
Lecture 7: Computation of
codim 1 bifurcations of
equilibria

Yu.A. Kuznetsov: Introduction to Numerical Bifurcation Analysis

In this lecture, we will present regular defining systems to compute fold and
(Andronov-)Hopf bifurcations of equilibria in

u̇ = f(u,↵), u 2 Rn,↵ 2 R. (7.14)

These systems will have the form

F (X) = 0, X 2 RN ,

where X = (u, . . . ,↵)T. A solution X0 = (u0, . . . ,↵0)T will give the crit-
ical equilibrium u0 at the bifurcation parameter value ↵0. We assume for
simplicity that u0 = 0 and ↵0 = 0, and write

f(u, 0) = Au+
1

2
B(u, u) +O(3). (7.15)

The regularity of the defining system at X0, i.e. the non-singularity of its
Jacobian matrix F

X

(X0), will guarantee that this solution can be continued
w.r.t. any other system parameter, say � 2 R. The corresponding solution
curve will (locally) define a bifurcation boundary in the (↵,�)-plane.
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7.1 Generic bifurcation points

7.1.1 Simple fold points

Assume that (u,↵) = (0, 0) corresponds to a limit point (see Lecture 2) of
the equilibrium manifold of (7.14),

f(u,↵) = 0.

We know that A = f
u

(0, 0) has the one-dimensional null-space spanned by
q0 2 Rn such that

Aq0 = 0, hq0, q0i = 1,

while AT also has the one-dimensional null-space spanned by p0 2 Rn such
that

ATp0 = 0 or pT0 A = 0.

The matrix
J = (A f0

↵

), f0
↵

= f
↵

(0, 0),

has rank n, which implies that f0
↵

62 R(A) (otherwise rank J < n). This
condition can be expressed more explicitly using the Fredholm Decompo-
sition

Rn = R(A)�N(AT), (7.16)

where � denotes the direct orthogonal sum of two linear subspaces. Since
p0 2 N(AT), the condition f0

↵

62 R(A) is equivalent to

hp0, f0
↵

i 6= 0.

Generically, the critical eigenvalue �1 = 0 of A is algebraically simple,
implying hp0, q0i 6= 0. Indeed, in this case, N(A) and R(A) are the comple-
mentary invariant subspaces for A with dimN(A) = 1 and dimR(A) = n�1.
Since q0 62 R(A) (because q0 spans N(A)), (7.16) implies that q0 is not or-
thogonal to p0. Thus we can assume

hq0, q0i = hp0, q0i = 1.

If a limit point is quadratic, we also have

a =
1

2
hp0, B(q0, q0)i 6= 0.

By definition, a simple limit point (or simple fold) is characterized by
the following conditions:
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(i) �1 = 0 is an algebraically simple eigenvalue of A and is the only
eigenvalue with <(�) = 0;

(ii) hp0, f0
↵

i 6= 0;
(iii) hp0, B(q0, q0)i 6= 0.

Choose a parametrization of the equilibrium manifold near the simple
fold point

u = u(s), ↵ = ↵(s),

such that u(0) = 0, ↵(0) = 0, u0(0) = q0, ↵0(0) = 0. Since �1 = 0
is algebraically simple, there exists a smooth continuation of the critical
eigenvector, i.e. a smooth vector-function q(s) and a smooth function �(s)
satisfying for all su�ciently small |s|

f
u

(u(s),↵(s))q(s) = �(s)q(s)

and such that q(0) = q0, �(0) = 0. Di↵erentiating the last equation w.r.t.
s, we obtain

f
uu

(u(s),↵(s))[u0(s), q(s)] + f
u↵

(u(s),↵(s))[q(s),↵0(s)]

+ f
u

(u(s),↵(s))q0(s) = �0(s)q(s) + �(s)q0(s),

which at s = 0 gives

f0
uu

[q0, q0] + f0
u

q0(0) = �0(0)q0 or B(q0, q0) +Aq0(0) = �0(0)q0.

Computing the scalar product of the last equation with p0, we see that

hp0, B(q0, q0)i+ hp0, Aq0(0)i = �0(0)hp0, q0i.

Since hp0, q0i = 1 and ATp0 = 0 implies hp0, Aq0(0)i = hATp0, q0(0)i = 0, we
can conclude that

�0(0) = hp0, B(q0, q0)i 6= 0

at a simple fold point.

7.2 Simple Hopf points

The point (u,↵) = (0, 0) is a Hopf point if A = f
u

(0, 0) has a pair of purely
imaginary eigenvalues �1,2 = ±i!0,!0 > 0. Generically, these eigenvalues
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are algebraically simple, which allows one to introduce the corresponding
eigenvectors q0, p0 2 Cn,

Aq0 = i!0q0, ATp0 = �i!0p0,

and assume that
hq0, q0i = hp0, q0i = 1,

where hp0, q0i := p̄T0 q0.
Since A is nonsingular, the Implicit Function Theorem guarantees the

existence of the unique local smooth continuation u
e

(↵) of the critical equi-
librium u

e

(0) = 0 that satisfies

f(u
e

(↵),↵) = 0

for all su�ciently small parameter values. Di↵erentiating this equation w.r.t.
↵ we obtain

A(↵)u0
e

(↵) + f
↵

(u
e

(↵),↵) = 0,

where A(↵) := f
u

(u
e

(↵),↵). Substituting ↵ = 0 yields

Au0
e

(0) + f0
↵

= 0

or
u0
e

(0) = �A�1f0
↵

. (7.17)

The Jacobian matrix A(↵) has a smooth pair of complex-conjugate eigen-
values �(↵), �̄(↵), where

�(↵) = µ(↵) + i!(↵)

with µ(0) = 0 and !(0) = !0.

Lemma 12 It holds that

µ0(0) = <hp0, A↵

(0)q0i. (7.18)

Proof:
Since the critical eigenvalues are algebraically simple, there exists a

smooth complex vector-function q(↵) with q(0) = q0 and a smooth com-
plex function �(↵) with �(0) = i!0, such that

A(↵)q(↵) = �(↵)q(↵)
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for all su�ciently small |↵|. Di↵erentiating this equation w.r.t. ↵ we obtain

A
↵

(↵)q(↵) +A(↵)q0(↵) = �0(↵)q(↵) + �(↵)q0(↵).

Evaluation at ↵ = 0 gives

A
↵

(0)q0 +Aq0(0) = �0(0)q0 + i!0q
0(0)

implying hp0, A↵

(0)q0i = �0(0). Indeed, hp0, q0i = 1 and

hp0, Aq0(0)i = hATp0, q
0(0)i = �hi!0p0, q

0(0)i = i!0hp0, q0(0)i.

Since µ0(0) = <(�0(0)), (7.18) follows. 2

Taking into account

A
↵

(↵)q(↵) = f
uu

(u
e

(↵),↵)[u0
e

(↵), q(↵)] + f
u↵

(u
e

(↵),↵)q(↵),

we get
A

↵

(0)q0 = B(u0
e

(0), q0) + f0
u↵

q0,

that leads to
µ0(0) = <hp0,�B(A�1f0

↵

, q0) + f0
u↵

q0i.
By definition, a simple Hopf point satisfies the following conditions:

(i) �1,2 = ±i!0 are algebraically simple eigenvalues of A and are the only
eigenvalues with <(�) = 0;

(ii) µ0(0) = <hp0,�B(A�1f0
↵

, q0) + f0
u↵

q0i 6= 0.

The second condition is called the Hopf transversality.

Write q0 = q1 + iq2 and p0 = p1 + ip2 with q1,2, p1,2 2 Rn. In the simple
Hopf case one can select these real vectors to satisfy

hq
j

, q
k

i = hp
j

, q
k

i = 1

2
�
jk

, (7.19)

where

�
jk

=

(
1 if j = k,
0 if j 6= k.

We can now write (7.18) in the real form

µ0(0) = pT1 A↵

(0)q1 + pT2 A↵

(0)q2, (7.20)

where by linearity

A
↵

(0)q1 = B(u0
e

(0), q1) + f0
u↵

q1,
A

↵

(0)q2 = B(u0
e

(0), q2) + f0
u↵

q2.
(7.21)
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7.3 Bordering thechnique II

We need the following generalization of (7.16) to rectangular complex ma-
trices.

Theorem 8 (General Fredholm’s Decomposition) Let C 2 Cn⇥m be
a complex n⇥m matrix. Then

Cn = R(C)�N(C⇤),

where � denotes the direct orthogonal sum of two complex-linear subspaces

of Cn, and C⇤ := C
T
. 2

Notice that in the theorem the orthogonality w.r.t. the scalar product
hu, vi := u⇤v = ūTv is used for u, v 2 Cn. If C is real, we have

Rn = R(C)�N(CT),

where � denotes the direct orthogonal sum of two linear subspaces of Rn.

Theorem 9 (Construction of Nonsingular Bordered Matrices)

Consider a real (n+m)⇥ (n+m)-matrix

M =

 
A B
CT D

!

,

where A 2 Rn⇥n, B, C 2 Rn⇥m, D 2 Rm⇥m, and assume that r = rank A =
n�m, so that m is the rank defect of A.

If R(B) is a complement to R(A) and R(C) is a complement to R(AT),
then M is nonsingular.

Remark:

Theorem 8 implies that it is su�cient to take B such that its columns
span N(AT), and C such that its columns span N(A). By continuity, all
su�ciently small perturbations of M also remain nonsingular.

Proof of Theorem 9:

Suppose that M is singular, i.e.

 
A B
CT D

! 
x
y

!

=

 
0
0

!
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for some x 2 Rn and y 2 Rm such that
 

x
y

!

6=
 

0
0

!

.

This is equiavalent to the system
(

Ax+By = 0,
CTx+Dy = 0.

In its first equation, Ax 2 R(A) and By 2 R(B), so that Ax = 0 and
By = 0, since R(A) and R(B) are complementary. Since dimR(A) = r then
dimR(B) = n � r = m and B has full column rank (equal to m). This
implies y = 0 and the system reduces to

(
Ax = 0,

CTx = 0.

This means that x 2 N(CT) and x 2 N(A).
By Theorem 8, N(CT) is the orthogonal complement to R(C), while

N(A) is the orthogonal complement to R(AT). Since R(C) is complementary
to R(AT), we conclude that N(CT) is a complement to N(A). Thus, x = 0.

We have x = 0 and y = 0, a contradiction. Hence, M is nonsingular. 2

Theorem 10 Let

M =

 
A B
CT D

!

be a nonsingular (n+m)⇥(n+m) block-matrix with A 2 Rn⇥n, B, C 2 Rn⇥m,
and D 2 Rm⇥m. Let its inverse be decomposed as

M�1 =

 
P Q
RT S

!

with P 2 Rn⇥n, Q,R 2 Rn⇥m, and S 2 Rm⇥m.
If ⌫  min(m,n) then A has rank defect ⌫ if and only if S has rank defect

⌫.

Proof:

MM�1 = I
n+m

,
 

A B
CT D

! 
P Q
RT S

!

=

 
I
n

0
0 I

m

!

.
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Thus, in particularly,
AQ+BS = 0.

If A has a left singular vector p, then pTA = 0 and

pTAQ+ pTBS = (pTB)S = (BTp)TS = 0.

Thus, q = BTp is a left singular vector of S. Notice that BTp is a linear
combination of the rows of B and must be nonzero, since M has full rank.
Therefore q 6= 0 and the dimension of the left null-space of S is at least that
of the left null-space of A.

Similarly,

M�1M = I
n+m

,
 

P Q
RT S

! 
A B
CT D

!

=

 
I
n

0
0 I

m

!

.

Thus, in particularly,
RTA+ SCT = 0.

If S has a left singular vector q, then qTS = 0 and

qTRTA+ qTSCT = (qTRT)A = (RTq)TA = 0.

As above, we conclude that p = RTq 6= 0 is a left singular vector of A. This
implies that the dimension of the left null-space of A is at least that of the
left null-space of S.

Therefore, the left null-spaces of A and S have equal dimensions. In
the same manner, one establishes the equality of the dimensions of the right
null-spaces of A and S, which proves the result. 2

Suppose that matrix A depends smoothly on parameter � 2 R, i.e. we
have

M(�) =

 
A(�) B
CT D

!

,

where constant B,C, andD are selected as before to makeM(0) nonsingular.
Then S = S(�) and there are two obvious ways to compute S(�), namely,
either by solving the bordered system

M(�)

 
V (�)
S(�)

!

=

 
0
I
m

!

(7.22)

or
(WT(�) S(�))M(�) = ( 0 I

m

) (7.23)
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that is equivalent to

MT(�)

 
W (�)
S(�)

!

=

 
0
I
m

!

.

There is an e�fcient method to compute the derivative S
↵

(↵) using equa-
tions (7.22) and (7.23). Di↵erentiating (7.22) w.r.t. � we obtain

M(�)

 
V
�

(�)
S
�

(�)

!

+

 
A

�

(�) 0
0 0

! 
V (�)
S(�)

!

=

 
0
0

!

.

Multiplying this equation from the left by (WT(�) S(�)) and using (7.23)
we find

S
�

(�) = �WT(�)A
�

(�)V (�). (7.24)

7.4 Minimally augmeneted defining systems

7.4.1 Fold

Using the bordering technique, we can introduce the system
(

f(u,↵) = 0,
g(u,↵) = 0,

(7.25)

where g(u,↵) is defined by solving the linear system
 

f
u

(u,↵) p0
qT0 0

! 
w(u,↵)
g(u,↵)

!

=

 
0
1

!

(7.26)

with q0, p0 2 Rn satisfying

Aq0 = ATp0 = 0, hq0, q0i = hp0, q0i = 1,

where A = f0
u

= f
u

(0, 0). The system (7.26) is a particular instance of the
general bordered system (7.22) with m = 1.

Theorem 11 Let (u,↵) = (0, 0) be a simple quadratic fold point. Then the
Jacobian matrix of (7.25) at this point

J =

 
f0
u

f0
↵

g0
u

g0
↵

!

is nonsingular.
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Proof:

Theorem 9 (or Lemma 9 from Lecture 3) guarantees that

 
A p0
qT0 0

!

is nonsingular. This implies that the matrix of the bordered system (7.26)
is nonsingular for all su�ciently small kuk and |↵|. Thus, g(u,↵) is locally
well defined. Furthermore, it follows from (7.24) (or just from Lemma 10 in
Lecture 3) that

g
u

(u,↵) = �pT0 fuu(u,↵)q0, g
↵

(u,↵) = �pT0 fu↵(u,↵)q0.

Here we treat the gradient g
u

as the one-row matrix.
Theorem 9 ensures that matrix J is nonsingular if

f0
↵

62 R(f0
u

) = R(A) and [g0
u

]T 62 R([f0
u

]T) = R(AT).

By Fredholm’s Decomposition these conditions are equivalent to the follow-
ing inequalities:

pT0 f
0
↵

= hp0, f0
↵

i 6= 0 and [g0
u

]Tq0 = �hp0, B(q0, q0)i 6= 0,

which hold since (u,↵) = (0, 0) is a simple quadratic fold. 2

7.4.2 Hopf

At a simple Hopf point, A = f0
u

has a simple eigenvalue �1 = i!0 with !0 > 0.
Its corresponding complex eigenvector q0 = q1 + iq2 satisfies Aq0 = i!0q0.
Moreover, there is a complex eigenvector p0 = p1 + ip2 of the transposed
matrix satisfying ATp0 = �i!0p0. Thus

(
Aq1 + !0q2 = 0,
Aq2 � !0q1 = 0,

and

(
ATp1 � !0p2 = 0,
ATp2 + !0p1 = 0,

and the normalization conditions (7.19) are assumed to hold. These systems
imply that

(A2 + !2
0In)q1,2 = 0 and ([AT]2 + !2

0In)p1,2 = 0

so that the matrix (A2 + !2
0In) has rank defect ⌫ = 2.
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According to Lemma 9 the matrix

M(u,↵,) =

 
f2
u

(u,↵) + I
n

B
CT 0

!

,

where the columns of B = (b1 b2) span a space that is not orthogonal to
N([AT]2 + !2

0In) and the columns of C = (c1 c2) span a space that is not
orthogonal to N(A2 + !2

0In), is nonsingular at the simple Hopf point

(u,↵,) = (0, 0,!2
0).

Consider now the following bordered system

M(u,↵,)

 
V
G

!

=

 
0
I2

!

, M(u,↵,)

0

B@
v1 v2
g11 g12
g21 g22

1

CA =

0

B@
0 0
1 0
0 1

1

CA

and its solution

v
j

= v
j

(u,↵,), g
jk

= g
jk

(u,↵,), j, k = 1, 2.

According to Theorem 10 in the case m = 2, the matrix f2
u

(u,↵) + I
n

has
rank defect ⌫ = 2 if and only if G ⌘ 0, i.e. g11 = g12 = g21 = g22 = 0.
Thus g

jk

(0, 0,!2
0) = 0 for all j, k = 1, 2 at a Hopf point (u,↵) = (0, 0). This

indicates that the system

8
><

>:

f(u,↵) = 0,
g
i1j1(u,↵,) = 0,
g
i2j2(u,↵,) = 0,

(7.27)

where (i1j1) and (i2j2) are di↵erent index pairs, can be considered as a
defining system for Hopf bifurcation.

In practice, the following modification is used. Consider the bordered
system

M(u,↵,)

0

B@
v
h1
h2

1

CA =

0

B@
0
1
1

1

CA (7.28)

and its solution

v = v(u,↵,), h
j

= h
j

(u,↵,), j = 1, 2.
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Since g
jk

(0, 0,!2
0) = 0 for all j, k = 1, 2, we have
 

h1
h2

!

=

 
g11 g12
g21 g22

! 
1
1

!

=

 
0
0

!

at a Hopf point. Thus as a defining system for the Hopf bifurcation one can
use 8

><

>:

f(u,↵) = 0,
h1(u, k,↵) = 0,
h2(u, k,↵) = 0.

(7.29)

Indeed, the following theorem holds.

Theorem 12 Let (u,↵,) = (0, 0,!2
0) correspond to a simple Hopf point.

Then the Jacobian matrix of (7.29) at this point

J =

0

B@
f0
u

f0
↵

0
h01u h01↵ h01
h02u h02↵ h02

1

CA

is nonsingular.

Proof:
First notice that the derivatives of h

j

(u,↵,) w.r.t. any component of
(u,↵,) can be e�ciently computed using the bordering technique. Intro-
duce w1,2 = w1,2(u,↵, k) 2 Rn as the solutions of the nonsingular system

 
wT
1 h11 h12

wT
1 h11 h12

!

M(u, k,↵) =

 
0 1 0
0 0 1

!

.

Then

h1u = �wT
1 (f

2
u

)
u

v, h2u = � wT
2 (f

2
u

)
u

v,

h1↵ = �wT
1 (f

2
u

)
↵

v, h2↵ = � wT
2 (f

2
u

)
↵

v

and
h1k = �wT

1 v, h2k = �wT
2 v,

where v = v(u,↵,) is defined by solving (7.28).
Suppose that at the simple Hopf point (0, 0,!2

0) there is a vector (U,�,K) 2
Rn+2 such that

0

B@
f0
u

f0
↵

0
h01u h01↵ h01
h02u h02↵ h02

1

CA

0

B@
U
�
K

1

CA =

0

B@
0
0
0

1

CA . (7.30)
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The first equation in (7.30) is

f0
u

U + f0
↵

� = 0,

Since A = f0
u

is invertible at the simple Hopf point and f0
↵

= �f0
u

u0
e

(0) (see
(7.17)), we have

U = �u0
e

(0).

Using the expressions for the derivatives, we have at (u,↵) = (0, 0):

(f2
u

)
u

vU = B(f0
u

v, U) + f0
u

B(v, U) = �[B(Av, u0
e

(0)) +AB(v, u0
e

(0))]

and
(f2

u

)
↵

v� = �(f0
u↵

f0
u

+ f0
u

f0
u↵

)v = �(f0
u↵

Av +Af0
u↵

v).

At the simple Hopf point v 2 N(M) and {w1, w2} form a basis inN(MT).
Therefore (7.21) implies

A
↵

(0)v = B(v, u0
e

(0)) + f0
u↵

v,

A
↵

(0)Av = B(Av, u0
e

(0)) + f0
u↵

Av,

so that and the second and third equations in (7.30) can now be written as

��wT
1 [AA↵

(0) +A
↵

(0)A]v � (wT
1 v)K = 0,

��wT
2 [AA↵

(0) +A
↵

(0)A]v � (wT
2 v)K = 0.

Making a linear combination of the last two equations, we have

��pT1 [AA↵

(0) +A
↵

(0)A]q1 � (pT1 q1)K = 0,

��pT2 [AA↵

(0) +A
↵

(0)A]q1 � (pT2 q1)K = 0.

Using the normalization conditions (7.19), we see that these equations are
equivalent to

(
2�pT1 [A A

↵

(0) +A
↵

(0)A]q1 +K = 0,
�pT2 [A A

↵

(0) +A
↵

(0)A]q1 = 0.
(7.31)

However, Aq1 = �!0q2 and pT2 A = �!0pT1 , so that the second equation in
(7.31) reads

�!0[p
T
1 A↵

(0)q1 + pT2 A↵

(0)q2] = 0

or, taking into account (7.20),

�!0µ
0(0) = 0.

Since !0µ0(0) 6= 0 at a simple Hopf point, we mast have � = 0. Then U = 0
and the first equation in (7.31) implies K = 0. Thus (U,�,K) = 0 is the
only solution to (7.30). Therefore, the Jacobian maitrix J is nonsingular. 2
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7.5 Standard augmented defining systems

Here we present without proof some alternative defining systems for the fold
and Hopf bifurcations.

7.5.1 Fold

Consider the system 8
><

>:

f(u,↵) = 0,
f
u

(u,↵)q = 0,
hq0, qi � 1 = 0,

(7.32)

where u, q, q0 2 Rn and ↵ 2 R. System (7.32) has the form

F (X) = 0, X 2 RN ,

where N = 2n+ 1 and

X =

0

B@
u
q
↵

1

CA , F (X) =

0

B@
f(u,↵)
f
u

(u,↵)q
hq0, qi � 1

1

CA .

Theorem 13 Let (u,↵) = (0, 0) be a simple fold point and let q0 denote a
normalized null-vector of A = f0

u

= f
u

(0, 0). Then the Jacobian matrix of
(7.32) is nonsingular at (u, q,↵) = (0, q0, 0). 2

7.5.2 Hopf

Consider the system
8
><

>:

f(u,↵) = 0,
f
u

(u,↵)q � i!q = 0,
hq0, qi � 1 = 0,

(7.33)

where u 2 Rn, q, q0 2 Cn, ↵ 2 R, and hq0, qi ⌘ q̄T0 q. This system has the
form

G(Z) = 0, Z 2 Rn ⇥ Cn ⇥ R2,

where

Z =

0

BBB@

u
q
!
↵

1

CCCA , G(Z) =

0

B@
f(u,↵)

f
u

(u,↵)q � i!q
hq0, qi � 1

1

CA .



7.5. STANDARD AUGMENTED DEFINING SYSTEMS 57

Introducing q = v + iw and q0 = v0 + iw0 with v, w, v0, w0 2 Rn, we can
re-write (7.33) in the real form

8
>>>>><

>>>>>:

f(u,↵) = 0,
f
u

(u,↵)v + !w = 0,
f
u

(u,↵)w � !v = 0,
hv0, vi+ hw0, wi � 1 = 0,

hw0, vi � hv0, wi = 0,

(7.34)

This system has the form

F (X) = 0, X =

0

BBBBB@

u
v
w
!
↵

1

CCCCCA
2 R3n+2.

Theorem 14 Let (u,↵) = (0, 0) be a simple Hopf point and let q0 2 Cn

denote a normilized by hq0, q0i = 1 eigenvector of A = f0
u

= f
u

(0, 0) corre-
sponding to �1 = i!0,!0 > 0. Then the Jacobian matrix of (7.33) has the
trivial null-space at (u, q,!,↵) = (0, q0,!0, 0) and the Jacobian matrix of
(7.34) is nonsingular at (u, v, w,!,↵) = (0, v0, w0,!0, 0). 2


