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Abstract

A continuation approach to the computation of essential and absolute spectra of
differential operators on the real line is presented. The advantage of this approach,
compared with direct eigenvalue computations for the discretized operator, are the
efficient and accurate computation of selected parts of the spectrum (typically those
near the imaginary axis) and the option to compute nonlinear travelling waves and
selected eigenvalues or other stability indicators simultaneously in order to locate
accurately the onset to instability. We also discuss the implementation and usage of
this approach with the software package auto and provide example computations
for the FitzHugh–Nagumo and the complex Ginzburg–Landau equation.

Key words: spectral stability, continuation, absolute spectrum, instability
thresholds, reaction-diffusion systems
1991 MSC: 34L05, 35B35, 65L10, 34L16

1 Introduction

Phase transitions in dissipative spatially extended systems often go hand in
hand with instabilities of coherent structures. Famous examples are pipe flows,
thermal convection, and the transition to chemical turbulence. On the theo-
retical side, phase transitions in the complex Ginzburg–Landau equation are
among the best understood theoretical examples for the role of instabilities in
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dissipative non-equilibrium systems, and yet there are still many unresolved
challenges in this “simple” model.

Identifying the onset of instability can present major computational challenges
due to the many active degrees of freedom that systems in large domains ex-
hibit. An additional difficulty arises when convective transport mechanisms
cause linearized operators to be non-normal, leading to ill-conditioned eigen-
value problems where pseudo spectra become relevant [18], and to sensitive
dependence on boundary conditions. One is then led to distinguish different
types of instability: At the onset of convective instability, perturbations of a
coherent structure grow in norm but decay at each fixed point in space, and
it is only at the subsequent onset of an absolute instability that perturbations
grow at each fixed point in physical space.

Beyond this idealized characterization in an unbounded domain, it is often of
interest to determine the onset of instability in a large but bounded domain,
with boundaries formed by either physical boundaries or domain walls in the
pattern. In [13], we showed that the stability of coherent structures in such
large but finite domains can be characterized using spectral information on the
unbounded domain together with information on localized boundary modes:
As the size of the domain goes to infinity, spectra in large domains converge
to a limiting set which is the disjoint union of a continuous part formed by
curves and a discrete part that consists of localized modes and resonance
poles. In the case of periodic boundary conditions, the continuous part is
given by the essential spectrum of the prevailing background pattern. In the
more typical case of separated boundary conditions, it is given by the absolute
spectrum of this background state. Eigenvalues of the linearization in finite-
size domains accumulate at these spectral curves as the domain diameter
goes to infinity. The location of these curves is independent of the number
and location of defects embedded in the regular pattern and of the imposed
boundary conditions.

Our goal in this paper is to provide efficient and accurate numerical proce-
dures to determine the continuous part of the limiting spectrum. We will out-
line algorithms that are based on complex extensions of Fourier and Laplace
transforms for spatio-temporally homogeneous background patterns, and on
Floquet–Bloch theory for spatio-temporally periodic background states. Know-
ing the location of all accumulation points of eigenvalues greatly simplifies the
task of computing the onset of instability: On the one hand, the convergence
of eigenvalues away from the limiting curves is exponential in the domain size,
so that accurate information can be gained by computations on only moder-
ately sized domains. On the other hand, the knowledge of the limiting curves
makes it possible to construct Cayley transforms in order to either avoid these
eigenvalue clusters on large domains and to resolve only isolated eigenvalues
and resonance poles, or else to efficiently compute eigenvalues with maximal
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real part near the boundaries of these eigenvalue clusters.

We emphasize that, in many problems, the direct computation of spectra
on the large domain is either intractable or at least highly ill-conditioned.
While computations of pseudo spectra often remedy some of these problems,
essential and absolute spectra provide valuable additional information, which
is, moreover, independent of the artificial cut-off choice for the norm of the
resolvent, the size of the domain, and the particular boundary conditions.

The methods that we describe here have already been used to compute the
onset of instability of coherent structures in reaction-diffusion systems, for
instance, in the computation of the onset of spiral breakup in [19,12] and
in the numerical stability proof for wide pulses in a model for CO-oxidation
on Pt(110) surfaces [15]. We shall now outline these two applications in more
detail: The numerical computation of absolute spectra was exploited for the di-
rect computation of linearized spectra of spiral waves in large disks: In [12], the
absolute spectrum of these two-dimensional vortex-like structures was com-
puted using only the spectral properties of the emitted wave trains, utilizing
the continuation algorithm that we describe in this article. The results were
then exploited in [19] to construct suitable Cayley transforms for the direct
computation of spectra of the elliptic linearized operator on the large disk
using subspace iterations. The large-scale spectral computations in [19] are in
excellent agreement with the predictions of the continuation algorithm in [12];
see [19, Figure 7]. In the second example, the stability of pulses with a wide
plateau, which are obtained by gluing together widely separated fronts and
backs, was determined from the computation of the absolute spectrum of the
plateau state [15]. Direct computations of spectra in large one-dimensional do-
mains delivered only ambiguous results which depended heavily on the choice
of boundary conditions and the relative size of plateau versus background
state [20,15].

One of the examples in this paper follows up on the spiral-wave computations
by computing absolute stability boundaries of plane waves in the complex
Ginzburg–Landau equation which arise as far-field patterns of vortices. We
show that wave trains may destabilize due to robust persistent reflection at
generic boundaries on finite domains, while wave trains remain stable on the
unbounded domain. In other words, there are parameter regions where pertur-
bations of wave trains decay pointwise on the unbounded domain, but grow
in norm on any finite domain for almost any boundary condition. The latter
parameter regime provides a prominent example that pointwise stability does
not guarantee stability in large but finite domains. In particular, the crossing
of double roots of the dispersion relation together with the pinching condi-
tion that characterizes the onset of absolute instability in unbounded domains
[1,17] is only a sufficient, yet not necessary, criterion for the onset of instability
in finite-size domains.
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Technically, the present article considers reaction-diffusion patterns on large
intervals as a prototype of spatially extended dissipative dynamical systems.
The methods however are readily adapted to much more general problems.
Typically, the method assumes that the linearized problem can be written as a
family of Fredholm operator equations L(λ, ν)w = 0 where w lives in a space of
functions on a bounded (not large) domain. The equation L(λ, ν)w = 0 is ob-
tained upon substituting the spatio-temporal Floquet–Bloch ansatz u(t, x) =
exp(λt + νx)w(t, x) into the original linearized problem, where the temporal
frequency ω = −iλ and the spatial wave number k = −iν are typically com-
plex. The continuation procedure outlined below can be readily adapted to
this type of problem, e.g., the Kuramoto–Sivashinsky equation [11]. We give
details for the implementation for one-dimensional boundary-value problems
using the continuation software auto. Alternatively, the package trilinos [7]
can be used which is optimized for large-scale systems. Problems where invert-
ing L involves the solution of boundary-value problems on multi-dimensional
domains can sometimes be approached using finite-dimensional Galerkin ap-
proximations in the transverse components.

To set the scene, and to further explain the significance of absolute and essen-
tial spectra, we review the most straightforward situation in which they arise.
Consider reaction-diffusion systems

ut = Duxx + cux + f(u), x ∈ R (1.1)

where u ∈ RN and f is smooth. To ensure that (1.1) is well-posed, we shall
assume for simplicity throughout this paper that D is a positive diagonal
matrix. Suppose now that u∗(x) is a stationary solution of (1.1) so that

|u∗(x)− u±(x)| → 0 as x → ±∞

where the asymptotic states u±(x) are constant or periodic in x. Linearizing
(1.1) about u∗(x), we obtain the operator

L∗ = D∂xx + c∂x + ∂uf(u∗(x)) (1.2)

whose spectrum decides upon linear stability of the equilibrium u∗ as a solution
of (1.1).

The spectrum of the operator (1.2) on L2(R, CN) is the disjoint union of the
essential spectrum Σess and the point spectrum Σpt which consists by definition
of all isolated eigenvalues with finite multiplicity (and is therefore discrete).
While the point spectrum involves the full nonlinear wave u∗, the boundary
of the essential spectrum is determined entirely by the linearization of (1.1)
about the asymptotic states u± [6, Appendix to §5].
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Also of interest are finite but large domains of the form (−`, `) with ` �
1. When considering (1.2) on (−`, `), we add appropriate linear separated
boundary conditions of the form

Qbc
±

 u(±`)

ux(±`)

 = 0, Qbc
± ∈ R2N×2N , rank Qbc

± = N (1.3)

at x = ±`. While the spectrum Σ` of the operator L∗ on (−`, `) is then
necessarily discrete for each finite `, we can still distinguish different parts
in the limit ` → ∞ [13]: Generically, the set Σ` converges in the symmetric
Hausdorff distance to a limiting set Σ∞ which again consists of a discrete
and a continuous part. The discrete part is the union of the extended point
spectrum Σext, which contains in particular the point spectrum Σpt of the
profile u∗(x) on R, and the boundary spectrum Σbc, which is generated by the
boundary conditions (1.3). The continuous part is called the absolute spectrum
which, in general, differs from the essential spectrum. As ` →∞, each element
of the absolute spectrum is approached by infinitely many eigenvalues of L∗
which therefore cluster near the absolute spectrum. As already alluded to,
the discrete part depends on the full profile u∗ and on the specific boundary
conditions employed. The absolute spectrum, however, depends again only on
the asymptotic states u±, but not on the boundary conditions (as long as they
are separated) or the profile u∗ [14].

In summary, the continuous parts of the spectrum of L∗ on R or (−`, `) are
determined by the asymptotic states u± which, we assumed, are constant or
periodic in x. From now on, we shall therefore focus exclusively on operators
with constant or periodic coefficients.

The aim of this paper is to outline reliable and efficient ways to compute these
spectra using cheap but accurate continuation algorithms without solving dis-
cretized matrix eigenvalue problems on large domains. For the convenience of
the reader, we describe in some detail how our strategies can be implemented
in the boundary-value solver auto [4]. We will also mention various exten-
sions to compute linear spreading speeds and linear instability thresholds such
as the boundary of Eckhaus instabilities.

As mentioned above, the methods presented here can be adapted to more
general problems. As a general rule, the continuation procedures should gen-
erally be applicable to stability analyses of coherent structures in extended
systems, including dissipative systems as well as conservative or dispersive
equations such as members of the Korteweg–de Vries family or coupled non-
linear Schrödinger equations, or higher order problems such as the Kuramoto–
Sivashinsky equation. Some of our arguments can also be adapted to periodic
structures in higher space dimensions via Fourier and Bloch wave decomposi-
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tion. We remark, however, that absolute spectra have not been used so far for
genuinely higher-dimensional problems.

2 Notation and hypotheses

We consider the operator

L := D∂xx + c∂x + a(x) (2.1)

where we shall always assume that the entries dj of the diagonal matrix D =
diag(dj) are strictly positive for all j and that the coefficient matrix a(x) is
either constant or periodic in x:

Hypothesis (C) The coefficients a(x) = a0 ∈ RN×N do not depend on x.

Hypothesis (P) The coefficients a(x) ∈ C1(R, RN×N) are periodic in x with
minimal period L > 0.

Unless explicitly stated otherwise, we shall always consider the operator L on
R as a densely defined operator on L2(R, CN) with domain H2(R, CN). The
eigenvalue problem

Lu = Duxx + cux + a(x)u = λu (2.2)

can then also be written as

ux = v (2.3)

vx = D−1[λu− cv − a(x)u]

or equivalently as

Ux = [A(x) + λB]U (2.4)

where U = (u, v) ∈ C2N and

A(x) =

 0 1

−D−1a(x) −cD−1

 , B =

 0 0

D−1 0

 .
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Solutions to the eigenvalue problem (2.2) are therefore found by solving the
initial-value problem (2.3). For periodic coefficients, we denote by

Φλ : C2N −→ C2N , (u0, v0) 7−→ Φλ(u0, v0) := (u, v)(L) (2.5)

the linear time-L map of (2.3) that associates to each initial condition (u0, v0)
the solution of (2.3) at time L. We refer to the eigenvalues of Φλ as spatial
Floquet multipliers and to their logarithms as spatial Floquet exponents.

Note that nonlinear periodic waves can be found as periodic solutions of the
first-order system

Ux = F (U, c), F (U, c) =

 v

−D−1[f(u) + cv]

 (2.6)

in the variables U = (u, v) ∈ R2N . If u∗(x) denotes a constant or periodic
solution of (2.6), then a(x) = ∂uf(u∗(x)) in (2.2).

Most of the results presented here do not require that dj > 0 for all j. If
some of the diffusion coefficients vanish, however, we need that the speed c is
non-zero. Alternatively, if a concrete model has dj = 0 for one or more indices
j, we may also set dj = δ for those indices with δ > 0 sufficiently small. The
results in [9, Chapter 3.2] show that the resulting spectra are continuous in δ
as δ → 0 on any bounded subset of the complex plane C.

3 Essential spectra

3.1 Characterizing essential spectra via Bloch waves

For constant coefficients a(x) ≡ a0, we consider the Fourier transformed op-
erator

Lν := Dν2 + cν + a0 : CN → CN (3.1)

for ν ∈ C. Since the Fourier transform is an isomorphism on L2(R, CN) which
turns L into a multiplication operator, we immediately obtain the following
lemma.

Lemma 3.1 For constant coefficients, we have

specL = ∪ν∈iRspecLν .
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In particular, the following assertions are equivalent:

(i) λ ∈ specL;
(ii) [Dν2 + cν + a0 − λ]u = 0 for some u ∈ CN with u 6= 0 and some ν ∈ iR;
(iii) d(λ, ν) := det(Dν2 + cν + a0 − λ) = 0 for some ν ∈ iR.

While the third condition gives the most compact criterion, the second condi-
tion is, in general, preferable for numerical computations.

Note that the spectrum of the matrix Lν consists for each ν of precisely N
temporal eigenvalues λj, counted with multiplicity. Furthermore, the eigen-
values λj can be continued globally in ν since they are roots of the complex
analytic equation d(λ, ν) = 0. The essential spectrum is obtained by restricting
to purely imaginary ν = iγ with γ ∈ R.

Lemma 3.2 For constant coefficients, the essential spectrum of L on R has at
most N connected components, each containing an eigenvalue λj of the matrix
a0 (when γ = 0) and the point at infinity. Furthermore, we have | arg λ| → π
as |γ| → ∞ in each connected component of the essential spectrum.

We remark that it is not difficult to derive expansions for the location of the
curves as |γ| → ∞.

For periodic coefficients a(x), there is a similar characterization. For each
ν ∈ C, we define the Bloch-wave operator

Lν := D(∂x + ν)2 + c(∂x + ν) + a(x) (3.2)

which is closed and densely defined on L2
per(0, L) with periodic boundary con-

ditions u(0) = u(L) and ux(0) = ux(L).

Lemma 3.3 For periodic coefficients with minimal period L > 0, we have

specL = ∪ν∈i[0,2π/L)specLν .

In particular, the following assertions are equivalent:

(i) λ ∈ specL;
(ii) [D(∂x + ν)2 + c(∂x + ν) + a(x) − λ]u = 0 for some u ∈ H2

per(0, L) and
some ν ∈ i[0, 2π/L);

(iii) d(λ, ν) := det(Φλ − eνL) = 0 for some ν ∈ i[0, 2π/L).

The proof is a consequence of the Bloch-wave decomposition

L2(R) ∼= ⊕ν∈i[0,2π/L)L
2
per(0, L)

8



given by the isomorphism

u(x) =
∫

ν∈i[0,2π/L)

eνxw(x; ν) dν,

where u ∈ L2(R) and w(x; ν) = w(x + L; ν) [16]. Since the direct compu-
tation of the Floquet exponents ν of the period map Φλ of the ODE (2.3) is
often numerically unstable, condition (ii) is again preferable, from a numerical
viewpoint, to the seemingly simpler condition (iii).

The operators Lν have compact resolvent for each ν, and their spectra con-
sist therefore of isolated eigenvalues with finite multiplicity whose real parts
accumulate at −∞. In particular, we denote the countably many eigenvalues
of L0 by λj, which we order so that their real parts decrease as j increases.
The roots λj of the complex analytic dispersion relation d(λ, ν) can again be
continued globally in ν = iγ with γ ∈ R. In particular, it suffices to solve
for γ ∈ [0, 2π/L) since we necessarily have λj(2πi/L) = λΠ(j)(0) for some
permutation Π of N.

Lemma 3.4 For periodic coefficients, the essential spectrum of L on R is an
at most countable union of connected sets, each of which contains a point in
the spectrum of L0, that is, an eigenvalue of the operator L considered on
(0, L) with periodic boundary conditions.

Note that the connected components do not need to contain a point at infinity.
Isolas are possible, and the spectrum may not be connected on the Riemann
sphere C (see, for instance, §4.3 and §5.2).

Lastly, we briefly comment on the effect of coordinate transformations of the
form x 7→ x−c∗t which correspond to changing the frame of reference in which
spectra are computed. For constant coefficients, the passage to a comoving
frame ξ = x − c∗t simply introduces an additional drift term c∗uξ in the
expression for L. Thus, the eigenvalues Λ in the frame ξ can be computed
from solutions λ(ν) of d(λ, ν) = 0 via Λ = λ(ν)− c∗ν. A similar result is true
for periodic coefficients though the equation becomes time-dependent, and we
therefore have to consider the period map ΨT of the linear PDE

ut = Duξξ + (c + c∗)uξ + a(ξ + c∗t)u

with T = L/c∗.

Proposition 3.5 ([14]) The essential spectrum of ΨT is of the form ρ = eΛT

where Λ = λ(ν) − c∗ν, and λ(ν), with ν = iγ and γ ∈ [0, 2π/L), satisfies
d(λ(ν), ν) = 0.
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Thus, the computation of spectra in an arbitrary frame reduces to the solution
of an eigenvalue problem of the type considered above. Note that spectral
stability does not depend on the coordinate frame since the real part of the
spectrum is independent of the chosen frame by Proposition 3.5.

3.2 A priori estimates

Since we assumed that all diffusion constants dj are positive, a straightforward
scaling result for both (C) and (P) shows that for each fixed δ ∈ (0, π

2
) there

is a constant R > 0 so that L does not have any spectrum with |λ| > R and
| arg λ| < π

2
+ δ.

It will turn out to be useful to consider the dispersion relations d(λ, ν) for
purely imaginary temporal and spatial eigenvalues so that λ = iω and ν = iγ
for ω, γ ∈ R. We prove here that all real roots (ω, γ) of d(iω, iγ) lie in bounded
rectangles of R2 and provide estimates for these squares.

For constant coefficients, we assert (and refer to [9, Lemma 10] for the proof
using Gershgorin circles) that any real solution (ω, γ) of d(iω, iγ) = 0 satisfies

(ω, γ) ∈ [−|c|R0, |c|R0]× [−R0, R0]

where

R2
0 = max

1≤j≤N

1

dj

ajj +
N∑

i=1,i6=j

|aij|

 .

For periodic coefficients, we write L as the sum of the diagonal operator L0

with constant coefficients

L0 = diag(dj)∂xx + c∂x + diag(ajj),

where a =
∫ L
0 a(x) dx, and the bounded remainder L1 which can be estimated

in the operator norm on L2(R, CN) by

‖L1‖ ≤ sup
x∈[0,L]

|a(x)− diag(ajj)|,

where the norm on the right-hand side is the matrix norm induced by the
norm used on CN (the Euclidean norm on CN , for instance, induces the matrix
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norm |A| =
√

σ(AT A) where σ(B) denotes the spectral radius of the matrix

B). Using the explicit resolvent estimate

‖(λ− L0)−1‖ ≤ sup{| − djk
2 + cik + ajj − λ|−1; j = 1, . . . , N, k ∈ R},

we see that the spectrum of L is contained in an ‖L1‖-neighborhood of the
spectrum

specL0 = {−djk
2 + cik + ajj; j = 1, . . . , N, k ∈ R}

of L0. Thus, any real root (ω, γ) of d(iω, iγ) satisfies

(ω, γ) ∈ [−|c|R1, |c|R1]× [−R1, R1]

where

R2
1 = max

1≤j≤N

1

dj

[
ajj + ‖L1‖

]
≤ max

1≤j≤N

1

dj

[
ajj + sup

x∈[0,L]

|a(x)− diag(akk)|
]
.

A rough estimate for the real parts therefore is

Re spec(L) ≤ max
1≤j≤N

ajj + sup
x∈[0,L]

|a(x)− diag(akk)|.

3.3 Constant coefficients

3.3.1 Computing essential spectra using continuation

For constant coefficients, we had seen that we can compute the essential spec-
trum of L by continuing the N temporal eigenvalues λ of the matrix Lν defined
in (3.1) in the parameter ν = iγ. Thus, starting from ν = 0, say, where the
temporal eigenvalues appear as eigenvalues of the matrix a0, we can use the
complex normalized eigenvalue equation

[−Dγ2 + ciγ + a0 − λ]u = 0, 〈uold, u〉 = 1, (3.3)

where uold denotes the eigenvector from a previous infinitesimal step in the
continuation parameter γ or the initially supplied solution at the beginning of
the continuation. The condition

〈uold, u〉 = 1 (3.4)
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is evaluated in the complex plane and therefore fixes the norm of the solution
u and its complex phase. Such a condition is necessary as nontrivial solutions
u to

[−Dγ2 + ciγ + a0 − λ]u = 0

are, of course, not unique but come in group orbits {reiαu; α, r ∈ R}. Equation
(3.4) can be replaced by any other condition that fixes a unique element in
the group orbit of solutions. Bordering conditions similar to (3.4) will occur
throughout this paper to enforce uniqueness of solutions.

3.3.2 Testing stability

Often, the spectrum is only computed to check whether a given homogeneous
equilibrium is stable (i.e. whether its essential spectrum lies completely in the
open left-half plane). For N = 2, the spectrum is strictly stable if, and only if,

(i) det(a0) > 0 and tr(a0) < 0, and
(ii) a0

22d1 + a0
11d2 < 0 or (d1a

0
22 − d2a

0
11)

2 + 4d1d2a
0
12a

0
21 < 0

where a0 = (a0
ij) (see e.g. [2]). For general N , connectedness of the essential

spectrum on the Riemann sphere as stated in Lemma 3.2 immediately gives
the following stability criterion.

Lemma 3.6 The essential spectrum of L is contained in the open left-half
plane if, and only if, it does not intersect the imaginary axis.

Remark 3.7 When some of the diffusion coefficients dj vanish, then the
equivalence stated in the lemma remains true provided c 6= 0 and all eigenval-
ues λj of a0 lie in the open left half-plane (curves with vertical asymptotes at
some Re(λj) occur).

To determine whether the essential spectrum intersects the imaginary axis, we
do not need to calculate the entire essential spectrum. It suffices to compute
the 2N spatial eigenvalues ν for λ ∈ iR through continuation in λ. The above
lemma then states that the equilibrium is stable provided Re νj 6= 0 for all
λ ∈ iR and each j = 1, . . . , 2N . A strategy for determining stability therefore
goes as follows:

(i) Compute the 2N solutions νj(0) of d(0, ν) = 0 and find the associated
nontrivial solutions uj of the equation

[Dν2 + cν + a0]u = 0, |u| = 1.

(ii) Follow each (νj, uj) as solutions to
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[Dν2 + cν + a0 − iω]u = 0, 〈uold, u〉 = 1 (3.5)

by continuation in ω ∈ [0, |c|R0] with R0 as in §3.2, starting at ω = 0.
(iii) Stability is equivalent to Re νj(iω) 6= 0 for all ω ∈ [0, |c|R0] and all j.

3.3.3 Generic singularities

When continuing roots λ or ν of d(λ, ν) = 0 in the real parameters ν = iγ or
λ = iω, it is of interest to know what the generic singularities are that one
may encounter. On the level of the dispersion relation, this question can be
easily answered.

Continuation of λ in ν = iγ: We can always continue eigenvalues λ as
functions of ν = iγ by the implicit function theorem unless ∂λd(λ, ν) = 0.
Thus, suppose, without loss of generality, that ∂λd(λ, ν) = 0 at λ = ν = 0 so
that

d(λ, ν) = α20λ
2 + α01ν + O(|ν|2 + |λν|+ |λ|3).

If α20α01 6= 0, then the Newton polygon shows that the solution set in ν = iγ
is given locally by the curves

λ(iγ) = ±
√
−iγα01/α20 + O(|γ|) (3.6)

for γ ∈ R close to zero. The coefficients α20 and α01 are real whenever the
singularity occurs for real λ.

Due to analyticity, the equations d = 0 and ∂λd = 0 can be satisfied together
either only at a discrete number of points (λ, ν) or else along curves. In the
latter case, at least two branches of the essential spectrum coincide and, by
Bézout’s theorem, d and ∂λd have a common factor, which is, for instance,
precluded if the diffusion rates are pairwise different [9, Lemma 10]. In the first
case, the number of isolated double roots, counted with multiplicity, is equal
to the degree of the resultant of d(·, ν) and ∂λd(·, ν) which is at most 2N(2N−
1). In particular, for generic systems, we will not encounter any singularities
during continuation in ν = iγ since these should not occur for purely imaginary
ν. Thus, generically, we will be able to continue temporal eigenvalues in the
real parameter γ in a smooth fashion. A notable exception is the reversible
situation c = 0 where the dispersion relation depends analytically on ν2 =
−γ2, so that temporal eigenvalues can collide on the real axis and split into
complex conjugate pairs.

Continuation of ν in λ = iω: To determine stability, we proposed to continue
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the 2N roots νj as functions of λ = iω, whose singularities are of the form

d(λ, ν) = α10λ + α02ν
2 + O(|ν|3 + |λν|+ |λ|2).

If d and ∂νd have no common factors, the number of double roots is again
finite and, in fact, not larger than N(2N − 1) by Lemma 4.5 below. The roots
ν unfold in the same way as the roots λ in (3.6) above. Since these singularities
occur for discrete values of λ, they do typically not occur during continuation
in λ = iω.

3.4 Periodic coefficients

3.4.1 Continuation-based computation of the essential spectrum

For periodic coefficients, we can compute the essential spectrum of L by con-
tinuing the countably many temporal eigenvalues λj of the Bloch-wave op-
erators Lν in the parameter ν = iγ. Supplementing the equation appearing
in Lemma 3.3(ii) by an appropriate normalization condition, we obtain the
complex boundary-value problem

[
D(∂x + iγ)2 + c(∂x + iγ) + a(x)− λ

]
u(x) = 0 (3.7)

L∫
0

〈uold(x), u(x)〉 dx = 1,

where uold is the solution at a previous continuation step or the initially sup-
plied solution at the beginning of the computation. Note that the integral
condition is evaluated in the complex field C and therefore selects again an
element in the real two-dimensional group orbit.

If the linearization L arises from a translation invariant reaction-diffusion
system as laid out in the introduction, then we typically need to solve the
equation for the wave train and its temporal eigenvalues in tandem. Using the
notation from §2 and normalizing the spatial period L to unity, we therefore
consider the boundary-value problem

Ux = LF (U, c) (3.8)

Vx = L[∂UF (U(x), c) + λB − ν]V

U(1) = U(0)

V (1) = V (0)
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1∫
0

〈U ′(x), Uold(x)− U(x)〉 dx = 0

1∫
0

〈Vold(x), V (x)〉 dx = 1,

corresponding to the travelling-wave ODE (2.6) and the eigenvalue problem
(3.7), for U ∈ RN × RN and V ∈ CN × CN . Here, (Uold, Vold)(x) denotes the
solution at a previous continuation step or the initial solution at the beginning
of the continuation, and we have added appropriate phase and normalization
conditions to fix an element in the group orbit of solutions. Note that the com-
plex normalization condition for V is slightly different from the one used in
(3.7) as it normalizes (u, ux) instead of only u. While theoretically equivalent,
it turns out that one or the other may be more stable in numerical compu-
tations. We also remark that computations often run more reliably when the
last equation in (3.8) is replaced by the nonlinear condition

1∫
0

|V (x)|2 dx = 1,

1∫
0

Im〈Vold(x), V (x)〉 dx = 0.

We now focus on the case where ν = iγ is purely imaginary as this gives the
essential spectrum. We remark, however, that the considerations below remain
true for ν ∈ C.

If we are given a solution (U∗, V, λ, iγ) of (3.8), then we can continue this solu-
tion numerically as a function of ν = iγ by using a boundary-value solver such
as auto. The generic singularities that we may encounter during continuation
of (3.8) are identical to those for constant coefficients since both problems re-
duce to a single analytic equation in two complex variables; in particular, we
do not expect that singularities arise during continuation in γ.

It remains to find initial solutions (V, λ, iγ) of the eigenvalue-problem part
of (3.8). Firstly note that, in the context of (3.8), λ = 0 will always be an
eigenvalue of L0 with eigenfunction ∂xu∗(x) due to translation invariance.
Thus, (U, V, λ, ν) = (U∗, ∂xU∗, 0, 0) satisfies (3.8), and we can compute a curve
λ0(ν) of solutions to d(λ, ν) = 0 by continuation in ν = iγ provided λ = 0 is
a simple eigenvalue of L0.

More generally, we may discretize the operator L0 with periodic boundary con-
ditions using finite differences in space and solve the resulting matrix eigen-
value problem using packages such as lapack or matlab. Each of the re-
sulting temporal eigenvalues λ together with its eigenfunction V can then be
used, together with γ = 0, as an initial guess for (3.8).
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3.4.2 Testing stability

The following lemma gives conditions that guarantee spectral stability of spa-
tially periodic equilibria.

Lemma 3.8 The essential spectrum of L, with the exception of the eigenvalue
λ = 0, is contained in the open left-half plane provided the following conditions
hold:

(i) The spectrum of L0 is contained in the open left-half plane except for
the algebraically simple eigenvalue λ = 0, and the curve λ0(iγ) satisfies
λ′′0(0) > 0.

(ii) The origin λ = 0 is not an eigenvalue of Lν for ν = iγ 6∈ 2πi/LZ.
(iii) The spectrum of L does not intersect iR \ {0}.

To verify (i), we compute the spectrum of L0 and check that the eigenvalue
λ = 0 is simple and that there are no other eigenvalues in the closed right-half
plane. Afterward, we continue λ = 0 in ν = iγ near γ = 0 as outlined in the
preceding section to see whether Re λ0(iγ) < 0 for γ 6= 0 near zero.

Condition (ii) is equivalent to the statement that the 2N spatial Floquet expo-
nents νj of the linear time-L map Φλ=0 that we defined in (2.5) are non-zero
except for a single simple exponent ν1 = 0 that corresponds to the tempo-
ral eigenvalue λ = 0. The exponents ν for λ = 0 coincide with the Floquet
exponents of the linearization

Ux = L∂UF (U∗(x), c)U

of the travelling-wave ODE about the wave train U∗, and condition (ii) is there-
fore equivalent to hyperbolicity of the wave train as a periodic orbit of (2.6).
auto, for instance, has subroutines that compute these Floquet exponents
together with the wave train U∗.

Condition (iii) can be checked as follows: Take the spatial Floquet exponents
νj with j = 1, . . . , 2N of the wave train that were computed in the previous
step at λ = 0. For each of the νj, we compute the corresponding Floquet
eigenfunction V by solving the linear boundary-value problem

Vx = L[∂UF (U∗(x), c)− ν]V + εH1(x), (3.9)

V (1) = V (0),

1∫
0

〈H2(x), V (x)〉 dx = 1

for (V, ε) with ε ∈ C, where H1 and H2 are arbitrarily prescribed 1-periodic
continuous functions. Note that (3.9) is linear in (V, ε), and it can been shown
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that it is uniquely solvable for any choice (H1, H2) except when these lie in
a certain subspace of C0([0, 1], C2N) of codimension one. Once we computed
a Floquet eigenfunction Vj for each νj at λ = 0, we continue them in ω for
ω ∈ (0, |c|R0] with R0 as in §3.2 as solutions (U∗, Vj, iω, νj) of (3.8). Condition
(iii) is met provided Re νj 6= 0 for all ω ∈ (0, |c|R0] and all j.

3.4.3 Group velocities, and Eckhaus instabilities

Quantities relevant for the interaction and stability of spatio-temporally peri-
odic travelling waves are their group velocity

cg := −dλ0

dν

∣∣∣
ν=0

∈ R,

which measures transport along the wave, and the coefficient

d2λ0

dν2

∣∣∣
ν=0

∈ R

which determines whether the curve λ0(iγ) extends into the left or the right
half-plane near the origin. Continuation of these quantities in systems pa-
rameters allows us to detect sign changes of the group velocity and certain
Eckhaus instabilities, in particular of sideband type, where the onset is via
zero wave-number [3].

To calculate the group velocity and the above coefficient, we consider the
first-order system (2.3)

Ux = L[A(x) + λB]U, U(1) = eiγU(0), (3.10)

for U ∈ C2N , with L again rescaled to unity or, equivalently, the system

Vx = L[A(x) + λB − iγ]V, V (1) = V (0) (3.11)

where U = eiγxV . We set

λ| :=
dλ0

dν

∣∣∣
ν=0

, λ|| :=
d2λ0

dν2

∣∣∣
ν=0

.

Differentiating (3.11) with respect to ν = iγ and evaluating the resulting
equations at γ = 0, we obtain the system

V ′
| = L[A(x)V| + (λ|B − 1)V ] (3.12)
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V ′
|| = L[A(x)V|| + 2(λ|B − 1)V| + λ||BV ]

on (0, 1) with periodic boundary conditions

V|(0) = V|(1), V||(0) = V||(1) (3.13)

for V| := ∂νV and V|| := ∂2
νV both in R2N and (λ|, λ||) ∈ R2. Lastly, we add

the integral conditions

1∫
0

〈V (x), V|(x)〉 dx = 0,

1∫
0

〈V (x), V||(x)〉 dx = 0, (3.14)

which ensure that both V| and V|| are L2-orthogonal to the null space of the
ODE for V . We mention that the scalar products in the integral conditions
can, with V = (V (1), V (2)) ∈ R2N , be replaced by the PDE scalar products

1∫
0

〈V (1)(x), V
(1)
| (x)〉 dx = 0,

1∫
0

〈V (1)(x), V
(1)
|| (x)〉 dx = 0,

which are sometimes computationally more stable and reliable. The system
(3.8), (3.12)-(3.14) with λ = ν = 0 can now be solved uniquely for (U, c),
(V, V|, V||) and (λ|, λ||). Alternatively, using nontrivial solutions V (x) and W (x)
of

Vx = LA(x)V, V (0) = V (1), Wx = −LA(x)tW, W (0) = W (1)

and finding λ| and Ṽ (x) so that

Ṽx = L[A(x)Ṽ + (λ|B − 1)V ], Ṽ (0) = Ṽ (1),

we have

λ| =
〈W, V 〉L2

〈W, BV 〉L2

, λ|| =
〈W, 2(λ|B − 1)Ṽ 〉L2

〈W, BV 〉L2

.

3.5 Implementation in AUTO

We now discuss briefly how the strategies that we outlined above can be
implemented in the continuation package auto and refer to the names of
routines and constants as given in [4]; we write source code in fortran syntax.
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Since auto uses only real arithmetics, dimension counting will always be done
over the real numbers (unless explicitly stated otherwise).

3.5.1 Periodic coefficients

Implementing the system (3.8) in auto works as follows.

The constants file: Equation (3.8) is a boundary-value problem, and we
therefore set ips=4. The ODEs appearing in (3.8) involve 6N real unknowns,
namely (U, V ) ∈ R2N × C2N , and we therefore set ndim=6N. We have nbc=6N

real boundary conditions and nint=3 real integral conditions. Since the ODEs
can be solved uniquely upon choosing initial conditions, we have effectively
6N + 3 real equations and hence need the same number of variables plus one
for continuation which gives 6N + 4. In addition to the 6N initial data for
(U, V ), we have five real parameters at our disposal, namely c, L, γ ∈ R and
λ ∈ C. Thus, we may fix the period L and use the four parameters γ, c ∈ R and
λ ∈ C for continuation by setting nicp=4 and specifying the four parameters
in the array icp. It may be helpful for convergence to increase the number of
Newton iterations itnw from its default value.

The equations file: The unknowns (U, Re V, Im V ) ∈ R2N × R2N × R2N are
stored in U(1),. . . ,U(6N), the period L in par(11), and we use par(1), . . . ,
par(4) for c, γ, Re λ, Im λ. The periodic boundary conditions are defined in
the subroutine bcnd via

do j=1,ndim

fb(j) = U0(j) - U1(j)

end do

The integral conditions are defined in icnd. We set

fi(1) = 0.0

do j=1,ndim/3

fi(1) = fi(1) + UPOLD(j) * (UOLD(j)-U(j))

end do

for the phase condition of the wave train U , and use

fi(2) = -1.0

fi(3) = 0.0

do j=ndim/3+1,2*ndim/3

fi(2) = fi(2) + U(j)*U(j) + U(j+ndim/3)*U(j+ndim/3)

fi(3) = fi(3) + UOLD(j)*U(j+ndim/3) - UOLD(j+ndim/3)*U(j)

end do.
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for the normalization of the eigenfunction V .

Initial data: We assume that the period L, the wave train U∗ = (u∗, u
′
∗) and

the associated wave speed c are known. These can be obtained, for instance,
from direct PDE simulations or from continuation in the travelling-wave ODE
(2.6) beginning at a Hopf bifurcation point. We also assume that we found
initial solutions for λ, γ and the associated eigenfunction V (see §3.4.1). This
information needs to be stored in the subroutine stpnt or an external data
file that can be read by auto (see [4]). It is recommended to scale the initial
guess for the eigenfunction to have norm one so that it satisfies the integral
condition; otherwise, convergence may be be quite slow.

Solving (3.9) and (3.12): We discuss now how equation (3.9) is solved to
get the Floquet eigenfunction V for a given Floquet exponent ν. First, we pick
functions H1 and H2 (for instance, constant functions). Note that (3.9) involves
two real integral conditions and a real two-dimensional parameter ε. We fix
ν and continue instead in the real two-dimensional ε and the unused dummy
parameter par(9): continuation in a dummy parameter in auto allows us to
solve a linear or nonlinear system through Newton’s method. Next, we continue
to Re ε = 0 using Im ν as additional free parameter. Lastly, we continue to
Im ε = 0 using ν as free parameter.

Equation (3.12) is solved analogously. It is affine in (V|, V||, λ|, λ||) ∈ R2N ×
R2N ×R2, and therefore almost any initial guess (for instance, constant func-
tions) for (V|, V||, λ|, λ||) will give the correct solution by continuing in the
dummy parameter par(9) and the active parameters (λ, λ|, λ||) ∈ C × R2,
starting at λ = ν = 0. We recommend to exclude V|, V|| from the pseudo-
arclength computation by setting nthu=4N followed by 4N lines of the form
<index of component> 0.

3.5.2 Constant coefficients

The implementation for constant coefficients is similar to the one for periodic
coefficients discussed above. While the eigenvalue problem (3.3) is only an
algebraic equation, it is recommended to implement it as a boundary-value
problem as in §3.5: this is done by setting ips=4 and choosing ntst=1 and
ncol=2. In the following, we shall only comment on the differences to the
implementation for periodic coefficients.

The constants file: Unless the equilibrium is to be continued in a parameter,
we do not need to solve the nonlinear problem simultaneously. In this case,
we have two integral conditions, three free parameters (γ ∈ R and λ ∈ C),
and the unknowns u ∈ CN stored in U(1),. . . ,U(2N) in auto. (It may also be
convenient to use the files from the periodic case in the first-order formulation
with U ∈ C2N .) We recommend to disable mesh adaption by setting iad=0.
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Initial data: Initial data for λ, ν and the eigenvector u (or U = (u, ux))
can be imported from root-solving routines in packages such as maple or
mathematica applied to the dispersion relation d(λ, ν) = 0 for a fixed value
of either λ or ν.

4 Absolute spectra

4.1 Definition and characterization of the absolute spectrum

As outlined in the introduction, the absolute spectrum arises naturally as
follows: Take the linearization L about an asymptotically homogeneous or a
periodic travelling wave and compute its spectrum on the interval (−`, `) with
fixed separated boundary condition at x = ±`. The resulting spectra will
depend on ` and on the boundary conditions. It is proved in [13] that these
spectra converge, uniformly on compact subsets of C and in the symmetric
Hausdorff distance, to a limiting spectral set as ` →∞. The continuous (non-
discrete) part of the limiting set is given by the absolute spectrum Σabs, defined
below in Definition 1, which does not depend on the boundary conditions: As
` → ∞, each element of the absolute spectrum is approached by infinitely
many eigenvalues of L which therefore cluster near the absolute spectrum. We
emphasize that the results in [13], even though mostly formulated for constant
coefficients, are valid for periodic coefficients.

Definition 1 For constant coefficients, we define the generalized absolute spec-
trum Σm

abs with Morse index m as the set of those λ ∈ C for which

Re ν1 ≥ . . . ≥ Re νm = Re νm+1 ≥ . . . ≥ Re ν2N

where νj are the 2N roots of d(λ, ν) repeated with multiplicity. The generalized
absolute spectrum

Σ∗
abs :=

2N−1⋃
m=1

Σm
abs.

is the union over all indices m, and the absolute spectrum is defined as

Σabs := ΣN
abs.

For periodic coefficients, we use the same definition with the eigenvalues ν
replaced by the Floquet exponents of Φλ.
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Both notations Σabs and ΣN
abs for the absolute spectrum will be used inter-

changeably. The generalized absolute spectrum with Morse index different
from N is usually meaningless for spectral properties of L from (2.1). It is,
however, a natural first step towards the computation of the absolute spec-
trum. Note that each Σm

abs is typically the union of curve segments that are
glued together at singularities that we shall discuss in detail below. First, we
note the absolute spectrum is also bounded to the right:

Remark 4.1 For both (C) and (P), a scaling result shows that for each fixed
δ ∈ (0, π

2
) there is a constant R > 0 so that ΣN

abs does not contain any elements
λ with |λ| > R and | arg λ| < π

2
+ δ.

The characterization of Σ∗
abs in Definition 1 allows us to reformulate Σ∗

abs using
the system

d(λ, ν1) = 0, d(λ, ν2) = 0, ν2 − ν1 = iγ (4.1)

with γ ∈ R. We see that λ ∈ Σ∗
abs if either (λ, ν1, ν2) are solutions of (4.1)

for some non-zero real γ or else if λ and ν1 = ν2 are solutions of (4.1) with
∂νd(λ, ν1) = 0. Setting ν = ν1 and ν2 = ν + iγ, we can remove the singularity
of (4.1) at γ = 0 by considering the system

A(λ, ν; γ) =

(
d(λ, ν),

d(λ, ν)− d(λ, ν + iγ)

iγ

)
= 0 (4.2)

so that A : C × C × R → C2 and A(λ, ν; 0) = (d(λ, ν), dν(λ, ν)). Thus,
λ ∈ Σ∗

abs if, and only if, (λ, ν; γ) satisfies (4.2). We shall call solutions (λ, ν)
of A(λ, ν; 0) = 0 double roots.

In practice, it is often not feasible, or numerically not stable, to use the formu-
lations (4.1) or (4.2) directly. Instead, it is typically more convenient to work
with the original algebraic or differential system that leads to the solvability
conditions (4.1) or (4.2), and we give those systems in §4.2.4 and §4.3.

4.2 Constant coefficients

In §4.2.1-§4.2.3, we collect various useful properties of the absolute spectrum
before commenting on the practical implementation of the continuation algo-
rithm in §4.2.4.
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4.2.1 Continuation within the generalized absolute spectrum

We first collect several properties of the system A(λ, ν; γ) = 0. For each iso-
lated solution (λ, ν) of A(λ, ν; γ) = 0 for some fixed γ ≥ 0, we can define its
multiplicity to be the (real) Brouwer degree deg(A(·, ·; γ), 0) in the variable
(λ, ν) evaluated at the solution (λ, ν).

Lemma 4.2 The multiplicity is non-negative, and the multiplicity of an iso-
lated double root (λ, ν) is one precisely when ∂λd(λ, ν) 6= 0 and ∂ννd(λ, ν) 6= 0.

Proof. Since the derivative ∂(λ,ν)A is complex linear, it has a non-negative
determinant when considered as a real 4 × 4 matrix which proves the first
claim. The second statement follows since ∂(λ,ν)A is, in this case, block lower
triangular with diagonal entries given as non-zero complex multiples of the
identity, such that det ∂(λ,ν)A > 0.

We say that an isolated double root is simple if it has multiplicity one. If a
solution is not isolated, we say it has multiplicity ∞.

In the following, we consider various homotopies by allowing the coefficients
D, c, a0 and γ to depend on a homotopy parameter τ ∈ [0, 1]. The resulting
functions will be denoted by Aτ (λ, ν), omitting the dependence on γ = γ(τ).
The homotopy invariance of the Brouwer degree gives the following result.

Lemma 4.3 The number of solutions (λ, ν) of Aτ (λ, ν) = 0 inside a ball
G ⊂ C2, counted with multiplicity, is independent of τ provided there are no
roots on the boundary ∂G for each τ ∈ [0, 1].

Next, we prove that the assumption in the preceding lemma is automatically
met provided the ball G has sufficiently large diameter.

Lemma 4.4 If the diffusion coefficients are pairwise distinct so that di 6= dj

for i 6= j, then there exists a number R > 0, depending only on |D|, |a0|, |c|
and |γ|, such that every solution (λ, ν1, ν2) of (4.1) satisfies

|λ|+ |ν1|+ |ν2| ≤ R.

Proof. Suppose that the claim is wrong so that, for a certain fixed γ, there
are solutions (λ, ν) of (4.1) for which |λ|, |ν1|, or |ν2| are arbitrarily large.
In this case, a straightforward estimate of the equation d(λ, ν) = 0 shows

that |ν| ≡ ±
√

λ/di for some i as |λ| or |ν| tend to infinity. Since di 6= dj for

i 6= j, this implies | Im(ν1 − ν2)| → ∞ whenever Re ν1 = Re ν2, and therefore
|γ| → ∞ as well. This contradicts the assumption that γ is fixed and therefore
shows that (λ, ν1, ν2) stays in a bounded region.

Lemma 4.5 Assume that di 6= dj for i 6= j, then there are precisely N(2N−1)
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double roots, i.e. solutions to A(λ, ν; 0) = 0, when counted with multiplicity.

Proof. We choose a homotopy of A(λ, ν; 0) = 0 to the equation with c = 0
and a = diag(aj). On account of Lemmata 4.3 and 4.4, the number of roots
of Aτ (λ, ν; 0) does not change during the homotopy. The resulting diagonal
equation has the N double roots (λ, ν) = (aj, 0) which are easily seen to have
multiplicity one. The remaining double roots are solutions to

diν
2 + ai − λ = 0, djν

2 + aj − λ = 0,

that is, to

λ = diν
2 + ai, ν2 = −ai − aj

di − dj

for a given pair (i, j) with 1 ≤ i < j ≤ N . Choosing the aj appropriately, the
above system has N(N − 1) distinct solutions. We claim that each solution
has Brouwer degree equal to 2. Indeed, differentiating the dispersion relation

d(λ, ν) = ΠN
j=1[λ− djν

2 − aj]

and computing the Taylor jet at the solutions (λ∗, ν∗), we obtain

d(λ, ν) = a(λ− λ∗)
2 − b(ν − ν∗)

2 + O(3)

with a 6= 0. In particular, d(λ, ν) + ε has two simple double roots at λ =

λ∗ ±
√

ε/a + O(ε) and ν = ν∗. The additivity and homotopy invariance of
the degree shows that the multiplicity is two. Altogether, we have found N +
2N(N − 1) = N(2N − 1) roots which proves the lemma.

We can now show that the generalized absolute spectrum consists of at most
N(2N − 1) curves that are parameterized by γ:

Proposition 4.6 The generalized absolute spectrum is given by

Σ∗
abs =

⋃
γ≥0

{λj(γ); j = 1, . . . , N(2N − 1)} ,

where λj(γ) denotes the λ-component of the solutions to A(λ, ν; γ) = 0. More-
over, λj(γ) can be chosen to be continuous in γ. In particular, Σ∗

abs consists of
at most N(2N − 1) connected components, each containing a double root and
the point at infinity (when considered on C).
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Proof. The representation of Σ∗
abs follows from the previous discussion and

the homotopy invariance of the degree in a ball of radius R near each fixed
finite γ, and therefore for all γ. To prove continuity, we have to show that the
set C := {(λ, ν, γ); A(λ, ν; γ) = 0} is the union of N(2N−1) continuous curves
(λj, νj)(γ). It suffices to prove this property locally, and we therefore work in
a fixed box B = B(λ,ν)×Bγ ⊂ C2×R+ near a given root (λ∗, ν∗, γ∗) of A with
multiplicity r. By Sard’s theorem, there exists a sequence ck ∈ C2 with ck → 0
as k →∞ so that each ck is a regular value of A : C2×R+ → C2. In particular,
the preimages A−1(ck) ∩ B are smooth one-dimensional submanifolds, and
therefore the disjoint union of one-dimensional embedded curves. We claim
that each of these curves can be parameterized by γ: Indeed, if this were
not possible, we would readily obtain a contradiction to the fact that there
are precisely r roots of A(·, ·; γ) in B(λ,ν) for each fixed γ ∈ Bγ by degree
arguments. Thus, for each k, we can parameterize the roots of A inside B by
r disjoint continuous curves (λ

(k)
j , ν

(k)
j )(γ), and taking the limit k →∞ gives

the desired characterization of Σ∗
abs.

To summarize, to compute the generalized absolute spectrum, it suffices to
calculate all double roots and to subsequently continue the curves of Σ∗

abs that
emanate from the double roots in γ from γ = 0 to γ = ∞.

We remark that double roots may coalesce in certain situations:

Lemma 4.7 If a is triangular and N ≥ 2, then there are at least two degener-
ate double roots (λ∗, ν∗) of the dispersion relation which are double roots with
respect to both ν and λ so that

d(λ∗ + λ, ν∗ + ν) = α20λ
2 + α02ν

2 + O(|λ|3 + |ν|3).

Proof. It suffices to consider N = 2, D = (1, δ) with δ 6= 0, and a =
(

a1 ∗
0 a2

)
in which case the dispersion relation is equal to d(λ, ν) = d1(λ, ν)d2(λ, ν) = 0
with d1(λ, ν) = ν2 + cν−λ+a1 and d2(λ, ν) = δν2 + cν−λ+a2. In particular,

there are
(

4
2

)
= 6 double roots for δ 6= 1 which satisfy d = 0 and ∂νd =

(∂νd1)d2 + d1∂νd2 = 0.

The solutions to d1 = 0 and d2 = 0 are given by λ1 = ν2 + cν + a1 and
λ2 = δν2 + cν +a2, respectively, where ν is arbitrary. These give rise to spatial
double roots provided d2(λ1, ν) = 0 or d1(λ2, ν) = 0, respectively, that is,
when δν2 + cν − (ν2 + cν + a1) + a2 = 0 or ν2 + cν − (δν2 + cν + a2) + a1 = 0.

This is the case for ν±j = ±
√

(−1)j a2−a1

1−δ
. The remaining two of the six double

roots are the roots ν1 = − c
2

and ν2 = − c
2δ

of the dispersion relations d1 and
d2, respectively.

If some of the diffusion coefficients are equal (di = dj for appropriate indices
i 6= j), we cannot a priori exclude that branch points ’disappear’ at infinity. In

25



fact, in the explicit decoupled model problem that we utilized in the proof of
Lemma 4.5, a double branch point ’crosses’ the point at infinity when di − dj

crosses zero.

4.2.2 Testing absolute stability

We shall show that, for constant-coefficient operators, the absolute spectrum
ΣN

abs is connected in C. Since Remark 4.1 shows furthermore that it lies in
an acute sector that opens up along the negative real axis, it suffices to check
whether the absolute spectrum has a non-zero intersection with the imaginary
axis to establish stability or instability.

Lemma 4.8 The absolute spectrum ΣN
abs is connected in C and contains the

point at infinity. Furthermore, the absolute spectrum ΣN
abs is contained in the

open left half-plane if, and only if, it does not intersect the imaginary axis.

Proof. We argue by contradiction. Thus, suppose that Σ̃ is a non-empty,
compact subset of ΣN

abs so that there is a smooth Jordan curve Γ in C with
Γ ∩ ΣN

abs = ∅ and int Γ ∩ ΣN
abs = Σ̃. The idea is to show that the spectrum of

L on (−`, `) with appropriate boundary conditions cannot accumulate on Σ̃
as ` →∞ in contradiction to [13, Theorem 5]. Since Γ does not intersect the
absolute spectrum with Morse index N , the eigenvalues νj of A + λB satisfy

Re ν1 ≥ . . . ≥ Re νN > Re νN+1 ≥ . . . ≥ Re ν2N

for all λ ∈ Γ. We denote the N -dimensional generalized eigenspaces associated
with the N smallest and largest eigenvalues of A + λB in the above ordering
by Es(λ) and Eu(λ), respectively: These spaces are well defined, unique and
analytic in λ for λ in a neighbourhood U of Γ. Next, pick λ0 ∈ Γ and an
N -dimensional subspace Ebc with

Ebc ⊕ Eu(λ) = C2N , Ebc ⊕ Es(λ) = C2N (4.3)

for λ = λ0. Analyticity then implies that (4.3) is true for all λ ∈ U except
possibly for finitely many λ. Redefining Γ if necessary, we can therefore assume
that (4.3) is true for all λ ∈ Γ.

We set our boundary conditions by choosing a matrix Qbc
− = Qbc

+ with null
space equal to Ebc. Equation (4.3) shows that [13, Hypothesis 7] is met, and
[13, Proposition 5] now asserts that there are numbers M ≥ 0 and `∗ � 1 such
that the spectrum of L on (−`, `) with the boundary conditions (1.3) cannot
intersect Γ for ` ≥ `∗ and contains precisely M elements in the interior of Γ
for ` = `∗. Thus, the number of eigenvalues in the interior of Γ is equal to M
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for all ` ≥ `∗. We emphasize that (4.3), and therefore the above statement,
remains true if we change Ebc, A, and B slightly.

Next, pick an element λ1 in the non-empty set Σ̃. Upon transforming the
matrix A + λ1B into Jordan normal form, it is easy to see that there are
matrices C0 and C1 of arbitrarily small norm so that the eigenvalues νj of

A + λ1B + C0 + (λ− λ1)C1 (4.4)

satisfy

Re ν1≥ . . .≥Re νN−1 >Re νN = Re νN+1 >Re νN+2≥ . . .≥Re ν2N , (4.5)

Im νN 6= Im νN+1

at λ = λ1 and

d Im(νN − νN+1)

dλ

∣∣∣
λ=λ1

6= 0. (4.6)

In particular, we may choose C0 and C1 so small that the statements in the
previous paragraph are also true for (4.4). On the other hand, (4.5) and (4.6)
show that [13, Hypothesis 8] is satisfied near λ = λ1, and [13, Theorem 5]
now implies that the number of eigenvalues of L, posed on (−`, `) with the
boundary conditions (1.3), in a small disk centered at λ1 becomes unbounded
as ` →∞. This contradicts the statement established before that this number
is equal to M which is independent of `. The second statement of the lemma
follows from Remark 4.1.

4.2.3 Generic singularities

The generalized absolute spectrum Σ∗
abs does typically not have any singu-

larities except that curves may begin or end at double roots: For a double
root at the origin, we have λ = αν2 which gives ν1 = −ν2 = ±iγ/2 for
γ ≥ 0 along the curve λ = −γ2α/4 of generalized absolute spectrum. How-
ever, even though we may continue curves smoothly in Σ∗

abs, the Morse index
m may jump along these curves. This occurs typically at triple points where
Re νj+1 = Re νj+2 = Re νj+3 and Im νj+1 > Im νj+2 > Im νj+3. Triple points
should form a discrete subset of the generalized absolute spectrum. Typically,
λ = λtriple + bl(ν − νl) + O(|ν − νl|2) for l = j, j + 1, j + 2 near these singu-
larities, and the resulting bifurcation picture is readily computed under the
assumption that the coefficients bl are different from each other (see Figure 1).

The Morse index drops from j+1 to j along two of the curves as they cross the
singularity. Between these two curves, there is a curve of generalized absolute
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j+1
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Fig. 1. A triple-point singularity of the generalized absolute spectrum in the complex
λ-plane. The curves are oriented by increasing γ, the numbers along the curves
indicate the Morse index, and the insets show the relevant spatial eigenvalues in the
complex plane where we plot Re(ν(λtriple)) + iR as a dashed line.

spectrum which also crosses the singularity and along which the Morse index
increases. The Morse index increase occurs along the curve where Re ν1 =
Re ν3, i.e. where the difference of imaginary parts is given by the sum of the
two other differences of imaginary parts.

Note that if we insist on following curves with constant Morse index (rather
than preserving smoothness during the continuation), then we lose a curve
with Morse index j + 1 and create a curve with Morse index j. Furthermore,
if we follow curves with Morse index j, the parameter γ jumps to a lower
value as we cross the singularity: In particular, we cannot enforce by local
considerations only that curves of constant Morse index continue to γ = ∞,
although we may well be able to continue them in λ. We emphasize that the
absolute spectrum is nevertheless connected in C, see Lemma 4.8.

The singularity dν1/dλ = dν2/dλ at ν∗j with j = 1, 2 in the generalized ab-
solute spectrum typically requires an additional systems parameter, but can
be observed for real λ without external parameter. To leading order, we find
from the dispersion relation that νj = ν∗j +aλ+ bjλ

2 for j = 1, 2 and therefore

Re(ν1 − ν2) = Re[(b1 − b2)λ
2] = 0.

The solutions of Re[(b1− b2)λ
2] = 0 form a cross (in x-shape if b1− b2 is real),

and γ increases towards the singularity on one of the curves and decreases
along the other curve towards the singularity. The Morse indices are the same
on all four curves. This singularity occurs, for instance, on a real bounded
interval of Σ∗

abs ∩ R whose endpoints are double roots.

Similarly, we can encounter two disjoint pairs of spatial eigenvalues with the
same real part, in a robust fashion for real λ = λ∗, or with an additional
parameter for λ complex. We expect 6 =

(
4
2

)
smooth curves of generalized
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absolute spectrum to intersect at such a value of λ. If λ is real, then two of
these curves coincide and lie on the real axis due to the additional symmetry
of spatial eigenvalues with respect to complex conjugation.

4.2.4 The algorithm in practice

Computationally, it is more reliable and convenient to replace the dispersion
relation d(λ, ν) by the original algebraic equation. Using the definition

D(λ, ν) := Dν2 + cν + a0 − λ, (4.7)

the system A(λ, ν; γ) = 0 is equivalent to solving

D(λ, ν)u = 0, [D(2ν + iγ) + c](u + iγv) +D(λ, ν)v = 0, (4.8)

together with the normalization

〈uold, u〉 = 1, 〈vold, u〉 − 〈uold, v〉 − iγ〈vold, v〉 = 0 (4.9)

for (λ, ν, γ, u, v), where (uold, vold) are the solutions taken at a previous con-
tinuation step.

Proof. For γ 6= 0, we start with (4.1) and see that it is equivalent to the
system

D(λ, ν)u = 0, 〈u, u〉 = 1

D(λ, ν + iγ)w = 0, 〈w, w〉 = 1

with the additional unknowns (u, w). If we assume that uold and wold are
solutions to this system, or close to solutions, then we may replace the above
system by

D(λ, ν)u = 0, 〈uold, u〉 = 1

D(λ, ν + iγ)w = 0, 〈wold, w〉 = 1.

We write w in the form w = u + iγv so that the second equation becomes

0 = D(λ, ν + iγ)(u + iγv) = [D(λ, ν)−D(λ, ν + iγ)]u +D(λ, ν + iγ)iγv

where we used the equation for u. Dividing by iγ and using (4.7), we get

[D(2ν + iγ) + c]u +D(λ, ν + iγ)v = 0.
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The normalization condition 〈wold, w〉 = 1 for w becomes

1 = 〈uold + iγvold, u + iγv〉 = 1 + iγ〈uold, v〉+ iγ〈vold, u + iγv〉

and therefore

〈uold, v〉+ 〈vold, u + iγv〉 = 0.

The computations for γ = 0 are similar and we therefore omit them.

4.3 Periodic coefficients

The initial setup for periodic coefficients is similar. The dispersion relation is
now given by

d(λ, ν) = det[Φλ − eνL],

and we shall use the regularized system

D(λ, ν)u = 0, [D(2(∂x + ν) + iγ) + c](u + iγv) +D(λ, ν)v = 0, (4.10)

where

D(λ, ν) = D(∂x + ν)2 + c(∂x + ν) + a(x)− λ, (4.11)

together with the normalization conditions

L∫
0

〈uold, u〉 dx = 1 (4.12)

L∫
0

[〈vold, u〉 − 〈uold, v〉 − iγ〈vold, v〉] dx = 0

for u and v. It suffices here to consider γ ∈ [0, π/L).

Regarding instability of the absolute spectrum, we can conclude that the ex-
istence of an unstable isola of essential spectrum implies unstable absolute
spectrum provided it lies on the boundary of the component of the resolvent
set where the Morse index of the period map Φλ is N . This observation is a
consequence of the more general fact that isolas of essential spectrum contain
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absolute spectrum of a certain Morse index (see [9, Theorem 3.3] and [10] for
details).

Continuing a curve of generalized absolute spectrum starting at double roots
proceeds as for constant coefficients. However, neither the generalized absolute
spectrum nor the absolute spectrum of a given index are, in general, connected,
and the initial computation of double roots becomes therefore more important.
For periodic coefficients, there exist infinitely many double roots for γ = 0
even though each bounded region of the complex plane typically contains only
finitely many. In addition, it is more complicated to find double roots in the
first place: in fact, we do not know of any systematic way of locating double
roots in a given region of the complex plane.

Instead of starting continuation at a double root, one may, of course, start at
any given element of the (generalized) absolute spectrum, and we therefore
discuss now possible strategies for locating elements of the (generalized) ab-
solute spectrum. These strategies involve continuing solutions of (3.8), where
ν = η + iγ, in either (γ, λ, L) or (η, λ, L) or (ν, Re λ, L). Continuation in
(γ, λ, L) for fixed and possibly non-zero η corresponds to computing the es-
sential spectrum of L in an exponentially weighted space with exponential
rate η.

Firstly, consider an intersection point of two curve segments of essential spec-
trum, possibly for η 6= 0. Unless this point is a root of ∂λd(λ, ν), it lies in
the generalized absolute spectrum, because two Floquet exponents have the
same real part, and it can be used as a starting point for continuation. In fact,
a Jordan curve of essential spectrum that does not contain further essential
spectrum continues in η either to a self intersecting curve or to a double root
[10].

Secondly, we discuss the case when (generalized) absolute spectrum intersects
the real axis. If λ lies in the generalized absolute spectrum, then the two
associated Floquet multipliers have the same modulus. If λ is, in fact, real,
then the two Floquet multipliers are either non-real complex conjugates, or
they form a double root, or they are real and of opposite sign:

If the Floquet multipliers are non-real, simple and complex conjugates, then
so are the associated Floquet exponents ν. A small change in the real part of
λ or in η = Re ν does not change the property that the exponents are complex
conjugates and, consequently, the generalized absolute spectrum intersects the
real axis in an interval with open interior. The end points of these intervals are
double roots. Thus, continuation of ν = η + iγ in λ ∈ R may lead to double
roots in the generalized absolute spectrum. By symmetry of Floquet expo-
nents, the computation of real intervals using (3.8) requires the continuation
of only one Floquet exponent.
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If there are two real simple Floquet multipliers of opposite sign for real λ, then
these multipliers will stay real if λ is varied on the real axis. Thus, on account
of the Cauchy–Riemann equations, changing the imaginary part of λ will,
to leading order, only change the imaginary part of the Floquet multipliers,
which shows that the corresponding curve of generalized absolute spectrum
intersects the real axis transversely with a vertical tangent. Hence, continuing
for real λ a pair of Floquet multipliers with opposite sign in ν may lead to the
location of such a crossing point.

Other typical singularities of the absolute spectrum on the real axis are as
described in §4.2.3.

We refer to §5 (see also [9, Chapter 4.4] and [10]) for examples where we use
exponential weights to locate absolute spectrum.

4.4 Continuation, and implementation in AUTO

In the case of constant coefficients, we first calculate all double roots (λ, ν),
i.e. all roots of A(λ, ν; 0) = 0, and subsequently nontrivial solutions u and v
of the linear equation (4.8). Starting from each of these at most N(2N − 1)
points, we then continue solutions of (4.8)-(4.9) in γ.

Afterward, we reconstruct the Morse indices on all curve segments of Σ∗
abs

between triple points and double roots by computing all 2N solutions of
A(λ, ν; γ) = 0 at all double roots and triple points (or at arbitrary test points
on each segment). Alternatively, we could compute all 2N solutions νj of
D(λ, νj)uj = 0 and (4.8)-(4.9) simultaneously, though this is computationally
much more expensive.

We remark that it is not necessary to use the regularized system (4.8)-(4.9)
away from double roots. Instead, it may be convenient for the implementation
to use D(λ, ν)u1 = 0 and D(λ, ν + iγ)u2 = 0.

Except for the location of double roots, these remarks apply equally to periodic
coefficients and (4.10)-(4.12). For the sake of consistency with this case, we de-
scribe the setup in auto for (4.8)-(4.9) as a first-order system and boundary-
value problem, so there are 2N + 2N complex equations. This way the same
equation file of auto can be used.

The constants file: We cast both (4.8) and (4.10) as ndim=8N real ODEs with
bcnd=8N periodic boundary conditions and icnd=4 real integral conditions for
normalization. The nicp=5 free parameters are λ, ν ∈ C and γ ∈ R. It is
useful for subsequent computations to view γ = Im ν2 and include Re ν2 in the
implementation.
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For the case of constant coefficients, eigenfunctions are spatially constant, so
we set ntst=1 and ncol=2. It is useful to disable mesh adaption by setting
iad=0 and to exclude the vector v in (4.8)-(4.9) from the pseudo-arclength
computation by nthu=4 followed by 2N lines of the form “<component index>

0”.

The equations file: It is often useful to implement the operator D(λ, ν)
in a new subroutine that is called from the subroutine func, since (4.8) and
(4.10) require two evaluations of D. This makes it also easy to simultaneously
continue all eigenvalues and thereby the Morse index, if feasible. The cur-
rent Morse index can then be stored in an additional parameter. Boundary
and integral conditions are implemented in the subroutine bncd and icnd as
described previously in §3.5.

Initial data: For constant coefficients, we use double roots as described above
and set the data in the subroutine stpnt. For periodic coefficients, initial
points in the generalized absolute spectrum are often found by continuing sin-
gle Floquet exponents in exponential weights to a point where two of these
have the same real part. To improve convergence of the initialization, we rec-
ommend to join both eigenfunctions and the nonlinear solution into a single
data file and rescale to the same discretization grid. The program @fc converts
such a file to auto format and reads initial parameters from the subroutine
stpnt, see [4].

5 Examples

To illustrate the algorithms outlined above, we investigate essential and ab-
solute spectra for the FitzHugh–Nagumo and the complex Ginzburg–Landau
equation 1 .

5.1 The FitzHugh–Nagumo equation

Our first example is concerned with the classical FitzHugh-Nagumo equation

ut = uxx + cux − v − u(u− 1)(u− a)

vt = δvxx + cvx + ε(u− γv),

1 The auto files used for the following computations are available from the authors
upon request.
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Fig. 2. (a) Bifurcation diagram of wave trains with period L = 200 to the
FitzHugh–Nagumo equation in the (ε, c) parameter plane. The inset shows the
u-component of the fast wave-train for ε = 0.0033. (b) The real part of the eigen-
value of L0 that changes sign at the fold bifurcation is plotted as a function of ε.
Here the lower branch corresponds to the fast wave trains and the upper one to the
slow wave trains.

one of the best understood models for excitable media. Here, we already passed
to a frame moving with speed c. Our goal is to investigate the critical part of
the spectrum of wave trains (u, v)(x) = (u, v)(x + 2π/k).

It is known, from numerical computations and through theoretical work, that
the FitzHugh–Nagumo equation supports, in an appropriate parameter regime,
a fast stable pulse and an unstable slow pulse which disappear in fold or
saddle-node bifurcations as the parameter ε is increased. Both pulses are ac-
companied by wave trains with arbitrarily large spatial period, which converge
to the pulses as the period is increased and also undergo saddle-node bifurca-
tions for each fixed period as ε is increased. Our objective is to numerically
continue the spectrum of these wave trains, which will cross the imaginary
axis as we continue the wave trains for a fixed large period through their fold
bifurcation. For large periods, the eigenvalues of the pulses generate nearby
isolas of essential spectrum [5] and so we expect an isola to cross at the fold
point. Throughout, we fix the parameters a = γ = 0.2 and δ = 0.25, and con-
sider the wave trains with spatial period L = 200. The bifurcation diagram in
(c, ε) and the associated solution profiles are shown in Figure 2(a).

First, to illustrate the PDE spectra near the fold bifurcation, we continue the
fast wave trains in the (ε, c)-plane until they become the slow wave trains
while, at the same time, computing and continuing the simple real eigenvalue
of their PDE linearization L0 that destabilizes the wave train at the fold. The
resulting eigenvalue curve is shown in Figure 2(b).

Next, we compute the isolas of essential spectrum that emanate from the fold
eigenvalue and from the translation eigenvalue at λ = 0 for different values of ε
near the fold bifurcation. As illustrated in Figure 3, the fast wave train desta-
bilizes already before the actually fold bifurcation as the two aforementioned
isolas first coalesce at the temporal eigenvalues corresponding to ν = iπ/L to
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Fig. 3. (a) ε ≈ 0.00371: The isola corresponding to the fold eigenvalue has merged
with the isola at the origin. (b) ε ≈ 0.00371013: The merged isolas of the fast wave
train have already crossed the imaginary axis before the fold point.
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Fig. 4. Details of the onset of instability of the isola shown in Figure 3. (a)
We plot an overlay of the critical parts of the isola for ε ≈ 0.00371011259 and
ε ≈ 0.00371011266. (b) We plot the tangency coefficient λ|| (see §3.4.3) as a func-
tion of ε, which corroborates that the onset occurs at zero wave number.
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Fig. 5. (a) The isola from Figure 3(b) in the unweighted space and the upper part
of the same isola, now computed in a weighted space with Re ν ≈ −0.035. (b)
Magnification of the isola in the weighted space for two different values of ε: the
unstable isola to the right corresponds to a value of ε closer to the fold. Both isolas
contain absolute spectrum, cf. [10].

form a single isola, part of which then moves into the right half-plane. Note
that the unfolding of the essential spectrum near these temporal double root
that occurs when the two isolas touch each other is the x-shape crossing that
we expect from the list of generic singularities in §3.3.3. Figure 4 indicates
that the onset of instability does not occur at finite wave numbers; instead
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Fig. 6. (a) The essential spectrum of the slow periodic wave train at ε = 0.0033 near
the origin is plotted. The two tiny isolas located near λ = 0 and near λ = 0.08 have
been enlarged to be visible. (b) Magnification of the isola which is attached to the
origin.

the curvature of the essential spectrum at the origin changes sign, see §3.4.3.
We remark that at the fold point the isola has an x-shaped crossing point at
the origin and the group velocity changes sign through a singularity.

The merged isola in Figure 3(b) contains absolute spectrum, which we found
hard to compute directly though. Instead, we located it indirectly via isolas
of essential spectrum, computed in exponentially weighted spaces, which nec-
essarily contain absolute spectrum of index 2 on account of the discussion in
§4.3. Figure 5 shows these isolas inside the isola plotted in Figure 3(b). The
isola containing absolute spectrum moves into the unstable half plane as the
parameter ε approaches the fold point (see Figure 5(b)). Thus, the wave train
is not only essentially but also absolutely unstable before the fold point.

Lastly, on the branch corresponding to the slow wave train, the merged isolas
separate again into an unstable isola which is completely contained in the
right half-plane and an isola which emerges from λ = 0, which is contained
in the closed right half-plane (see Figure 6). Again by §4.3, both of these
isola contain absolute spectrum. Concerning the isola attached to the origin,
we located a point in the absolute spectrum by continuation of two Floquet
exponents whose imaginary parts differ by π/L and hence have opposite signs
as Floquet multipliers, see Figure 7. The expected curve of absolute spectrum
containing this point seems hard to compute. However, since the signs of the
real Floquet multipliers eν2 and eν3 are opposite, the crossing point of the
real parts of the Floquet exponents is not a double root and the attached
curve of absolute spectrum should cross the real axis with orthogonal tangent.
We bound the location of this curve of absolute spectrum by continuing the
isola of essential spectrum in Figure 6(b) in decreasing exponential weight
η = Re ν ≤ 0. These isolas in weighted spaces appear to be concentric circles
about the crossing point, and the component of absolute spectrum lies inside
the smallest isola we computed, a circle of radius 5× 10−13.
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Fig. 7. (a) Real parts of the ordered Floquet exponents ν2 and ν3 for λ ∈ R within
the isola of essential spectrum in Figure 6(b). Here, sgn(eν2L) = −sgn(eν3L) with
signs as indicated. The crossing point λ ≈ 1.446575 × 10−7 lies in the absolute
spectrum. (b) We plot the isola of essential spectrum in Figure 6(b) continued to
the exponential weight η ≈ −0.075. Signs of real Floquet multipliers are indicated.
This isola contains the component of the absolute spectrum referred to in (a).

5.2 The complex Ginzburg–Landau equation

Our second example exemplifies how the methods can be adapted outside
of the class of reaction-diffusion systems, allowing for a complex diffusion
coefficient with positive real part. We consider wave trains of the complex
Ginzburg–Landau equation (CGL)

At = (1 + iα)Axx + A− (1 + iβ)A|A|2, (5.1)

which is an approximate modulation equation valid near the onset of certain
instabilities of the essential spectrum; see the review [8] and references therein.

Periodic wave-train solutions of (5.1) are given by A∗ = rei(κx−ωt) with r2 =
1−κ2 and ω = β+(α−β)κ2. In the detuned variable A = Ãe−iωt, the equation
becomes, upon omitting tildes,

At = (1 + iα)Axx + (1 + iω)A− (1 + iβ)|A|2A

with solutions A∗ = reiκx. For the linearization about these wave trains, we
consider B and B as independent variables, not necessarily complex conjugate,
and obtain the linearization

λB = (1 + iα)Bxx + (1 + iω)B − (1 + iβ)(2|A∗|2B + A2
∗B)

λB = (1− iα)Bxx + (1 + iω)B − (1− iβ)(2|A∗|2B + A
2

∗B).

Next, we substitute B = beiκx+νx and B = be−iκx+νx, where we view b and b
as independent variables. We obtain the analogue to the matrix in (4.11) for
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the dispersion relation

D(λ, ν) =

 (1 + iα)(ν + iκ)2 0

0 (1− iα)(ν − iκ)2

+ a− λ id

where

a =

 1 + iω − 2(1 + iβ)r2 −(1 + iβ)r2

−(1− iβ)r2 1− iω − 2(1− iβ)r2



which simplifies to

D(λ, ν) = −λ id+ (1 + iα)(ν2 + 2iκν)− (1 + iβ)r2 −(1 + iβ)r2

−(1 + iβ)r2 (1− iα)(ν2 − 2iκν)− (1− iβ)r2

 .

Hence, we obtain a constant-coefficient problem with the dispersion relation
d(λ, ν) = detD(λ, ν) = 0, and the approach of §3.3 and §4.2 for N = 2 applies.

The essential spectrum {λ; d(λ, iγ) = 0, γ ∈ R} consists of the two explicit
curves

λ±(iγ) = κ2 − 1− γ(2iακ + γ) (5.2)

±
√

(κ2 − 1)2−γ(4iβκ3 + 2αβγ + α2γ3 − 4iκ(β + αγ2)−2κ2(2 + αβ)γ).

We note that λ−(0) = 0, so zero is always in the essential spectrum (see
Figure 9(a) for the shape of the essential spectrum).

Regarding the absolute spectrum, note that the dispersion relation d has four
spatial roots ν for each λ, and the Morse index for the absolute spectrum is
therefore two. Furthermore, we expect

(
4
2

)
= 6 double roots by Lemma 4.5;

note, however, that this prediction will not hold for α = 0 since the diffusion
coefficients coincide in this case, and Lemma 4.5 does not apply. Indeed, the
resultant of d(λ, ν) and ∂νd(λ, ν) with respect to ν has degree four in that
case, hence there are only four double roots (plus two at infinity). We now
discuss the set Σ∗

abs for various different parameter values.

We focus on the complex Ginzburg–Landau equation with α 6= 0 for which
essential and absolute spectrum generally differ. Furthermore, the explicit so-
lution (5.2) is not easy to interpret for general α, β and κ. Therefore, it appears
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Fig. 8. The generalized absolute spectrum Σ∗abs is plotted for (α, β) = (0.1, 0.2),
where bullets correspond to branch points and numbers indicate the Morse index.
(a) For the wave number κ = 0.1 the absolute spectrum, Σ2

abs, is stable, and its
rightmost point is a branch point at λ ≈ −0.0001. (b) For the wave number κ = 0.7
the absolute spectrum is unstable, and its rightmost points are branch points at
λ ≈ 0.115± 0.036i (here we omitted two branch points of index one at λ ≈ 189 and
λ ≈ 210).

appropriate to use the numerical approaches discussed in §4.2 to compute the
absolute spectrum.

Our results are summarized in Figures 8 and 10, where we plot the numerically
computed sets Σ∗

abs and the indices associated with each segment for three sets
of parameter values. The union of the segments with index 2 is the absolute
spectrum. Of interest is the onset of absolute instability, which we computed
for fixed values of (α, β) as the wave number κ is varied. For (α, β) = (0.1, 0.2),
the absolute spectrum becomes unstable through a complex conjugate pair of
branch points that crosses the imaginary axis, while for (α, β) = (−8, 1) all
branch points lie to the left of the imaginary axis, and the instability is induced
by a pair of complex conjugate curves of absolute spectrum that crosses the
imaginary axis.

First, consider (α, β) = (0.1, 0.2). Starting with the stable absolute spectrum
for κ = 0.1 shown in Figure 8(a), we continued the branch points in the
parameter κ ∈ [0, 1] to locate the onset of absolute instability (see Figure 9(b)).
The real stable branch point in the absolute spectrum for κ = 0.1 shown in
Figure 8(a) merges with a branch point of index 3 at κ ≈ 0.51 and Re λ ≈
−0.01. For increasing κ a pair of complex conjugate branch points emerges,
each with index 2, and crosses the imaginary axis at κ ≈ 0.598. This is the
only crossing of branch points in the absolute spectrum for (α, β) = (0.1, 0.2)
and κ ∈ [0, 1].

Next, we consider the Ginzburg–Landau equation for (α, β) = (−8, 1), which
lie in the Benjamin–Feir unstable regime αβ < 1, and focus on the wave train
with wave number κ = −0.3. The generalized absolute spectrum is plotted in
Figure 10. In this case, the absolute spectrum is unstable but does not contain
any branch points. In particular, the instability is a remnant instability (in
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Fig. 9. (a) The essential spectrum of the wave train with wave number κ = 0.1 is
plotted for (α, β) = (0.1, 0.2). (b) For (α, β) = (0.1, 0.2), we plot the real parts of
branch points with different Morse indices as functions of κ. The absolute spectrum
becomes unstable at κ ≈ 0.598 through branch points at λ ≈ ±0.032i of index two.
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Fig. 10. (a) The absolute spectrum is plotted for (α, β) = (−8, 1) and κ = −0.3.
Note that Σ2

abs is unstable, but that there are no branch points with index two. (b)
Magnification of one of the critical regions.

the terminology of [13]) which cannot be detected by locating branch points
of index two.
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