \mathbb{R}^{n}$ such that

$$
A^{\mathrm{T}} p_{0}=0 \quad \text { or } \quad p_{0}^{\mathrm{T}} A=0 .
$$

The matrix

$$
J=\left(\begin{array}{ll}
A & f_{\alpha}^{0}
\end{array}\right), \quad f_{\alpha}^{0}=f_{\alpha}(0,0),
$$

has rank n, which implies that $f_{\alpha}^{0} \notin R(A)$ (otherwise rank $J<n$). This condition can be expressed more explicitly using the Fredholm Decomposition

$$
\begin{equation*}
\mathbb{R}^{n}=R(A) \oplus N\left(A^{\mathrm{T}}\right), \tag{7.16}
\end{equation*}
$$

where \oplus denotes the direct orthogonal sum of two linear subspaces. Since $p_{0} \in N\left(A^{\mathrm{T}}\right)$, the condition $f_{\alpha}^{0} \notin R(A)$ is equivalent to

$$
\left\langle p_{0}, f_{\alpha}^{0}\right\rangle \neq 0
$$

Generically, the critical eigenvalue $\lambda_{1}=0$ of A is algebraically simple, implying $\left\langle p_{0}, q_{0}\right\rangle \neq 0$. Indeed, in this case, $N(A)$ and $R(A)$ are the complementary invariant subspaces for A with $\operatorname{dim} N(A)=1$ and $\operatorname{dim} R(A)=n-1$. Since $q_{0} \notin R(A)$ (because q_{0} spans $\left.N(A)\right)$, (7.16) implies that q_{0} is not orthogonal to p_{0}. Thus we can assume

$$
\left\langle q_{0}, q_{0}\right\rangle=\left\langle p_{0}, q_{0}\right\rangle=1 .
$$

If a limit point is quadratic, we also have

$$
a=\frac{1}{2}\left\langle p_{0}, B\left(q_{0}, q_{0}\right)\right\rangle \neq 0 .
$$

By definition, a simple limit point (or simple fold) is characterized by the following conditions:
(i) $\lambda_{1}=0$ is an algebraically simple eigenvalue of A and is the only eigenvalue with $\Re(\lambda)=0$;
(ii) $\left\langle p_{0}, f_{\alpha}^{0}\right\rangle \neq 0$;
(iii) $\left\langle p_{0}, B\left(q_{0}, q_{0}\right)\right\rangle \neq 0$.

Choose a parametrization of the equilibrium manifold near the simple fold point

$$
u=u(s), \quad \alpha=\alpha(s)
$$

such that $u(0)=0, \alpha(0)=0, u^{\prime}(0)=q_{0}, \alpha^{\prime}(0)=0$. Since $\lambda_{1}=0$ is algebraically simple, there exists a smooth continuation of the critical eigenvector, i.e. a smooth vector-function $q(s)$ and a smooth function $\lambda(s)$ satisfying for all sufficiently small $|s|$

$$
f_{u}(u(s), \alpha(s)) q(s)=\lambda(s) q(s)
$$

and such that $q(0)=q_{0}, \quad \lambda(0)=0$. Differentiating the last equation w.r.t. s, we obtain

$$
\begin{aligned}
f_{u u}(u(s), \alpha(s))\left[u^{\prime}(s), q(s)\right] & +f_{u \alpha}(u(s), \alpha(s))\left[q(s), \alpha^{\prime}(s)\right] \\
& +f_{u}(u(s), \alpha(s)) q^{\prime}(s)=\lambda^{\prime}(s) q(s)+\lambda(s) q^{\prime}(s)
\end{aligned}
$$

which at $s=0$ gives

$$
f_{u u}^{0}\left[q_{0}, q_{0}\right]+f_{u}^{0} q^{\prime}(0)=\lambda^{\prime}(0) q_{0} \quad \text { or } \quad B\left(q_{0}, q_{0}\right)+A q^{\prime}(0)=\lambda^{\prime}(0) q_{0}
$$

Computing the scalar product of the last equation with p_{0}, we see that

$$
\left\langle p_{0}, B\left(q_{0}, q_{0}\right)\right\rangle+\left\langle p_{0}, A q^{\prime}(0)\right\rangle=\lambda^{\prime}(0)\left\langle p_{0}, q_{0}\right\rangle
$$

Since $\left\langle p_{0}, q_{0}\right\rangle=1$ and $A^{\mathrm{T}} p_{0}=0$ implies $\left\langle p_{0}, A q^{\prime}(0)\right\rangle=\left\langle A^{\mathrm{T}} p_{0}, q^{\prime}(0)\right\rangle=0$, we can conclude that

$$
\lambda^{\prime}(0)=\left\langle p_{0}, B\left(q_{0}, q_{0}\right)\right\rangle \neq 0
$$

at a simple fold point.

7.2 Simple Hopf points

The point $(u, \alpha)=(0,0)$ is a Hopf point if $A=f_{u}(0,0)$ has a pair of purely imaginary eigenvalues $\lambda_{1,2}= \pm i \omega_{0}, \omega_{0}>0$. Generically, these eigenvalues
are algebraically simple, which allows one to introduce the corresponding eigenvectors $q_{0}, p_{0} \in \mathbb{C}^{n}$,

$$
A q_{0}=i \omega_{0} q_{0}, \quad A^{\mathrm{T}} p_{0}=-i \omega_{0} p_{0}
$$

and assume that

$$
\left\langle q_{0}, q_{0}\right\rangle=\left\langle p_{0}, q_{0}\right\rangle=1,
$$

where $\left\langle p_{0}, q_{0}\right\rangle:=\bar{p}_{0}^{\mathrm{T}} q_{0}$.
Since A is nonsingular, the Implicit Function Theorem guarantees the existence of the unique local smooth continuation $u_{e}(\alpha)$ of the critical equilibrium $u_{e}(0)=0$ that satisfies

$$
f\left(u_{e}(\alpha), \alpha\right)=0
$$

for all sufficiently small parameter values. Differentiating this equation w.r.t. α we obtain

$$
A(\alpha) u_{e}^{\prime}(\alpha)+f_{\alpha}\left(u_{e}(\alpha), \alpha\right)=0,
$$

where $A(\alpha):=f_{u}\left(u_{e}(\alpha), \alpha\right)$. Substituting $\alpha=0$ yields

$$
A u_{e}^{\prime}(0)+f_{\alpha}^{0}=0
$$

or

$$
\begin{equation*}
u_{e}^{\prime}(0)=-A^{-1} f_{\alpha}^{0} . \tag{7.17}
\end{equation*}
$$

The Jacobian matrix $A(\alpha)$ has a smooth pair of complex-conjugate eigenvalues $\lambda(\alpha), \bar{\lambda}(\alpha)$, where

$$
\lambda(\alpha)=\mu(\alpha)+i \omega(\alpha)
$$

with $\mu(0)=0$ and $\omega(0)=\omega_{0}$.
Lemma 12 It holds that

$$
\begin{equation*}
\mu^{\prime}(0)=\Re\left\langle p_{0}, A_{\alpha}(0) q_{0}\right\rangle . \tag{7.18}
\end{equation*}
$$

Proof:

Since the critical eigenvalues are algebraically simple, there exists a smooth complex vector-function $q(\alpha)$ with $q(0)=q_{0}$ and a smooth complex function $\lambda(\alpha)$ with $\lambda(0)=i \omega_{0}$, such that

$$
A(\alpha) q(\alpha)=\lambda(\alpha) q(\alpha)
$$

for all sufficiently small $|\alpha|$. Differentiating this equation w.r.t. α we obtain

$$
A_{\alpha}(\alpha) q(\alpha)+A(\alpha) q^{\prime}(\alpha)=\lambda^{\prime}(\alpha) q(\alpha)+\lambda(\alpha) q^{\prime}(\alpha)
$$

Evaluation at $\alpha=0$ gives

$$
A_{\alpha}(0) q_{0}+A q^{\prime}(0)=\lambda^{\prime}(0) q_{0}+i \omega_{0} q^{\prime}(0)
$$

implying $\left\langle p_{0}, A_{\alpha}(0) q_{0}\right\rangle=\lambda^{\prime}(0)$. Indeed, $\left\langle p_{0}, q_{0}\right\rangle=1$ and

$$
\left\langle p_{0}, A q^{\prime}(0)\right\rangle=\left\langle A^{\mathrm{T}} p_{0}, q^{\prime}(0)\right\rangle=-\left\langle i \omega_{0} p_{0}, q^{\prime}(0)\right\rangle=i \omega_{0}\left\langle p_{0}, q^{\prime}(0)\right\rangle .
$$

Since $\mu^{\prime}(0)=\Re\left(\lambda^{\prime}(0)\right)$, (7.18) follows.
Taking into account

$$
A_{\alpha}(\alpha) q(\alpha)=f_{u u}\left(u_{e}(\alpha), \alpha\right)\left[u_{e}^{\prime}(\alpha), q(\alpha)\right]+f_{u \alpha}\left(u_{e}(\alpha), \alpha\right) q(\alpha),
$$

we get

$$
A_{\alpha}(0) q_{0}=B\left(u_{e}^{\prime}(0), q_{0}\right)+f_{u \alpha}^{0} q_{0}
$$

that leads to

$$
\mu^{\prime}(0)=\Re\left\langle p_{0},-B\left(A^{-1} f_{\alpha}^{0}, q_{0}\right)+f_{u \alpha}^{0} q_{0}\right\rangle .
$$

By definition, a simple Hopf point satisfies the following conditions:
(i) $\lambda_{1,2}= \pm i \omega_{0}$ are algebraically simple eigenvalues of A and are the only eigenvalues with $\Re(\lambda)=0$;
(ii) $\mu^{\prime}(0)=\Re\left\langle p_{0},-B\left(A^{-1} f_{\alpha}^{0}, q_{0}\right)+f_{u \alpha}^{0} q_{0}\right\rangle \neq 0$.

The second condition is called the Hopf transversality.
Write $q_{0}=q_{1}+i q_{2}$ and $p_{0}=p_{1}+i p_{2}$ with $q_{1,2}, p_{1,2} \in \mathbb{R}^{n}$. In the simple Hopf case one can select these real vectors to satisfy

$$
\begin{equation*}
\left\langle q_{j}, q_{k}\right\rangle=\left\langle p_{j}, q_{k}\right\rangle=\frac{1}{2} \delta_{j k}, \tag{7.19}
\end{equation*}
$$

where

$$
\delta_{j k}= \begin{cases}1 & \text { if } j=k, \\ 0 & \text { if } j \neq k\end{cases}
$$

We can now write (7.18) in the real form

$$
\begin{equation*}
\mu^{\prime}(0)=p_{1}^{\mathrm{T}} A_{\alpha}(0) q_{1}+p_{2}^{\mathrm{T}} A_{\alpha}(0) q_{2}, \tag{7.20}
\end{equation*}
$$

where by linearity

$$
\begin{align*}
& A_{\alpha}(0) q_{1}=B\left(u_{e}^{\prime}(0), q_{1}\right)+f_{u \alpha}^{0} q_{1}, \tag{7.21}\\
& A_{\alpha}(0) q_{2}=B\left(u_{e}^{\prime}(0), q_{2}\right)+f_{u \alpha}^{0} q_{2} .
\end{align*}
$$

7.3 Bordering thechnique II

We need the following generalization of (7.16) to rectangular complex matrices.

Theorem 8 (General Fredholm's Decomposition) Let $C \in \mathbb{C}^{n \times m}$ be a complex $n \times m$ matrix. Then

$$
\mathbb{C}^{n}=R(C) \oplus N\left(C^{*}\right),
$$

where \oplus denotes the direct orthogonal sum of two complex-linear subspaces of \mathbb{C}^{n}, and $C^{*}:=\bar{C}^{\mathrm{T}}$.

Notice that in the theorem the orthogonality w.r.t. the scalar product $\langle u, v\rangle:=u^{*} v=\bar{u}^{\mathrm{T}} v$ is used for $u, v \in \mathbb{C}^{n}$. If C is real, we have

$$
\mathbb{R}^{n}=R(C) \oplus N\left(C^{\mathrm{T}}\right),
$$

where \oplus denotes the direct orthogonal sum of two linear subspaces of \mathbb{R}^{n}.

Theorem 9 (Construction of Nonsingular Bordered Matrices)

Consider a real $(n+m) \times(n+m)$-matrix

$$
M=\left(\begin{array}{ll}
A & B \\
C^{\mathrm{T}} & D
\end{array}\right)
$$

where $A \in \mathbb{R}^{n \times n}, B, C \in \mathbb{R}^{n \times m}, D \in \mathbb{R}^{m \times m}$, and assume that $r=\operatorname{rank} A=$ $n-m$, so that m is the rank defect of A.

If $R(B)$ is a complement to $R(A)$ and $R(C)$ is a complement to $R\left(A^{\mathrm{T}}\right)$, then M is nonsingular.

Remark:

Theorem 8 implies that it is sufficient to take B such that its columns span $N\left(A^{\mathrm{T}}\right)$, and C such that its columns span $N(A)$. By continuity, all sufficiently small perturbations of M also remain nonsingular.

Proof of Theorem 9:

Suppose that M is singular, i.e.

$$
\left(\begin{array}{cc}
A & B \\
C^{\mathrm{T}} & D
\end{array}\right)\binom{x}{y}=\binom{0}{0}
$$

for some $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{m}$ such that

$$
\binom{x}{y} \neq\binom{ 0}{0}
$$

This is equiavalent to the system

$$
\left\{\begin{aligned}
A x+B y & =0 \\
C^{\mathrm{T}} x+D y & =0
\end{aligned}\right.
$$

In its first equation, $A x \in R(A)$ and $B y \in R(B)$, so that $A x=0$ and $B y=0$, since $R(A)$ and $R(B)$ are complementary. Since $\operatorname{dim} R(A)=r$ then $\operatorname{dim} R(B)=n-r=m$ and B has full column rank (equal to m). This implies $y=0$ and the system reduces to

$$
\left\{\begin{aligned}
A x & =0 \\
C^{\mathrm{T}} x & =0
\end{aligned}\right.
$$

This means that $x \in N\left(C^{\mathrm{T}}\right)$ and $x \in N(A)$.
By Theorem 8, $N\left(C^{\mathrm{T}}\right)$ is the orthogonal complement to $R(C)$, while $N(A)$ is the orthogonal complement to $R\left(A^{\mathrm{T}}\right)$. Since $R(C)$ is complementary to $R\left(A^{\mathrm{T}}\right)$, we conclude that $N\left(C^{\mathrm{T}}\right)$ is a complement to $N(A)$. Thus, $x=0$.

We have $x=0$ and $y=0$, a contradiction. Hence, M is nonsingular.

Theorem 10 Let

$$
M=\left(\begin{array}{ll}
A & B \\
C^{\mathrm{T}} & D
\end{array}\right)
$$

be a nonsingular $(n+m) \times(n+m)$ block-matrix with $A \in \mathbb{R}^{n \times n}, B, C \in \mathbb{R}^{n \times m}$, and $D \in \mathbb{R}^{m \times m}$. Let its inverse be decomposed as

$$
M^{-1}=\left(\begin{array}{ll}
P & Q \\
R^{\mathrm{T}} & S
\end{array}\right)
$$

with $P \in \mathbb{R}^{n \times n}, Q, R \in \mathbb{R}^{n \times m}$, and $S \in \mathbb{R}^{m \times m}$.
If $\nu \leq \min (m, n)$ then A has rank defect ν if and only if S has rank defect ν.

Proof:

$$
M M^{-1}=I_{n+m} \quad \Leftrightarrow \quad\left(\begin{array}{cc}
A & B \\
C^{\mathrm{T}} & D
\end{array}\right)\left(\begin{array}{cc}
P & Q \\
R^{\mathrm{T}} & S
\end{array}\right)=\left(\begin{array}{cc}
I_{n} & 0 \\
0 & I_{m}
\end{array}\right)
$$

Thus, in particularly,

$$
A Q+B S=0
$$

If A has a left singular vector p, then $p^{\mathrm{T}} A=0$ and

$$
p^{\mathrm{T}} A Q+p^{\mathrm{T}} B S=\left(p^{\mathrm{T}} B\right) S=\left(B^{\mathrm{T}} p\right)^{\mathrm{T}} S=0
$$

Thus, $q=B^{\mathrm{T}} p$ is a left singular vector of S. Notice that $B^{\mathrm{T}} p$ is a linear combination of the rows of B and must be nonzero, since M has full rank. Therefore $q \neq 0$ and the dimension of the left null-space of S is at least that of the left null-space of A.

Similarly,

$$
M^{-1} M=I_{n+m} \quad \Leftrightarrow \quad\left(\begin{array}{cc}
P & Q \\
R^{\mathrm{T}} & S
\end{array}\right)\left(\begin{array}{ll}
A & B \\
C^{\mathrm{T}} & D
\end{array}\right)=\left(\begin{array}{cc}
I_{n} & 0 \\
0 & I_{m}
\end{array}\right)
$$

Thus, in particularly,

$$
R^{\mathrm{T}} A+S C^{\mathrm{T}}=0
$$

If S has a left singular vector q, then $q^{\mathrm{T}} S=0$ and

$$
q^{\mathrm{T}} R^{\mathrm{T}} A+q^{\mathrm{T}} S C^{\mathrm{T}}=\left(q^{\mathrm{T}} R^{\mathrm{T}}\right) A=\left(R^{\mathrm{T}} q\right)^{\mathrm{T}} A=0
$$

As above, we conclude that $p=R^{\mathrm{T}} q \neq 0$ is a left singular vector of A. This implies that the dimension of the left null-space of A is at least that of the left null-space of S.

Therefore, the left null-spaces of A and S have equal dimensions. In the same manner, one establishes the equality of the dimensions of the right null-spaces of A and S, which proves the result.

Suppose that matrix A depends smoothly on parameter $\beta \in \mathbb{R}$, i.e. we have

$$
M(\beta)=\left(\begin{array}{cc}
A(\beta) & B \\
C^{\mathrm{T}} & D
\end{array}\right)
$$

where constant B, C, and D are selected as before to make $M(0)$ nonsingular. Then $S=S(\beta)$ and there are two obvious ways to compute $S(\beta)$, namely, either by solving the bordered system

$$
\begin{equation*}
M(\beta)\binom{V(\beta)}{S(\beta)}=\binom{0}{I_{m}} \tag{7.22}
\end{equation*}
$$

or

$$
\left(W^{\mathrm{T}}(\beta) \quad S(\beta)\right) M(\beta)=\left(\begin{array}{ll}
0 & I_{m} \tag{7.23}
\end{array}\right)
$$

that is equivalent to

$$
M^{\mathrm{T}}(\beta)\binom{W(\beta)}{S(\beta)}=\binom{0}{I_{m}}
$$

There is an effifcient method to compute the derivative $S_{\alpha}(\alpha)$ using equations (7.22) and (7.23). Differentiating (7.22) w.r.t. β we obtain

$$
M(\beta)\binom{V_{\beta}(\beta)}{S_{\beta}(\beta)}+\left(\begin{array}{cc}
A_{\beta}(\beta) & 0 \\
0 & 0
\end{array}\right)\binom{V(\beta)}{S(\beta)}=\binom{0}{0} .
$$

Multiplying this equation from the left by ($W^{\mathrm{T}}(\beta) S(\beta)$) and using (7.23) we find

$$
\begin{equation*}
S_{\beta}(\beta)=-W^{\mathrm{T}}(\beta) A_{\beta}(\beta) V(\beta) . \tag{7.24}
\end{equation*}
$$

7.4 Minimally augmeneted defining systems

7.4.1 Fold

Using the bordering technique, we can introduce the system

$$
\left\{\begin{array}{l}
f(u, \alpha)=0, \tag{7.25}\\
g(u, \alpha)=0,
\end{array}\right.
$$

where $g(u, \alpha)$ is defined by solving the linear system

$$
\left(\begin{array}{cc}
f_{u}(u, \alpha) & p_{0} \tag{7.26}\\
q_{0}^{T} & 0
\end{array}\right)\binom{w(u, \alpha)}{g(u, \alpha)}=\binom{0}{1}
$$

with $q_{0}, p_{0} \in \mathbb{R}^{n}$ satisfying

$$
A q_{0}=A^{\mathrm{T}} p_{0}=0, \quad\left\langle q_{0}, q_{0}\right\rangle=\left\langle p_{0}, q_{0}\right\rangle=1,
$$

where $A=f_{u}^{0}=f_{u}(0,0)$. The system (7.26) is a particular instance of the general bordered system (7.22) with $m=1$.

Theorem 11 Let $(u, \alpha)=(0,0)$ be a simple quadratic fold point. Then the Jacobian matrix of (7.25) at this point

$$
J=\left(\begin{array}{ll}
f_{u}^{0} & f_{\alpha}^{0} \\
g_{u}^{0} & g_{\alpha}^{0}
\end{array}\right)
$$

is nonsingular.

Proof:

Theorem 9 (or Lemma 9 from Lecture 3) guarantees that

$$
\left(\begin{array}{cc}
A & p_{0} \\
q_{0}^{\mathrm{T}} & 0
\end{array}\right)
$$

is nonsingular. This implies that the matrix of the bordered system (7.26) is nonsingular for all sufficiently small $\|u\|$ and $|\alpha|$. Thus, $g(u, \alpha)$ is locally well defined. Furthermore, it follows from (7.24) (or just from Lemma 10 in Lecture 3) that

$$
g_{u}(u, \alpha)=-p_{0}^{\mathrm{T}} f_{u u}(u, \alpha) q_{0}, \quad g_{\alpha}(u, \alpha)=-p_{0}^{\mathrm{T}} f_{u \alpha}(u, \alpha) q_{0} .
$$

Here we treat the gradient g_{u} as the one-row matrix.
Theorem 9 ensures that matrix J is nonsingular if

$$
f_{\alpha}^{0} \notin R\left(f_{u}^{0}\right)=R(A) \quad \text { and } \quad\left[g_{u}^{0}\right]^{\mathrm{T}} \notin R\left(\left[f_{u}^{0}\right]^{\mathrm{T}}\right)=R\left(A^{\mathrm{T}}\right) .
$$

By Fredholm's Decomposition these conditions are equivalent to the following inequalities:

$$
p_{0}^{\mathrm{T}} f_{\alpha}^{0}=\left\langle p_{0}, f_{\alpha}^{0}\right\rangle \neq 0 \quad \text { and } \quad\left[g_{u}^{0}\right]^{\mathrm{T}} q_{0}=-\left\langle p_{0}, B\left(q_{0}, q_{0}\right)\right\rangle \neq 0,
$$

which hold since $(u, \alpha)=(0,0)$ is a simple quadratic fold.

7.4.2 Hopf

At a simple Hopf point, $A=f_{u}^{0}$ has a simple eigenvalue $\lambda_{1}=i \omega_{0}$ with $\omega_{0}>0$. Its corresponding complex eigenvector $q_{0}=q_{1}+i q_{2}$ satisfies $A q_{0}=i \omega_{0} q_{0}$. Moreover, there is a complex eigenvector $p_{0}=p_{1}+i p_{2}$ of the transposed matrix satisfying $A^{\mathrm{T}} p_{0}=-i \omega_{0} p_{0}$. Thus

$$
\left\{\begin{array} { l }
{ A q _ { 1 } + \omega _ { 0 } q _ { 2 } = 0 , } \\
{ A q _ { 2 } - \omega _ { 0 } q _ { 1 } = 0 , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
A^{\mathrm{T}} p_{1}-\omega_{0} p_{2}=0 \\
A^{\mathrm{T}} p_{2}+\omega_{0} p_{1}=0
\end{array}\right.\right.
$$

and the normalization conditions (7.19) are assumed to hold. These systems imply that

$$
\left(A^{2}+\omega_{0}^{2} I_{n}\right) q_{1,2}=0 \quad \text { and } \quad\left(\left[A^{\mathrm{T}}\right]^{2}+\omega_{0}^{2} I_{n}\right) p_{1,2}=0
$$

so that the matrix $\left(A^{2}+\omega_{0}^{2} I_{n}\right)$ has rank defect $\nu=2$.

According to Lemma 9 the matrix

$$
M(u, \alpha, \kappa)=\left(\begin{array}{cc}
f_{u}^{2}(u, \alpha)+\kappa I_{n} & B \\
C^{\mathrm{T}} & 0
\end{array}\right)
$$

where the columns of $B=\left(\begin{array}{ll}b_{1} & b_{2}\end{array}\right)$ span a space that is not orthogonal to $N\left(\left[A^{\mathrm{T}}\right]^{2}+\omega_{0}^{2} I_{n}\right)$ and the columns of $C=\left(c_{1} c_{2}\right)$ span a space that is not orthogonal to $N\left(A^{2}+\omega_{0}^{2} I_{n}\right)$, is nonsingular at the simple Hopf point

$$
(u, \alpha, \kappa)=\left(0,0, \omega_{0}^{2}\right)
$$

Consider now the following bordered system

$$
M(u, \alpha, \kappa)\binom{V}{G}=\binom{0}{I_{2}} \Leftrightarrow M(u, \alpha, \kappa)\left(\begin{array}{cc}
v_{1} & v_{2} \\
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)
$$

and its solution

$$
v_{j}=v_{j}(u, \alpha, \kappa), \quad g_{j k}=g_{j k}(u, \alpha, \kappa), \quad j, k=1,2
$$

According to Theorem 10 in the case $m=2$, the matrix $f_{u}^{2}(u, \alpha)+\kappa I_{n}$ has rank defect $\nu=2$ if and only if $G \equiv 0$, i.e. $g_{11}=g_{12}=g_{21}=g_{22}=0$. Thus $g_{j k}\left(0,0, \omega_{0}^{2}\right)=0$ for all $j, k=1,2$ at a Hopf point $(u, \alpha)=(0,0)$. This indicates that the system

$$
\left\{\begin{align*}
f(u, \alpha) & =0 \tag{7.27}\\
g_{i_{1} j_{1}}(u, \alpha, \kappa) & =0 \\
g_{i_{2} j_{2}}(u, \alpha, \kappa) & =0
\end{align*}\right.
$$

where $\left(i_{1} j_{1}\right)$ and $\left(i_{2} j_{2}\right)$ are different index pairs, can be considered as a defining system for Hopf bifurcation.

In practice, the following modification is used. Consider the bordered system

$$
M(u, \alpha, \kappa)\left(\begin{array}{c}
v \tag{7.28}\\
h_{1} \\
h_{2}
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

and its solution

$$
v=v(u, \alpha, \kappa), \quad h_{j}=h_{j}(u, \alpha, \kappa), \quad j=1,2 .
$$

Since $g_{j k}\left(0,0, \omega_{0}^{2}\right)=0$ for all $j, k=1,2$, we have

$$
\binom{h_{1}}{h_{2}}=\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right)\binom{1}{1}=\binom{0}{0}
$$

at a Hopf point. Thus as a defining system for the Hopf bifurcation one can use

$$
\left\{\begin{align*}
f(u, \alpha) & =0 \tag{7.29}\\
h_{1}(u, k, \alpha) & =0 \\
h_{2}(u, k, \alpha) & =0
\end{align*}\right.
$$

Indeed, the following theorem holds.
Theorem 12 Let $(u, \alpha, \kappa)=\left(0,0, \omega_{0}^{2}\right)$ correspond to a simple Hopf point. Then the Jacobian matrix of (7.29) at this point

$$
J=\left(\begin{array}{ccc}
f_{u}^{0} & f_{\alpha}^{0} & 0 \\
h_{1 u}^{0} & h_{1 \alpha}^{0} & h_{1 \kappa}^{0} \\
h_{2 u}^{0} & h_{2 \alpha}^{0} & h_{2 \kappa}^{0}
\end{array}\right)
$$

is nonsingular.

Proof:

First notice that the derivatives of $h_{j}(u, \alpha, \kappa)$ w.r.t. any component of (u, α, κ) can be efficiently computed using the bordering technique. Introduce $w_{1,2}=w_{1,2}(u, \alpha, k) \in \mathbb{R}^{n}$ as the solutions of the nonsingular system

$$
\left(\begin{array}{ccc}
w_{1}^{\mathrm{T}} & h_{11} & h_{12} \\
w_{1}^{\mathrm{T}} & h_{11} & h_{12}
\end{array}\right) M(u, k, \alpha)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Then

$$
\begin{aligned}
h_{1 u} & =-w_{1}^{\mathrm{T}}\left(f_{u}^{2}\right)_{u} v, \quad h_{2 u}=-w_{2}^{\mathrm{T}}\left(f_{u}^{2}\right)_{u} v, \\
h_{1 \alpha} & =-w_{1}^{\mathrm{T}}\left(f_{u}^{2}\right)_{\alpha} v, \quad h_{2 \alpha}=-w_{2}^{\mathrm{T}}\left(f_{u}^{2}\right)_{\alpha} v
\end{aligned}
$$

and

$$
h_{1 k}=-w_{1}^{\mathrm{T}} v, \quad h_{2 k}=-w_{2}^{\mathrm{T}} v,
$$

where $v=v(u, \alpha, \kappa)$ is defined by solving (7.28).
Suppose that at the simple Hopf point $\left(0,0, \omega_{0}^{2}\right)$ there is a vector $(U, \beta, K) \in$ \mathbb{R}^{n+2} such that

$$
\left(\begin{array}{ccc}
f_{u}^{0} & f_{\alpha}^{0} & 0 \tag{7.30}\\
h_{1 u}^{0} & h_{1 \alpha}^{0} & h_{1 \kappa}^{0} \\
h_{2 u}^{0} & h_{2 \alpha}^{0} & h_{2 \kappa}^{0}
\end{array}\right)\left(\begin{array}{c}
U \\
\beta \\
K
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

The first equation in (7.30) is

$$
f_{u}^{0} U+f_{\alpha}^{0} \beta=0
$$

Since $A=f_{u}^{0}$ is invertible at the simple Hopf point and $f_{\alpha}^{0}=-f_{u}^{0} u_{e}^{\prime}(0)$ (see (7.17)), we have

$$
U=\beta u_{e}^{\prime}(0)
$$

Using the expressions for the derivatives, we have at $(u, \alpha)=(0,0)$:

$$
\left(f_{u}^{2}\right)_{u} v U=B\left(f_{u}^{0} v, U\right)+f_{u}^{0} B(v, U)=\beta\left[B\left(A v, u_{e}^{\prime}(0)\right)+A B\left(v, u_{e}^{\prime}(0)\right)\right]
$$

and

$$
\left(f_{u}^{2}\right)_{\alpha} v \beta=\beta\left(f_{u \alpha}^{0} f_{u}^{0}+f_{u}^{0} f_{u \alpha}^{0}\right) v=\beta\left(f_{u \alpha}^{0} A v+A f_{u \alpha}^{0} v\right)
$$

At the simple Hopf point $v \in N(M)$ and $\left\{w_{1}, w_{2}\right\}$ form a basis in $N\left(M^{\mathrm{T}}\right)$. Therefore (7.21) implies

$$
\begin{aligned}
A_{\alpha}(0) v & =B\left(v, u_{e}^{\prime}(0)\right)+f_{u \alpha}^{0} v \\
A_{\alpha}(0) A v & =B\left(A v, u_{e}^{\prime}(0)\right)+f_{u \alpha}^{0} A v
\end{aligned}
$$

so that and the second and third equations in (7.30) can now be written as

$$
\begin{aligned}
& -\beta w_{1}^{\mathrm{T}}\left[A A_{\alpha}(0)+A_{\alpha}(0) A\right] v-\left(w_{1}^{\mathrm{T}} v\right) K=0 \\
& -\beta w_{2}^{\mathrm{T}}\left[A A_{\alpha}(0)+A_{\alpha}(0) A\right] v-\left(w_{2}^{\mathrm{T}} v\right) K=0
\end{aligned}
$$

Making a linear combination of the last two equations, we have

$$
\begin{aligned}
& -\beta p_{1}^{\mathrm{T}}\left[A A_{\alpha}(0)+A_{\alpha}(0) A\right] q_{1}-\left(p_{1}^{\mathrm{T}} q_{1}\right) K=0 \\
& -\beta p_{2}^{\mathrm{T}}\left[A A_{\alpha}(0)+A_{\alpha}(0) A\right] q_{1}-\left(p_{2}^{\mathrm{T}} q_{1}\right) K=0
\end{aligned}
$$

Using the normalization conditions (7.19), we see that these equations are equivalent to

$$
\begin{cases}2 \beta p_{1}^{\mathrm{T}}\left[A A_{\alpha}(0)+A_{\alpha}(0) A\right] q_{1}+K & =0 \tag{7.31}\\ \beta p_{2}^{\mathrm{T}}\left[A A_{\alpha}(0)+A_{\alpha}(0) A\right] q_{1} & =0\end{cases}
$$

However, $A q_{1}=-\omega_{0} q_{2}$ and $p_{2}^{\mathrm{T}} A=-\omega_{0} p_{1}^{\mathrm{T}}$, so that the second equation in (7.31) reads

$$
\beta \omega_{0}\left[p_{1}^{\mathrm{T}} A_{\alpha}(0) q_{1}+p_{2}^{\mathrm{T}} A_{\alpha}(0) q_{2}\right]=0
$$

or, taking into account (7.20),

$$
\beta \omega_{0} \mu^{\prime}(0)=0
$$

Since $\omega_{0} \mu^{\prime}(0) \neq 0$ at a simple Hopf point, we mast have $\beta=0$. Then $U=0$ and the first equation in (7.31) implies $K=0$. Thus $(U, \beta, K)=0$ is the only solution to (7.30). Therefore, the Jacobian maitrix J is nonsingular.

7.5 Standard augmented defining systems

Here we present without proof some alternative defining systems for the fold and Hopf bifurcations.

7.5.1 Fold

Consider the system

$$
\left\{\begin{align*}
f(u, \alpha) & =0 \tag{7.32}\\
f_{u}(u, \alpha) q & =0 \\
\left\langle q_{0}, q\right\rangle-1 & =0
\end{align*}\right.
$$

where $u, q, q_{0} \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$. System (7.32) has the form

$$
F(X)=0, \quad X \in \mathbb{R}^{N}
$$

where $N=2 n+1$ and

$$
X=\left(\begin{array}{c}
u \\
q \\
\alpha
\end{array}\right), \quad F(X)=\left(\begin{array}{c}
f(u, \alpha) \\
f_{u}(u, \alpha) q \\
\left\langle q_{0}, q\right\rangle-1
\end{array}\right)
$$

Theorem 13 Let $(u, \alpha)=(0,0)$ be a simple fold point and let q_{0} denote a normalized null-vector of $A=f_{u}^{0}=f_{u}(0,0)$. Then the Jacobian matrix of (7.32) is nonsingular at $(u, q, \alpha)=\left(0, q_{0}, 0\right)$.

7.5.2 Hopf

Consider the system

$$
\left\{\begin{align*}
f(u, \alpha) & =0 \tag{7.33}\\
f_{u}(u, \alpha) q-i \omega q & =0 \\
\left\langle q_{0}, q\right\rangle-1 & =0
\end{align*}\right.
$$

where $u \in \mathbb{R}^{n}, q, q_{0} \in \mathbb{C}^{n}, \alpha \in \mathbb{R}$, and $\left\langle q_{0}, q\right\rangle \equiv \bar{q}_{0}^{\mathrm{T}} q$. This system has the form

$$
G(Z)=0, \quad Z \in \mathbb{R}^{n} \times \mathbb{C}^{n} \times \mathbb{R}^{2}
$$

where

$$
Z=\left(\begin{array}{c}
u \\
q \\
\omega \\
\alpha
\end{array}\right), \quad G(Z)=\left(\begin{array}{c}
f(u, \alpha) \\
f_{u}(u, \alpha) q-i \omega q \\
\left\langle q_{0}, q\right\rangle-1
\end{array}\right)
$$

Introducing $q=v+i w$ and $q_{0}=v_{0}+i w_{0}$ with $v, w, v_{0}, w_{0} \in \mathbb{R}^{n}$, we can re-write (7.33) in the real form

$$
\left\{\begin{align*}
f(u, \alpha) & =0, \tag{7.34}\\
f_{u}(u, \alpha) v+\omega w & =0, \\
f_{u}(u, \alpha) w-\omega v & =0 \\
\left\langle v_{0}, v\right\rangle+\left\langle w_{0}, w\right\rangle-1 & =0, \\
\left\langle w_{0}, v\right\rangle-\left\langle v_{0}, w\right\rangle & =0,
\end{align*}\right.
$$

This system has the form

$$
F(X)=0, \quad X=\left(\begin{array}{c}
u \\
v \\
w \\
\omega \\
\alpha
\end{array}\right) \in \mathbb{R}^{3 n+2}
$$

Theorem 14 Let $(u, \alpha)=(0,0)$ be a simple Hopf point and let $q_{0} \in \mathbb{C}^{n}$ denote a normilized by $\left\langle q_{0}, q_{0}\right\rangle=1$ eigenvector of $A=f_{u}^{0}=f_{u}(0,0)$ corresponding to $\lambda_{1}=i \omega_{0}, \omega_{0}>0$. Then the Jacobian matrix of (7.33) has the trivial null-space at $(u, q, \omega, \alpha)=\left(0, q_{0}, \omega_{0}, 0\right)$ and the Jacobian matrix of (7.34) is nonsingular at $(u, v, w, \omega, \alpha)=\left(0, v_{0}, w_{0}, \omega_{0}, 0\right)$.

