Problem 1: Equilibria in a prey-predator model

Consider the following prey-predator model

$$
\left\{\begin{aligned}
\dot{x} & =3 x(1-x)-x y-\lambda\left(1-e^{-5 x}\right) \\
\dot{y} & =-y+3 x y
\end{aligned}\right.
$$

where $\lambda \in[0,1]$ is a parameter and $x, y \geq 0$.

1. Compute with MATCONT branches of nonnegative equilibria in this system in the (x, y, λ)-space.
2. Classify the equilibria by their stability.
3. Identify branching, limit, and Hopf points and study at least one of them analytically.
4. Simulate the system in MATCONT for various $\lambda \in[0,1]$ and try to produce all its generic phase portraits.
5. Which global bifurcation(s) you expect to happen in the system ?
