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Abstract
DDE-BIFTOOL v. 2.00 is a collection of Matlab routines for

numerical bifurcation analysis of systems of delay differential equa-
tions with several constant and state-dependent delays. The pack-
age allows to compute, continue and analyse stability of steady state
solutions and periodic solutions. It further allows to compute and
continue steady state fold and Hopf bifurcations and to switch, from
the latter, to an emanating branch of periodic solutions. Homo-
clinic and heteroclinic orbits can also be computed. To analyse the
stability of steady state solutions, approximations are computed to
the rightmost, stability-determining roots of the characteristic equa-
tion which can subsequently be used as starting values in a Newton
procedure. For periodic solutions, approximations to the Floquet
multipliers are computed. We describe the structure of the pack-
age, its routines, and its data and method parameter structures.
We illustrate its use through a step-by-step analysis of several demo
systems.
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1 Introduction

This report is a user manual for the package DDE-BIFTOOL, version 2.00. DDE-BIFTOOL consists
of a set of routines written in Matlab [25], a widely used environment for scientific computing. The aim
of the package is to provide a tool for numerical bifurcation analysis of steady state solutions and periodic
solutions of differential equations with constant delays (DDEs) and differential equations with (constant
and) state-dependent delays (sd-DDEs). It also allows to compute homoclinic and heteroclinic orbits
in DDEs. The package is freely available for scientific use. A list of the files which constitute DDE-
BIFTOOL is contained in appendix A. A copyright and warranty notice together with instructions on
obtaining the package can be found in appendix B. Up-to-date information can be found on the web page
http://www.cs.kuleuven.ac.be/ koen/delay/ddebiftool.shtml. Note that the package is typical
research software and is provided ”as is” without warranty of any kind (see appendix B).

DDE-BIFTOOL v. 2.00 is compatible with the previous versions. This manual describes both the
material of v. 1.00 and the extensions of v. 2.00 (support for sd-DDEs and connecting orbits). Therefore,
it extends and replaces the manual of v. 1.00 [11]. For readers who intend to analyse only systems with
constant delays, the parts of the manual related to systems with state-dependent delays can be skipped
(sections 3.2, 4.2 and 6.2). In the rest of this report we assume the reader is familiar with the notion of
a delay differential equation and with the basic concepts of bifurcation analysis for ordinary differential
equations. The theory on delay differential equations and a large number of examples are described in
several books. Most notably the early [4, 10, 9, 21, 29] and the more recent [2, 27, 22, 7, 28]. Several
excellent books contain introductions to dynamical systems and bifurcation theory of ordinary differential
equations, see, e.g., [5, 20, 1, 36, 30].

A large number of packages exist for bifurcation analysis of systems of ordinary differential equations
as, e.g., AUTO, LocBif, DsTool and CONTENT, see [8, 26, 3, 31]. For delay differential equations no com-
parable software is publicly available. For simulation (time integration) of delay differential equations the
reader is, e.g., referred to the packages ARCHI, DKLAG6, XPPAUT, DDVERK and dde23, see [34, 6, 18,
17, 37]. Of these, only XPPAUT has a graphical interface (and allows limited stability analysis of steady
state solutions of DDEs along the lines of [33]). An up-to-date list of (and links to) available software for
DDEs can be found on the web page http://www.cs.kuleuven.ac.be/ koen/delay/software.shtml.

DDE-BIFTOOL allows to compute branches of steady state solutions and steady state fold and Hopf
bifurcations using continuation. Given an equilibrium it allows to approximate the rightmost, stability
determining roots of the characteristic equation which can further be corrected using a Newton iteration.
Furthermore, periodic solutions and approximations of the Floquet multipliers can be computed using
orthogonal collocation with adaptive mesh selection and branches of periodic solutions can be continued
starting from a previously computed Hopf point or an initial guess of a periodic solution profile. It is also
possible to jump onto the secondary branch of periodic solutions at a period doubling bifurcation. When
a branch of periodic orbits ends at a homoclinic bifurcation, this homoclinic orbit can be computed
starting from a periodic solution with sufficiently large period. Heteroclinic orbits can be computed
given a sufficiently accurate initial guess of the profile. Branches of such connecting orbits can then be
computed in function of suitable parameters.

The package might be compared with one of the early versions of AUTO in the sense that it does not
provide simulation but does provide the continuation of steady state solutions and of periodic solutions
using orthogonal collocation. A large difference is that no automatic detection of bifurcations is supported.
Instead the evolution of the eigenvalues can be computed along solution branches which allow the user
to detect and identify bifurcations using appropriate visualization.

The remainder of this manual is structured as follows. In section 2 the structure of DDE-BIFTOOL
is outlined. Some necessary notations and properties of delay differential equations are briefly described
in section 3. How systems with constant and state-dependent delays can be defined for use inside the
package is described in section 4 by means of two example systems. The data structures used to represent
points, branches, stability information and method parameters are described in section 5. Usage of the
code is illustrated in section 6. In section 6.1, a step-by-step analysis of the example system with constant
delays is described. In section 6.2, specific features in analysis of systems with state-dependent delays are
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Figure 1: The structure of DDE-BIFTOOL. Arrows indicate the calling (—) or writing (-—) of routines in a
certain layer.

shown using the example system. Section 6.3 provides a demo example for computing connecting orbits.
Input and output parameter descriptions of routines used to compute and manipulate individual points
are described in section 7. Similar descriptions are provided for routines to compute and manipulate
branches in section 8. More details on the numerical methods and the corresponding method parameters
are given in section 9. Finally, the report ends with some brief comments on limits to the package and
future plans in section 10.

2 Structure of DDE-BIFTOOL

The structure of the package is depicted in figure 1. It consists of four layers.

Layer O contains the system definition and consists of routines which allow to evaluate the right hand
side f and its derivatives, state-dependent delays and their derivatives and to set or get the parameters
and the constant delays. It should be provided by the user and is explained in more detail in section 4.
All file names in this layer start with "sys_”.

Layer 1 forms the numerical core of the package and is (normally) not directly accessed by the user.
The numerical methods used are explained briefly in section 9, more details can be found in the papers
[33, 15, 14, 13, 16, 32, 35] and in [12]. Its functionality is hidden by and used through layers 2 and 3.

Layer 2 contains routines to manipulate individual points. Names of routines in this layer start with
"p_”. A point has one of the following five types. It can be a steady state point (abbreviated ”stst”),
steady state Hopf (abbreviated "hopf”) or fold (abbreviated ”fold”) bifurcation point, a periodic solution
point (abbreviated ”psol”) or a connecting orbit point (abbreviated ”hcli”). Furthermore a point can
contain additional information concerning its stability. Routines are provided to compute individual
points, to compute and plot their stability and to convert points from one type to another.

Layer 3 contains routines to manipulate branches. Names of routines in this layer start with "br_”.
A branch is the combination of an array of (at least two) points, three sets of method parameters and
specifications concerning the free parameters. The array contains points of the same type ordered along
the branch. The method parameters concern the computation of individual points, the continuation
strategy and the computation of stability. The parameter information includes specification of the free
parameters (which are allowed to vary along the branch), parameter bounds and maximal step sizes.
Routines are provided to extend a given branch (that is, to compute extra points using continuation), to
(re)compute stability along the branch and to visualize the branch and/or its stability.

Layers 2 and 3 require specific data structures, explained in section 5, to represent points, stability



information, branches, to pass method parameters and to specify plotting information. Usage of these
layers is demonstrated in section 6 through a step-by-step analysis of the demo systems. Descriptions
of input/output parameters and functionality of all routines in layers 2 and 3 are given in sections 7
respectively 8.

3 Delay differential equations

3.1 Equations with constant delays

Consider the system of delay differential equations with constant delays (DDEs),

d
al‘(t):f(l'(t),l'(t—Tl),... aw(t_Tm)an)a (1)
where z(t) € R*, f : RMm+1) x R? — R" is a nonlinear smooth function depending on a number of
parameters 1 € RP, and delays 7, > 0,7 =1,... ,m. Call 7 the maximal delay,
T = max 7.
=1,... ,m

The linearization of (1) around a solution z*(t) is the variational equation, given by,

d m
V(0 = Ac(t)y(1) + D Ayt — ), (2)
i=1
where, using f = f(z°,z',... ,2™,n),
]
Ai(t):a_]ci ,1=0,...,m. (3)
T (2% (1), 2* (=71 yeer s * (£—Tum ) 1)
If *(¢) corresponds to a steady state solution,
z*(t) = z* € R*, with f(z*,z*%,...,2%,n) =0,

then the matrices A;(t) are constant, A;(t) = A;, and the corresponding variational equation (2) leads to
a characteristic equation. Define the n x n-dimensional matrix A as

AN) = AT — Aq — Z Age T

=1

Then the characteristic equation reads,
det(A(X)) = 0. (4)

Equation (4) has an infinite number of roots A € C which determine the stability of the steady state
solution z*. The steady state solution is (asymptotically) stable provided all roots of the characteristic
equation (4) have negative real part; it is unstable if there exists a root with positive real part. It is
known that the number of roots in any right half plane ®(A) > 7, v € R is finite, hence, the stability is
always determined by a finite number of roots.

Bifurcations occur whenever roots move through the imaginary axis as one or more parameters are
changed. Generically a fold bifurcation (or turning point) occurs when the root is real and a Hopf
bifurcation occurs when it is a complex pair.

A periodic solution z*(t) is a solution which repeats itself after a finite time, that is,

z*(t+T)=z*(t), for all ¢.



Here T' > 0 is the period. The stability around the periodic solution is determined by the time integration
operator S(T,0) which integrates the variational equation (2) around z*(t) from time ¢ = 0 over the
period. This operator is called the monodromy operator and its (infinite number of) eigenvalues, which
are independent of the starting moment ¢t = 0, are called the Floguet multipliers. Furthermore, if T > 7
then S(T',0) is compact.

For autonomous systems there is always a trivial Floquet multiplier at 1, corresponding to a perturb-
ation around the periodic solution. The periodic solution is stable provided all multipliers (except the
trivial one) have modulus smaller than 1, it is unstable if there exists a multiplier with modulus larger
than 1.

We call a solution z*(¢) of (1) at n = n* a connecting orbit if the limits

. * - . * I
Jim ') =a",  Jim 2 (0=, ®)
exist. For continuous f, z~ and zt are steady state solutions. If z— = z 1, the orbit is called homoclinic,

otherwise it is heteroclinic.

3.2 Equations with (constant and) state-dependent delays
Consider the system of delay differential equations with (constant and) state-dependent delays (sd-DDEs),

{ ;t:l:(t) f(‘r(t)7$(t_7—1)>"' 7‘T(t_Tm1)7$(t_7-m1+1($t))7"' 7$(t_7—m($75))77))7 (6)
Tm1+j(mt) = gj(.’l,‘(t),.’l,‘(t - 7—1)7 s 7$(t - Tml)a”): J=1,...,my,

where z(t) € R*, f : R™™+1) x R? — R" is a nonlinear smooth function depending on a number of
parameters € RP and delays ; > 0,72 =1,...,m, m =my +my. For ¢ =1,... ,mq, the delays 7; are
constant. The other ms delays 7; (i = m1 + 1,... ,m) are defined through sufficiently smooth functions
g; : RMU™MAD) xR 5 R j = 1,...,ma,. The delay functions Tm,4;(%:), j = 1,...,m2, should be
bounded, i.e. 0 < Tpny45(t) <7j,r; ER, j=1,...,m9, Vt.

Using 7 (t) = 7;(z;), j = mi + 1,...,m and 7*(t) = [}, 11 (t) ... 7, 2 (t)]T, the linearization of (6)
around a solution (z*(¢),7*(t)) is the variational equation, given by ([23]),

5y(0) = Ao(®)y(8) + T Aut)y(t = 7) = L7 Amyra(8) (@) (¢ = 750, 14(8)) Biso (8)y(t)

+ 2000 Amy i@yt — 7, 145(1)) (7)
= 27 Ay i(0)(@7) (E = T, 4:(8)) 7 Bii(B)y(t — 1),
where (m*)'(t) = dz*(t)/dt and using f = f(z°,2',...,2™,n), ¢ = gi(a,z',..., 2™ ,n), (i =
]., e ,m2),
A;(t) = B_fz , 1= 07' 5 1L,
®=% (2% (£),2* (£ =T1) yerr 2 * (E—Tim ) 1)
(8)
B;,(t) = 2% , 1=1,...,m3,j=0,...,m.
’J() Oz (*(£),z* (t=T1) 5o s T* (t—Timy )y1) 2 !

If (z*(t),7*(t)) corresponds to a steady state solution, z*(t) = z* € R*, 7*(t) = 7 € R™2, with

flz*,z*,...,z%,n) =0, TmH_J gi(z*,...,z%m), 7=1,... ,mo,

then the matrices A;(t) are constant, 4,(t) = A;, and the vectors B; ;(t) consist of zero elements only. In
this case, the corresponding variational equation (7) is a constant delay differential equation and it leads
to the characteristic equation (4), i.e. a characteristic equation with constant delays. Hence the stability
analysis of a steady state solution of (6) is similar to the stability analysis of (1).



Note that the Hopf bifurcation theorem has not been proven yet for sd-DDEs. However the theorems
on existence of periodic solutions for sd-DDEs suggest that a Hopf bifurcation theorem holds for these
equations. In the following we will refer to the situation when the characteristic equation has a pair of
pure imaginary roots of multiplicity 1 as a Hopf-like bifurcation.

The stability theory of periodic solutions of sd-DDEs has not yet been fully developed in the math-
ematical literature. Equation (7) is a linear equation with time-dependent (no longer state-dependent)
delays. If the coefficients in the linear equation are smooth and periodic (with period T') and the delay
functions are smooth, then this equation belongs to the class of linear periodic equations studied in
[21]. For these equations, the solution operator over the period T' is compact. An open question re-
mains whether the stability of the linear variational equation reflects the local stability of the solution
(z*(t), 7*(t)) of (6). Hence, using (7) around a periodic solution (z*(t),7*(t)), we study the linearized
stability of periodic solutions.

For details on the relevant theory and numerical bifurcation analysis of differential equations with
state-dependent delay see [32] and the references therein.

4 System definitions

4.1 Equations with constant delays

As an illustrative example we will use the following system of delay differential equations, taken from
38],

{ (L‘]_(t) = —KIj (t) + ﬂtanh(xl (t — Ts)) + aq9 tanh(mz(t — Tg)) (9)
Z2(t) = —kzo(t) + B tanh(za(t — 75)) + a2 tanh(z (t — 71)).

This system models two coupled neurons with time delayed connections. It has two components (z; and
x2), three delays (11, 72 and 75), and four parameters (, 8, a;2 and a»1). A Matlab definition of system
(9) for use inside the package is given below. Subsequent analysis of the system using the package is
demonstrated in section 6.1.

To define a system, the user should provide the following Matlab functions, given here for system (9).

e sys_init.m:

Before investigating a given system, a single call is made to a routine sys_init.m which has no
arguments and returns the name and dimension n of the system under study. This routine also adds
the directory in which the package resides to the current path variable. Hence, after calling this
routine, DDE-BIFTOOL can be used from within the directory of the system (being preferably
different from the directory of the package). The specific directory entered into the path command
depends on the platform used (see help path in Matlab). If necessary some global variables used
in the system definition can also be declared here.

function [name,dim]=sys_init()

name=’neuron’;
dim=2;
path=path(path, ’/home/koen/DELAY/matlab/dde_biftool/’);

return;

e sys_.rhs.m:

The right hand side of the system is defined in sys_rhs.m. It has two arguments, xx € R**(m+1)
which contains the state variable(s) at the present and in the past, xx = [z(t) z(t—71) ... z(t—Tm)],
and par € R'*? which contains the parameters, par = 5. The delays 7;, s = 1... ,m are considered



to be part of the parameters (7; = 7;(;), ¢ = 1,... ,m). This is natural since the stability of steady
solutions and the position and stability of periodic solutions depend on the values of the delays.
Furthermore delays can occur both as a ’physical’ parameter and as delay, as in & = 7z(t — 7).
From these inputs the right hand side f is evaluated at time t. Notice that the parameters have a
specific order in par indicated in the comment line.

function f=sys_rhs(xx,par)
% kappa beta al2 a2l taul tau2 tau_s

£(1,1)=-par(1)*xx(1,1)+par(2)*tanh(xx(1,4))+par(3)*tanh(xx(2,3));
£(2,1)=-par(1)*xx(2,1)+par(2)*tanh(xx(2,4) )+par(4)*tanh(xx(1,2));

return;

e sys_deri.m:

Several derivatives of the right hand side function f need to be evaluated and should be supplied
via a routine sys_deri.m. The function sys_deri has as input variables xx and par (with ordering
of state variables and parameters as before), nx, np and v. Here, v € C**! or empty. The result J
is a matrix of partial derivatives of f which depends on the type of derivative requested via nx and
np multiplied with v (when nonempty), see table 1.

J is informally defined as follows. Initialize J with f. If nx is nonempty take the derivative of
J with respect to each of its elements. Each element is a number between 0 and m based on
f=f(°2",... 2™ n). E.g. if nx has only one element take the derivative with respect to z"(1).
If it has two elements, take, of the result, the derivative with respect to z™(®) and so on. Similarly,
if np is nonempty take, of the resulting J, the derivative with respect to 9np(i) where i ranges over
all the elements of np, 1 <7 < p. Finally, if v is not an empty vector multiply the result with v. The
latter is used to prevent J from being a tensor if two derivatives with respect to state variables are
taken (when nx contains two elements). Not all possible combinations of these derivatives should be
provided. In the current version, nx has at most two elements and np at most one. The possibilities
are further restricted as listed in table 1.

In the last row of table 1 the elements of J are given by,

0 0 " of;
Ji’j - |:am.nx(2) A"X(l)v:| o al_nx(2) (Z awnx(l) vk) ’

i, F k=1 9%}
with A; as defined in (3).
length(nx) length(np) v | J
1 0 empty % = Apy) € RP*™
0 1 empty 8naf(1) € Rnxt
np
2
1 1 empty M+§Wnp(l) e R»xn
2 0 e Cnx1 _azg(z) (Anx(l)'U) € Cnxn

Table 1: Results of the function sys_deri depending on its input parameters nx, np and v using f =
f(mo,xl, o ’xm177)'

The resulting routine is quite long, even for the small system (9). Furthermore, implementing so
many derivatives is an activity prone to a number of typing mistakes. Hence a default routine
df deriv.m is available which implements finite difference formulas to approximate the requested



derivatives (using several calls to sys_rhs). A copy of this file can be used to replace sys_deri.m.
It is, however, recommended to provide at least the first order derivatives with respect to the state
variables using analytical formulas. These derivatives occur in the determining systems for fold
and Hopf bifurcations and for connecting orbits, and in the computation of characteristic roots
and Floquet multipliers. All other derivatives are only necessary in the Jacobians of the respective
Newton procedures and thus influence only the convergence speed.



function J=sys_deri(xx,par,nx,np,v)
% kappa beta al2 a2l taul tau2 tau_s
J=[1;

if length(nx)==1 & length(np)==0 & isempty(v)
% first order derivatives wrt state variables
if nx==0 % derivative wrt x(t)
J(1,1)=-par(1);
J(2,2)=-par(1);
elseif nx==1 ¥ derivative wrt x(t-taul)
J(2,1)=par(4)*(1-tanh(xx(1,2))"2);

J(2,2)=0;

elseif nx==2 ¥, derivative wrt x(t-tau2)
J(1,2)=par(3)*(1-tanh(xx(2,3))"2);
J(2,2)=0;

elseif nx==3 % derivative wrt x(t-tau_s)

J(1,1)=par(2)*(1-tanh(xx(1,4))"2);
J(2,2)=par(2)*(1-tanh(xx(2,4))"2);
end;
elseif length(nx)==1 & length(np)==1 & isempty(v)
% mixed state, parameter derivatives
if nx==0 J derivative wrt x(t)
if np==1 ) derivative wrt beta
J(1,1)=-1;
J(2,2)=-1;
else
J=zeros(2);
end;
elseif nx==1 ¥ derivative wrt x(t-taul)
if np==4 J derivative wrt a21
J(2,1)=1-tanh(xx(1,2))"2;
J(2,2)=0;
else
J=zeros(2);
end;
elseif nx==2 Y, derivative wrt x(t-tau2)
if np==3 J derivative wrt al2
J(1,2)=1-tanh(xx(2,3))"2;
J(2,2)=0;
else
J=zeros(2);
end;
elseif nx==3 Y, derivative wrt x(t-tau_s)
if np==2 ¥ derivative wrt beta
J(1,1)=1-tanh(xx(1,4))"2;
J(2,2)=1-tanh(xx(2,4))"2;
else
J=zeros(2);
end;
end;




elseif length(nx)=0 & length(np)==1 & isempty(v)

% first order derivatives wrt parameters

if np==1 J derivative wrt kappa
J(1,1)=-xx(1,1);
J(2,1)=-xx(2,1);

elseif np==2 J derivative wrt beta
J(1,1)=tanh(xx(1,4));
J(2,1)=tanh(xx(2,4));

elseif np==3 J derivative wrt al2
J(1,1)=tanh(xx(2,3));
J(2,1)=0;

elseif np==4 J derivative wrt a2l
J(2,1)=tanh(xx(1,2));
elseif np==5 | np==6 | np==7 ¥} derivative wrt tau
J=zeros(2,1);
end;
elseif length(nx)==2>0 & length(np)==0 & ~“isempty(v)
% second order derivatives wrt state variables

if nx(1)==0 % first derivative wrt x(t)
J=zeros(2);

elseif nx(1)==1 Y, first derivative wrt x(t-taul)
if nx(2)==

th=tanh(xx(1,2));
J(2,1)=-2xpar(4)*th*(1-th*th)*v(1);
J(2,2)=0;
else
J=zeros(2);
end;
elseif nx(1)==2 ¥, derivative wrt x(t-tau2)
if nx(2)==2
th=tanh(xx(2,3));
J(1,2)=-2*%par(3)*th*(1-th*th)*v(2);
J(2,2)=0;
else
J=zeros(2);
end;
elseif nx(1)==3 Y% derivative wrt x(t-tau_s)
if nx(2)==3
thi=tanh(xx(1,4));
J(1,1)=-2%par(2) *th1*(1-thi*th1)*v(1);
th2=tanh(xx(1,4));
J(2,2)=—-2*par(2) *th2* (1-th2*th2) *v(2) ;
else
J=zeros(2);
end;
end;
end;

if isempty(J)

err=[nx np size(v)]

error(’SYS_DERI: requested derivative could not be
end;

return;

computed!’);




e sys_tau.m:
As a last system routine a function is required which returns the position of the delays in the
parameter list. The order in this list corresponds to the order in which they appear in xx as passed
to the functions sys_rhs and sys_deri.

function tau=sys_tau()
% kappa beta al2 a2l taul tau2 tau_s

tau=[5 6 7];

return;

e sys_cond.m: A system routine sys_cond can be used to add extra conditions during corrections

and continuation, see section 9.2.

4.2 Equations with (constant and) state-dependent delays

As an illustrative example we will use the following system of delay differential equations,

%.’L’l(t) = m (]_ — P21 (t):l?l(t — T3)$3(t — 7'3) +p3.’l;1(t — Tl).’l,'g(t — Tg)) 5
Sy (t) = 220 4 pstanh(ws(t — 75)) — 1,
La3(t) = pe(w2(t) — z3(t)) — pr(zs(t — 76) — T2 (t — 74))e P57, (10)
%l’zl(t) =1z (t —14)e Pt — 0.1,
§i7s(t) = 3(z1(t — 72) — 25(t)) — po,
where
T1,Ty are constant delays,
T3 = 2 +p57’1.’IJ2(t).’B2(t - Tl),
=1le 1
4 1-|—21(t)22(t—7'2)’
T5 = .’L‘4(t),
T = .’L'5(t)
This system has five components (z1, ... ,zs), six delays (71, ... , 76) and eleven parameters (p1,... ,p11),

where p1g = 71 and p11 = 7. An analysis of this system using the package is demonstrated in section

6.2.
To define a system with (constant and) state-dependent delays, the user should provide the following

Matlab functions, given here for system (10). Note that for a system with only constant delays we
recommend the use of the system definitions as described in section 4.1 to reduce the computational

time.

e sys_init.m:
The right hand side of the system is defined in sys_rhs.m just as it is done for DDEs, cf. section
4.1.

function [name,dim]=sys_init()
name=’sd_demo’;
dim=5;

path=path(path, ’/home/koen/DELAY/matlab/dde_biftool/’);

return;

10



e sys_rhs.m:

The definition and functionality of this routine is fully equivalent to the one described in section
4.1. Notice that the argument xx contains the state variable(s) at the present and in the past,

xx = [z(t) z(t = 71) ... 2t — Tom,) (¢ — Ty41) --. z(t — Tn)], where all variables in the past
corresponding to constant delays are situated before variables with state-dependent delays. The
constant delays 7;, ¢ = 1...,m4, are also considered to be part of the parameters.

function f=sys_rhs(xx,par)
% pl p2 p3 p4 p5 p6 p7 p8 p9 plo pil

£(1,1)=(1/(par(1)+xx(2,1)) ) *(1-par(2) *xx(1,1) *xx(1,4) *xx(3,4) +par (3) *xx(1,2)*xx(2,3)) ;
£(2,1)=par(4)*xx(1,1)/(par(1)+xx(2,1))+par(5)*tanh(xx(2,6))-1;
£(3,1)=par(6)*(xx(2,1)-xx(3,1))-par(7)*(xx(1,7)-xx(2,5) ) ¥exp(-par(8) *xx(4,1));
£(4,1)=xx(1,5)*exp(-par(1)*xx(4,1))-0.1;

£(5,1)=3*(xx(1,3)-xx(5,1))-par(9);

return;

e sys_deri.m:

The definition and functionality of this routine is fully equivalent to the one described in section
4.1. We do not present here the routine since it is quite long, see the Matlab code sys_deri.min
the demo example sd_demo. The same default routine (df _deriv.m) as for the constant delay case
can be used. However, just like for constant delays, it is recommended to provide at least the first
order derivatives with respect to the state variables using analytical formulas.

e sysntau.m:

This routine returns the number of (constant and state-dependent) delays.

function ntau=sys_ntau()
ntau=6;

return;

e sys_tau.m:

This routine differs from the one described in section 4.1. It has three arguments, delay nr is the
number of the delay, xx and par are defined as for the functions sys_rhs and sys_deri. The routine
returns the value of the delay with number delay nr.

Important note. The order of the delays corresponds to the order in which they appear in xx as
passed to the functions sys_rhs and sys_deri. Recall that all constant delays should be determined
before state-dependent delays. When calling sys_tau for a constant delay, the value of the delay
is returned. This is in contrast with the definition of sys_tau in section 4.1, where the position in
the parameter list is returned.
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function tau=sys_tau(delay_nr,xx,par)
% pl p2 p3 p4 p5 p6 p7 p8 p9 pl0 piil

if delay_nr==
tau=par(10) ;
elseif delay_nr==
tau=par(11);
elseif delay_nr==
tau=2+par(5)*par(10)*xx(2,1) *xx(2,2);
elseif delay_nr==
tau=1-1/(1+xx(2,3)*xx(1,1));
elseif delay_nr==
tau=xx(4,1);
elseif delay_nr==
tau=xx(5,1);
end;

return;

e sys_dtau.m:

This routine supplies derivatives of all (constant and state-dependent) delays with respect to the
state and parameters. Its functionality is similar to the function sys_deri. The routine has as
input variables delay nr the number of the delay, xx and par (with ordering of state variables and
parameters as before), nx and np. The result dtau is a scalar, vector or matrix of partial derivatives
of the delay with number delay nr which depends on the type of derivative requested via nx and
np, see table 2.

A default routine df derit is available which implements finite difference formulas to approximate
the requested derivatives (using several calls to sys_tau), analogously to df _deriv. A copy of this
file can be used to replace sys_dtau.m. As in the case of sys_deri, it is recommended to provide
at least the first order derivatives with respect to the state variables using analytical formulas.

length(nx) length(np) dtau

9gi n
Bz(1) eR
9gi
Op(1)
0°G; n
9z™(1) Omnp (1) R
a 3gi nXxn
8Enx(2) aznx(l) e R

1
0
1
2

[ I ™)

Table 2: Results of the function sys_dtau depending on its input parameters nx and np. Here ¢ =delay_nr, §; =

: - 0 1 m -
Ty 1=1,...,m1 and § = gi—m,(z",z,... ,2"1,m), t=m1+1,... ,m.

e sys_cond.m:

Similar to the one in section 4.1.
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function dtau=sys_dtau(de1ay_nr,xx,par,nx,np)
% pl p2 p3 p4 p5 p6 p7 p8 p9 pl0 piil
dtau=[];

% first order derivatives wrt state variables:
if length(nx)==1 & length(np)==0,
if nx==0 % derivative wrt x(t)
if delay_nr==
dtau(1:5)=0;
dtau(2)=par(5)*par(10)*xx(2,2);
elseif delay_nr==
dtau(1)=xx(2,3)/(1+xx(1,1)*xx(2,3))"2;
dtau(2:5)=0;
elseif delay_nr==
dtau(1:5)=0;
dtau(4)=1;
elseif delay_nr==
dtau(5)=1;
else
dtau(1:5)=0;
end;
elseif nx==1 ), derivative wrt x(t-taul)
if delay_nr==
dtau(1:5)=0;
dtau(2)=par(5)*par(10)*xx(2,1);
else
dtau(1:5)=0;
end;
elseif nx==2 J, derivative wrt x(t-tau2)
if delay_nr==
dtau(1:5)=0;
dtau(2)=xx(1,1)/(1+xx(1,1)*xx(2,3))"2;
else
dtau(1:5)=0;
end;
else
dtau(1:5)=0;
end;
% first order derivatives wrt parameters:
elseif length(nx)==0 & length(np)==1,
if delay_nr==1 & np==10
dtau=1;
elseif delay_nr==2 & np==11
dtau=1;
elseif delay_nr==3 & np==b
dtau=par(10)*xx(2,1)*xx(2,2);
elseif delay_nr==3 & np==10
dtau=par(5)*xx(2,1)*xx(2,2);
else
dtau=0;
end;
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% second order derivatives wrt state variables:
elseif length(nx)==2 & length(np)==0,
dtau=zeros(5);
if delay_nr==
if (nx(1)==0 & nx(2)==1) | (nx(1)==1 & nx(2)==0)
dtau(2,2)=par(5)*par(10);
end;
elseif delay_nr==
if nx(1)==0 & nx(2)==0
dtau(1l,1)=-2*xx(2,3)*xx(2,3)/(1+xx(1,1)*xx(2,2))"3;
elseif nx(1)==0 & nx(2)==
dtau(1,2)=(1-xx(1,1)*xx(2,3))/(1+xx(1,1) *xx(2,2))"3;
elseif nx(1)==2 & nx(2)==
dtau(2,1)=(1-xx(1,1)*xx(2,3))/(1+xx(1,1) *xx(2,2))"3;
elseif nx(1)==2 & nx(2)==
dtau(2,2)=-2*xx(1,1)*xx(1,1)/(1+xx(1,1)*xx(2,2))"3;
end;
end;
% mixed state parameter derivatives:
elseif length(nx)==1 & length(np)==1,
dtau(1:5)=0;
if delay_nr==
if nx==0 & np==5
dtau(2)=par(10)*xx(2,2);
elseif nx==0 & np==10
dtau(2)=par(5)*xx(2,2);
elseif nx==1 & np==
dtau(2)=par(10)*xx(2,1);
elseif nx==1 & np==10
dtau(2)=par(5)*xx(2,1);
end;
end;
end;

if isempty(dtau)

[delay_nr nx np]

error(’SYS_DTAU: requested derivative does not exist!’);
end;

return;

5 Data structures

In this section we describe the data structures used to present individual points, stability information,
branches of points, method parameters and plotting information.

The Matlab structure array is an array of fields each of which is a named variable containing some
value(s) (similar to the struct in C and the record in the Pascal programming language). The structure
allows to group variables into a combined entity using meaningful names. Individual fields are addressed
by appending a dot and the field name to the structure array variable name. Defining for instance a
steady state point as a structure containing the fields ’kind’, ’parameter’, ’x’ and ’stability’ (see also
further) can be done using the following Matlab commands.

>> stst.kind=’stst’;
>> stst.parameter=[1 2 -0.1 5];
>> stst.x=[0 0]’;
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>> stst.stability=[];
>> stst
stst = kind: ’stst’
parameter: [1 2 -0.1000 5]
x: [2x1 double]
stability: []

More information about the Matlab structure array can be obtained by typing help struct on the Matlab
command line.

Point structures Table 3 describes the structures used to represent a single steady state, fold, Hopf,
periodic and homoclinic/heteroclinic solution point.

field | content field content field content
kind ‘stst’ kind "fold’ kind "hopt’
parameter RxP parameter RxP parameter RIxP
x R®X 1 x RrX 1 X RrX 1
stability empty or struct v Rx1 v crxl
stability empty or struct omega R
stability empty or struct
field content field content
kind "psol’ kind heli’
parameter RxP parameter RxP
mesh [0,1]"*(L4+1) or empty  mesh [0, 1]2%(Ed+1) or empty
degree Ny degree Ny
profile R*(Ld+1) profile R (Ld+1)
period Rg' period ]Rg'
stability empty or struct x1 R™
x2 R?
lambda._v C
lambda_w Ce:
v (Cn Xs1
w (Cn XSsa
alpha Cer
epsilon R

Table 3: Field names and corresponding content for the point structures used to represent steady state solutions,
fold and Hopf points, periodic solutions and connecting orbits. Here, n is the system dimension, p is the number of
parameters, L is the number of intervals used to represent the periodic solution, d is the degree of the polynomial
on each interval, s; is the number of unstable modes of £~ and sz is the number of unstable modes of zt.

A steady state solution is represented by the parameter values 1 (which contain also the constant delay
values, see section 4) and z*. A fold bifurcation is represented by the parameter values 7, its position z*
and a null-vector of the characteristic matrix A(0). A Hopf bifurcation is represented by the parameter
values 7, its position z*, a frequency w and a (complex) null-vector of the characteristic matrix A(iw).

A periodic solution is represented by the parameter values 7, the period T and a time-scaled profile
z*(t/T) on a mesh in [0,1]. The mesh is an ordered collection of interval points {0 =ty < t; < ... < tp =
1} and representation points ti+§’ 1=0,...,L—1,7=1,... ,d—1 which need to be chosen in function
of the interval points as

J
tipi =ti+ E(ti+1 —t;).
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Note that this assumption is not checked but needs to be fulfilled for correct results! The
profile is a continuous piecewise polynomial on the mesh. More specifically, it is a polynomial of degree
d on each subinterval [t;,t;41],7 =0,...,L — 1. Each of these polynomials is uniquely represented by its
values at the points {ti+%‘ }i=o.... ,a- Hence the complete profile is represented by its value at all the mesh
points,
m*(ti+%), 1=0,...,L—-1,7=0,...,d—1; and z*(¢t1)-

Because polynomials on adjacent intervals share the value at the common interval point, this represent-
ation is automatically continuous (it is, however, not continuously differentiable). (As indicated in table
3, the mesh may be empty, which indicates the use of an equidistant, fixed mesh.)

A connecting orbit is represented by the parameter values 7, the period T', a time-scaled profile z*(¢/T')
on a mesh in [0,1], the steady states z~ and zt (x1 and x2 in the data structure), the unstable eigenvalues
of these steady states, A~ and AT (lambda_v and lambda_w in the data structure), the unstable right
eigenvectors of = (v), the unstable left eigenvectors of z+ (w), the direction in which the profile leaves
the unstable manifold, determined by «, and the distance of the first point of the profile to ~, determined
by e. For the mesh and profile, the same remarks as in the case of periodic solutions hold.

The point structures are used as input to the point manipulation routines (layer 2) and are used inside
the branch structure (see further). The order of the fields in the point structures is important (because
they are used as elements of an array inside the branch structure). No such restriction holds for the other
structures (method, plot and branch) described in the rest of this section.

Stability structures Each of the point structures contains a stability field, except for the hcli struc-
ture, in which case stability does not really make sense. If no stability was computed this field is empty,
otherwise, it contains the computed stability information in the form described in table 4.

For steady state, fold and Hopf points, approximations to the rightmost roots of the characteristic
equation are provided in field 10’ in order of decreasing real part. The steplength that was used to obtain
the approximations is provided in field ’h’. Corrected roots are provided in field ’11’ and the number
of Newton iterations applied for each corrected root in a corresponding field 'n1’. If unconverged roots
are discarded, 'nl’ is empty and the roots in ’11’ are ordered with respect to real part; otherwise the
order in 11’ corresponds to the order in ’10’ and an element —1 in ’nl’ signals that no convergence was
reached for the corresponding root in ’10’ and the last computed iterate is stored in "11°. The collection of
uncorrected roots presents more accurate yet less robust information than the collection of approximate
roots, see section 9. For periodic solutions only (uncorrected) approximations to the Floquet multipliers
are provided in a field 'mu’ (in order of decreasing modulus).

field | content field | content
h R mu | Ccrm
10 Cm

11 Cre

nl ({-1} UNy)™ or empty

Table 4: Stability structures for roots of the characteristic equation (in steady state, fold and Hopf structures)
(left) and for Floquet multipliers (in the periodic solutions structure) (right). Here, n; is the number of approx-
imated roots, n. is the number of corrected roots and n,, is the number of Floquet multipliers.

Method parameters To compute a single steady state, fold, Hopf, periodic or connecting orbit solution
point, several method parameters have to be passed to the appropriate routines. These parameters are
collected into a structure with the fields given in table 5.

For the computation of periodic solutions, additional fields are necessary, see table 6. The meaning
of the different fields in tables 5 and 6 is explained in section 9.
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field content default value
newton_max_iterations Ny (5,5,5,5,10)
newton_nmon_iterations N 1
halting_accuracy Rt (le-10,1e-9,1e-9,1e-8,1e-8)
minimal_accuracy RY (le-8,1e-7,1e-7,1e-6,1e-6)
extra_condition {0,1} 0
print_residual_info {0,1} 0

Table 5: Point method structure: fields and possible values. When different, default values are given in the order
(’stst’,fold’hopf’,’psol’, "heli’).

field | content | default value
phase_condition {0,1} 1
collocation_parameters [0, 1]d or empty empty
adapt_mesh_before_correct N 0
adapt_mesh_after_correct N 3

Table 6: Point method structure: extra fields and possible values for the computation of periodic solutions.

Similarly, for the approximation and correction of roots of the characteristic equation respectively for
the computation of the Floquet multipliers method parameters are passed using a structure of the form
given in table 7.

Branch structures A branch consists of an ordered array of points (all of the same type), and three
method structures containing point method parameters, continuation parameters respectively stability
computation parameters, see table 8.

The branch structure has three fields. One, called ’point’, which contains an array of point structures,
one, called ’'method’, which is itself a structure containing three subfields and a third, called ’parameter’
which contains four subfields. The three subfields of the method field are again structures. The first,
called ’point’, contains point method parameters as described in table 5. The second, called ’stability’,
contains stability method parameters as described in table 7 and the third, called ’continuation’ contains
continuation method parameters as described in table 9. Hence the branch structure incorporates all
necessary method parameters which are thus automatically kept when saving a branch variable to file. The
parameter field contains a list of free parameter numbers which are allowed to vary during computations,
and a list of parameter bounds and maximal steplengths. Each row of the bound and steplength subfields
consists of a parameter number (first element) and the value for the bound or steplength limitation.
Examples are given in section 6.

A default, empty branch structure can be obtained by passing a list of free parameters and the point
kind (as ’stst’, fold’, ’hopt’, ’psol’ or ’hcli’) to the function df brnch. A minimal bound zero is then set
for each constant delay if the function sys_tau is defined as in section 4.1 (i.e. for DDEs). The method
contains default parameters (containing appropriate point, stability and continuation fields) obtained
from the function df mthod with as only argument the type of solution point.

Scalar measure structure After a branch has been computed some possibilities are offered to plot
its content. For this a (scalar) measure structure is used which defines what information should be taken
and how it should be processed to obtain a measure of a given point (such as the amplitude of the profile
of a periodic solution, etc...), see table 10. The result applied to a variable point is to be interpreted as

scalar_measure=func(point.field.subfield(row,col));
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field content default value
Ims_parameter_alpha RF time_lms("bdf’,4)
lms_parameter_beta RE time_lms(’bdf’,4)
Ims_parameter_rho R time_saf(alpha,beta,0.01,0.01)
interpolation_order No 4
minimal_time_step R 0.01
maximal_time_step RY 0.1
max_number_of_eigenvalues No 100
minimal_real part R or empty empty
max_newton_iterations N 6
root_accuracy RS le-6
remove_unconverged roots {0,1} 1
delay_accuracy Ry -1le-8

field | content | default value
collocation_parameters [0,1]% or empty empty
max_number_of_eigenvalues N 100
minimal modulus Rt 0.01

delay_accuracy

Ry -le-8

Table 7: Stability method structures: fields and possible values for the approximation and correction of roots of
the characteristic equation (top), or for the approximation Floquet multipliers (bottom). The LMS-parameters
are default set to the fourth order backwards differentiation LMS-method. The last row in both tables is only
used for sd-DDEs.

where ’field’ presents the field to select, ’subfield’ is empty or presents the subfield to select, 'row’ presents
the row number or contains one of the functions mentioned in table 10. These functions are applied
columnwise over all rows. The function ’all’ specifies that the all rows should be returned. The meaning
of 'col’ is similar to 'row’ but for columns. To avoid ambiguity it is required that either 'row’ or ’col’
contains a number or that both contain the function ’all’. If nonempty, the function 'func’ is applied to
the result. Note that ’func’ can be a standard Matlab function as well as a user written function. Note
also that, when using the value ’all’ in the fields ’col’ and/or row’ it is possible to return a non-scalar
measure (possibly but not necessarily further processed by ’func’).

field subfield content

point array of point struct
method point point method struct
method stability stability method struct
method continuation | continuation method struct
parameter | free I\

parameter | min_bound [N R}
parameter | max_bound [N R]Pe
parameter | max_step [N R?-

Table 8: Branch structure: fields and possible values. Here, py is the number of free parameters; p;, p. and p, are
the number of minimal parameter values, maximal parameter values respectively maximal parameter steplength
values. If any of these values are zero, the corresponding subfield is empty.
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field content default value
steplength_condition {0,1} 1

plot {0,1} 1
prediction {1} 1
steplength_growth _factor R 1.2
plot_progress {0,1} 1
plot_measure struct or empty empty
halt_before_reject {0,1} 0

Table 9: Continuation method structure: fields and possible values.

field content meaning

field {’parameter’,’x’,’v’,’omega’, ... first field to select
'profile’’period’’stability’ ... }

subfield {?7,10°,11 ’mu’} ’ 7 or second field to select

row N or {’min’,’max’,’mean’’ampl’,’all’} row index

col N or {’min’,’max’,’mean’ ’ampl’,’all’} column index

func {”,real’’imag’,’abs’} function to apply

Table 10: Measure structure: fields, content and meaning of a structure describing a measure of a point.

6 Demo examples

6.1 DDE demo: equations with constant delays

This demo describes how to use DDE-BIFTOOL to perform a bifurcation analysis on equations with
several constant delays. System definitions files (see section 4.1) can be found in the directory DEMO. The
commands used in this demo are listed in the file demo1.m.

After the system has been implemented, bifurcation analysis can be performed using the point and
branch manipulation layers. Specification of the functions in these layers is given in sections 7 respectively
8. Here we outline an illustrative ride-through using the example (9).

The figures shown are produced during execution of demol. Some of these figures have important
colour coding and others are gradually built up. Hence the reader is advised to read this section while
observing the figures from the Matlab run of demo1.

After starting Matlab in the directory of the system definition, we install the system by calling its
initialization file,

>> [name,n]=sys_init
name = neuron
n=2

It is clear that (9) has a steady state solution (z%,z%) = (0,0) for all values of the parameters. We
define a first steady state solution using the parameter values k = 0.5, 8 = —1, a12 = 1, ag; = 2.34,
71 =79 = 0.2 and 7, = 1.5.

>> stst.kind=’stst’;
>> stst.parameter=[1/2 -1 1 2.34 0.2 0.2 1.5];
>> stst.x=[0 0]’
stst = kind: ’stst’
parameter: [0.5000 -1 1 2.3400 0.2000 0.2000 1.5000]
x: [2x1 double]

We get default point method parameters and correct the point,
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Figure 2: Approximated (x) and corrected (x) roots of the characteristic equation of system (9) at its steady
state solution (z},z3) = (0,0). Real parts computed up to R(A) > —2 (left), R(A) > —2 (right).

>> method=df_mthod(’stst’)
method = continuation: [1x1 struct]
point: [1x1 struct]
stability: [1x1 struct]
>> [stst,success]=p_correc(stst,[],[],method.point)
stst = kind: ’stst’
parameter: [0.5000 -1 1 2.3400 0.2000 0.2000 1.5000]
x: [2x1 double]
success = 1

>> stst.x
ans = 0
0

which, being already a correct solution, remains unchanged. Computing and plotting stability of the
corrected point reveals it has one unstable real mode, see figure 2 (left).

>> stst.stability=p_stabil(stst,method.stability);
>> figure(1); clf;
>> p_splot(stst);

Seeing that only a few characteristic roots were computed we set minimal_real_part to a more negative
value (it is default empty which means that roots are computed up to ®(\) > —1/7) and recompute
stability to obtain figure 2 (right).

>> method.stability.minimal_real_part=-2;

>> stst.stability=p_stabil(stst,method.stability);
>> figure(2); clf;

>> p_splot(stst);

In both figures, approximations (x) and corrections (*) are nearly indistinguishable.
We will use this point as a first point to compute a branch of steady state solutions. First, we obtain
an empty branch with free parameter as; limited by as; € [0, 5] and Aag; < 0.2 between points.

>> branchl=df_brnch(4,’stst’)
branchl = method: [1x1 struct]
parameter: [1x1 struct]
point: []
>> branchl.parameter
ans = free: 4
min_bound: [3x2 double]
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put

ax_bound: []

max_step: []

>>
an

>>
>>
>>

>>
>>
>>
>>

at

branchl.parameter.min_bound

s =5 0

6 0

7 0
branchl.parameter.min_bound(4,:)=[4 0];

branchl.parameter.max_bound(1,:)=[4 5];
branchl.parameter.max_step(1,:)=[4 0.2];

To obtain a second starting point we change parameter value as; slightly and correct again.

branchl.point=stst;
stst.parameter(4)=stst.parameter(4)+0.1;
[stst,success]=p_correc(stst,[],[],method.point);
branchl.point(2)=stst;

Because we know how the branch of steady state solutions continued in a2; looks like (it is constant
(z7,7z3) = (0,0)) we disable plotting during continuation by setting the corresponding continuation

method parameter to zero.

>>

branchl.method.continuation.plot=0;

With two starting points and suitable method parameters we are ready to continue the branch in

parameter ag; (number 4), allowing it to vary in the interval [0,5] using a maximum stepsize of 0.2 and
a maximum of 100 corrections.

>>
BR
br

[branchl,s,f,r]=br_contn(branchi,100)
_CONTN warning: boundary hit.
anchl = method: [1x1 struct]
parameter: [1x1 struct]
point: [1x16 struct]

s = 156
£f=0
r=20
During continuation, sixteen points were successfully computed (s = 16) before the right boundary
as1 = 5 was hit (signalled by a warning). No corrections failed (f = 0) and no computed points were

later rejected (r = 0). Reversing the order of the branch points allows to continue to the left.

>>
>>
BR

>>
>>

branchil=br_rvers(branchl);
[branchl,s,f,r]=br_contn(branchi,100);
_CONTN warning: boundary hit.

We compute the stability along the branch.

branchl.method.stability.minimal_real_part=-2;
branchl=br_stabl(branchl,0,1);

After obtaining suitable measure structures we plot the real part of the approximated and corrected

roots of the characteristic equation along the branch, see figure 3 (left).

>>
>>
>>
>>

ym

[xm,ym]=df_measr(1,branchl);
figure(3); clf;
br_plot(branchl,xm,ym,’b’);
ym
= field: ’stability’
subfield: ’11°
row: ’all’
col: 1
func: ’real’
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>> ym.subfield=’10’;

>> br_plot(branchl,xm,ym,’c’);
>> plot ([0 5],[0 0],°-.7);

>> axis([0 5 -2 1.5]);

Again approximations and corrections are nearly indistinguishable. From this figure alone it is not
clear which real parts correspond to real roots respectively complex pairs of roots. For this it is useful
to compare figures 2 and 3 (left). Notice the strange behaviour (coinciding of several complex pairs of
roots) at az; = 0. At this parameter value one of the couplings between the neurons is broken. In fact,
for as; = 0, the evolution of the second component is independent of the evolution of the first. Where
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Figure 3: Real parts of the approximated (left) and corrected (left,right) roots of the characteristic equation
versus a1 (left) respectively the point number along the branch (right).

lines cross the zero line, bifurcations occur. If we want to compute the Hopf bifurcation near as; =~ 0.8
we need its point number. This is most easily obtained by plotting the stability versus the point numbers
along the branch, see figure 3 (right).

>> figure(4); clf;

>> br_plot(branchil, [],ym,’b’);
>> br_plot(branchi, [],ym,’b.’);
>> plot ([0 30],[0 0],’-.7);

We select point 24 and turn it into an (approximate) Hopf bifurcation point.
>> hopf=p_tohopf (branchl.point(24));

We correct the Hopf point using appropriate method parameters and one free parameter (as1). We
then copy the corrected point to keep it for later use.

>> method=df_mthod(’hopf’) ;
>> [hopf,success]=p_correc(hopf,4, [],method.point)
hopf = kind: ’hopf’
parameter: [0.5000 -1 1 0.8071 0.2000 0.2000 1.5000]
x: [2x1 double]
v: [2x1 double]
omega: 0.7820
success = 1
>> first_hopf=hopf;

Computing and plotting stability of the Hopf point clearly reveals the pair of pure imaginary eigen-
values, see figure 4

>> hopf.stability=p_stabil(hopf ,method.stability);
>> figure(5); clf;
>> p_splot(hopf);
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Figure 4: Characteristic roots at Hopf point: a pair of pure imaginary eigenvalues is clearly visible.

In order to follow a branch of Hopf bifurcations in the two parameter space (as1,7s) we again need
two starting points. Hence we use the Hopf point already found and one perturbed in 7, and corrected
in as1, to start on a branch of Hopf bifurcations. For the free parameters, as; and 75, we provide suitable
intervals, as; € [0,4] and 75 € [0, 10], and maximal stepsizes, 0.2 for as; and 0.5 for 7.

>> branch2=df_brnch([4 7],’hopf’);

>> branch2.parameter.min_bound(4,:)=[4 0];

>> branch2.parameter.max_bound(1:2,:)=[[4 4]’ [7 10]’]1°;
>> branch2.parameter.max_step(1:2,:)=[[4 0.2]° [7 0.5]°]1°;
>> branch2.point=hopf;

>> hopf.parameter(7)=hopf.parameter(7)+0.1;

>> [hopf,success]=p_correc(hopf,4, [],method.point);

>> branch2.point(2)=hopf;

We continue the branch on both sides by an intermediate order reversal and a second call to br_contn.

>> figure(6); clf;

>> [branch2,s,f,r]=br_contn(branch2,40);
BR_CONTN warning: boundary hit.

>> branch2=br_rvers(branch2);

>> [branch2,s,f,r]=br_contn(branch2,20);

As we did not change continuation method parameters, predictions and corrections will be plotted
during continuation. The final result is shown in figure 5 (left). At the top, the branch hits the boundary
7, = 10. To the right, however, it seemingly turned back onto itself. We compute and plot stability along
the branch.

>> branch2=br_stabl(branch2,0,0);
>> figure(7); clf;

>> [xm,ym]=df_measr(1,branch2);
>> ym.subfield=’10";

>> br_plot(branch2, [],ym,’c’);

>> ym.subfield=’11";

>> br_plot(branch2, [],ym,’b’);

If, during these computations we would have obtained warnings of the kind,

TIME_H warning: h_min is reached.
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Figure 5: Predictions and corrections in the (a21, 7s)-plane after computation of a first branch of Hopf bifurcations
(left) and a second, intersecting branch of Hopf bifurcations (right).

it would indicate that the time integration step required to obtain good approximations to the requested
rightmost characteristic roots is too small. By default, characteristic roots are computed up to () >
-1/7.

We also notice a double Hopf point on the left but nothing special at the right end, which could explain
the observed turning of the branch. Plotting the frequency w versus 75 reveals what has happened, see
figure 6 (right). For small 7, w goes through zero, indicating the presence of a Bogdanov-Takens point.
The subsequent turning is a recomputation of the same branch with negative frequencies.

>> figure(8); clf;
>> [xm,ym]=df_measr(0,branch2);

>> ym
ym = field: ’parameter’
subfield: ’°
row: 1
col: 7
func: 7’

>> ym.field=’omega’;
>> ym.col=1;

>> xm
xm = field: ’parameter’
subfield: ’°
row: 1
col: 4
func: 7’

>> xm.col=7;
>> br_plot(branch2,xm,ym,’c’);
>> grid;

Selecting the double Hopf point we produce an approximation of the second Hopf point.

>> hopf=p_tohopf (branch2.point(4));
>> [hopf,success]=p_correc(hopf,4, [],method.point)
hopf = kind: ’hopf’
parameter: [0.5000 -1 1 -0.0103 0.2000 0.2000 8.5530]
x: [2x1 doublel
v: [2x1 doublel
omega: 0.9768
success = 0
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Figure 6: Left: Real part of characteristic roots along the branch of Hopf bifurcations shown in figure 5 (left).
Right: The frequency of the Hopf bifurcation along the same branch.

However, without success. Printing residual information gives a list of the Newton iteration number
and the norm of the residual. This reveals at least temporarily divergence of the correction process.

>> method.point.print_residual_info=1;

>> format short e;

>> hopf=p_tohopf (branch2.point(4));

>> [hopf,success]=p_correc(hopf,4, [],method.point);
norm_residual = 1.0000e+00 9.3116e-03
norm_residual 2.0000e+00 5.4574e-01
norm_residual = 3.0000e+00 6.2629e-02
norm_residual = 4.0000e+00 1.8903e-03
norm_residual = 5.0000e+00 3.2357e-05

Or we did not allow enough Newton iterations, or the free parameter is not so appropriate. We
successfully try again using 75 as a free parameter.

>> hopf=p_tohopf (branch2.point(4));
>> [hopf,success]=p_correc(hopf,7, [],method.point)
norm_residual = 1.0000e+00 9.3116e-03
norm_residual = 2.0000e+00 6.8069e-04
norm_residual = 3.0000e+00 2.3169e-07
norm_residual 4.0000e+00 4 .3066e-13
hopf = kind: ’hopf’
parameter: [5.0000e-01 -1 1 2.0657e-01 2.0000e-01 2.0000e-01 8.6340e+00]
x: [2x1 double]
v: [2x1 double]
omega: 9.1581e-01

success = 1

Using the second Hopf point we compute the intersecting branch of Hopf points depicted in figure 5
(right). Setting plot_progress to zero disables intermediate plotting such that we see only the end result.

>> branch3=df_brnch([4 7],’hopf’);

>> branch3.parameter=branch2.parameter;

>> branch3.point=hopf;

>> hopf.parameter(4)=hopf.parameter(4)-0.05;

>> method.point.print_residual_info=0; format short;
>> [hopf,success]=p_correc(hopf,7, [],method.point);
>> branch3.point(2)=hopf;

>> branch3.method.continuation.plot_progress=0;
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>> figure(6);

>> [branch3,s,f,r]=br_contn(branch3,100);
BR_CONTN warning: boundary hit.

>> branch3=br_rvers(branch3);

>> [branch3,s,f,r]=br_contn(branch3,100);
BR_CONTN warning: boundary hit.

We use the first Hopf point we computed (first_hopf) to construct a small amplitude (1e — 2) periodic
solution on an equidistant mesh of 18 intervals with piecewise polynomial degree 3.

>> intervals=18;
>> degree=3;
>> [psol,stepcond]=p_topsol(first_hopf,le-2,degree,intervals);

This steplength condition returned ensures the branch switch from the Hopf to the periodic solution
as it avoids convergence of the amplitude to zero during corrections. Due to the presence of the steplength
condition we also need to free one parameter, here as;.

>> method=df_mthod(’psol’);
>> [psol,success]=p_correc(psol,4,stepcond,method.point)
psol = kind: ’psol’
parameter: [0.5000 -1 1 0.8072 0.2000 0.2000 1.5000]
mesh: [1x55 doublel
degree: 3
profile: [2x55 double]
period: 8.0354
success = 1

The result, along with a degenerate periodic solution with amplitude zero is used to start on the
emanating branch of periodic solutions, see figure 7 (left). We avoid adaptive mesh selection and save
memory by clearing the mesh field. An equidistant mesh is then automatically used which is kept fixed
during continuation. Simple clearing of the mesh field is only possible if it is already equidistant. This is
the case here as p_tohopf returns a solution on an equidistant mesh.

>> branch4=df_brnch(4, ’psol’);

>> branch4.parameter.min_bound(4,:)=[4 0];
>> branch4.parameter.max_bound(1,:)=[4 5];
>> branch4.parameter.max_step(1,:)=[4 0.1];
>> deg_psol=p_topsol(first_hopf,0,degree,intervals);
>> deg_psol.mesh=[];

>> branch4.point=deg_psol;

>> psol.mesh=[];

>> branch4.point(2)=psol;

>> figure(9); clf;

>> [branch4,s,f,r]=br_contn(branch4,50);

Notice how computing periodic solution branches takes considerably more computational time. Zoom-
ing shows erratic behaviour of the last computed branch points, shortly beyond a turning point, see figure

7 (right).
>> axis([2.3 2.4 0.95 1.15]);

Plotting some of the last solution profiles shows that smoothness and thus also accuracy are lost, see
figure 9 (left).

>> 11=length(branch4.point);

>> figure(10); clf;

>> subplot(3,1,1);

>> p_pplot(branch4.point(11-10));
>> subplot(3,1,2);
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Figure 7: Branch of periodic solutions emanating from a Hopf point (left). The branch turns at the far right and
a zoom (right) indicates computational difficulties at the end.

>> p_pplot(branch4.point(11-5));
>> subplot(3,1,3);
>> p_pplot(branch4.point(11-1));

From a plot of the period along the branch we could suspect a homoclinic or heteroclinic bifurcation
scenario, see figure 8 (left).
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Figure 8: Left: Period along the computed branch shown in figure 7. Right: Added period predictions and
corrections during recalculations using adaptive mesh selection.

>> figure(11); clf;
>> [xm,ym]=df_measr(0,branch4) ;

>> ym
ym = field: ’profile’
subfield: ’’
row: 1
col: ’ampl’
func: *°
>> ym.field=’period’;
>> ym.col=1;

>> br_plot(branch4,xm,ym,’b’);
>> axis([2.2 2.36 20 170]);

The result of computing and plotting stability (Floquet multipliers) just before and after the turning
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Figure 9: Some solution profiles using equidistant meshes (left) and adapted meshes right (right) along the branch
of periodic solutions shown in figure 7.

point is shown in figure 10. The second spectrum is clearly unstable but no accurate trivial Floquet
multiplier is present at 1.

>> psol=branch4.point(11-11);

>> psol.stability=p_stabil(psol,method.stability);
>> figure(12); clf;

>> subplot(2,1,1);

>> p_splot(psol);

>> axis image;

>> psol=branch4.point(11-8);

>> psol.stability=p_stabil(psol,method.stability);
>> subplot(2,1,2);

>> p_splot(psol);

)
N

71 05 0 05 1
0@

1 T T T T T

a ‘ ‘ ‘ ‘
-10 0 10 20 30 40 50 60
mi()

Figure 10: Floquet multipliers for a periodic solutions before (top) and just after (bottom) the turning point
visible in figure 7.

First, we recompute a point on a refined, adapted mesh.

>> psol=branch4.point(11-12);

>> intervals=40;

>> degree=4;

>> psol=p_remesh(psol,degree,intervals);

>> method.point.adapt_mesh_after_correct=1;
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>> method.point.newton_max_iterations=7;
>> method.point.newton_nmon_iterations=2;
>> [psol,success]=p_correc(psol,[],[],method.point)
psol = kind: ’psol’
parameter: [0.5000 -1 1 2.3358 0.2000 0.2000 1.5000]
mesh: [1x161 double]
degree: 4
profile: [2x161 double]
period: 38.4916
success = 1

Then we recompute the branch using adaptive mesh selection (with reinterpolation and additional
corrections) after correcting every point, see figure 8 (right).

>> branch5=df_brnch(4, ’psol’);

>> branchb.parameter=branch4.parameter;

>> branchb.point=psol;

>> psol.parameter(4)=psol.parameter(4)+0.01;

>> [psol,success]=p_correc(psol, [], [],method.point,1);
>> branch5.point(2)=psol;

>> branchb.method=method;

>> [xm,ym]=df_measr(0,branchb) ;

>> ym.field=’period’;

>> ym.col=1;

>> figure(11); axis auto; hold on;

>> branchb.method.continuation.plot_measure.x=xm;
>> branchb.method.continuation.plot_measure.y=ym;
>> branch5=br_contn(branch5,25);

Increasing mesh sizes and using adaptive mesh selection also improves the accuracy of the computed
Floquet multipliers.

>> psol=branchb.point(6);
>> psol.stability=p_stabil(psol,method.stability);
>> psol.stability.mu
ans = 241.2300
1.0000

Plotting of a point clearly shows the (double) homoclinic nature of the solutions, see figure 9 (right).

>> figure(13); clf;

>> subplot(2,1,1);

>> 11=length(branchb.point);

>> psol=branchb.point(11-5);

>> plot(psol.mesh,psol.profile);

>> subplot(2,1,2);

>> psoll=p_remesh(psol,degree,0:0.001:1);
>> psol2=p_remesh(psol,degree,(0:0.001:1)+0.02);
>> plot(psoll.profile’,psol2.profile’);
>> psol.period

ans = 399.7466

In this case, using the file df _deriv.m instead of the analytical derivatives file given in section 4.1,
yields results which are visually the same as the ones given above.

Using the (added) routines to compute homoclinic solutions, we correct each of the two loops to a
homoclinic orbit, thereby obtaining also some stability information of the steady state point. We take
the first half of the profile and rescale it to [0, 1].
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>> figure(14);clf;subplot(2,1,1);

>> hclil=psol;

>> hclil.mesh=hclil.mesh(1:65);

>> hclil.profile=hclil.profile(:,1:65);

>> hclil.period=hclil.period*hclil.mesh(end);
>> hclil.mesh=hclil.mesh/hclil.mesh(end);

Now we convert this point to a point of kind ’hcli” and correct it.

>> hclil=p_tohcli(hclil)
hclil = kind: ’hcli’
parameter: [0.5000 -1 1 2.3460 0.2000 0.2000 1.5000]
mesh: [1x61 double]
degree: 4
profile: [2x61 double]
period: 113.4318
x1: [2x1 double]
x2: [2x1 doublel
lambda_v: 0.3142
lambda_w: 0.3142
v: [2x1 doublel
w: [2x1 double]
alpha: 1
epsilon: 2.9010e-04
>> mh=df_mthod(’hcli’);
>> [hclil,success]=p_correc(hclil,4, [],mh.point)
hclil = kind: ’hcli’
parameter: [0.5000 -1 1 2.3459 0.2000 0.2000 1.5000]
mesh: [1x61 double]
degree: 4
profile: [2x61 double]
period: 114.8378
x1: [2x1 doublel
x2: [2x1 double]
lambda_v: 0.3141
lambda_w: 0.3141
v: [2x1 doublel
w: [2x1 double]
alpha: 1
epsilon: 2.9010e-04
success = 1
>> p_pplot(hclil);

We apply the same procedure on the second half of the profile.

>> figure(14);subplot(2,1,2);

>> hcli2=psol;

>> hcli2.mesh=hcli2.mesh(81:end-16);

>> hcli2.profile=hcli2.profile(:,81:end-16);

>> hcli2.mesh=hcli2.mesh-hcli2.mesh(1);

>> hcli2.period=hcli2.period*hcli2.mesh(end);

>> hcli2.mesh=hcli2.mesh/hcli2.mesh(end);

>> hcli2=p_tohcli(hcli2);

>> [hcli2,success]=p_correc(hcli2,4, [],mh.point);
>> p_pplot(hcli2);

We recompute the first homoclinic orbit, using 70 intervals, and correct this point.

>> hclil=p_remesh(hclil,4,70);
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Figure 11: Homoclinic profiles of the two loops depicted in figure 9.

>> [hclil,success]=p_correc(hclil,4, [],mh.point)
hclil = kind: ’hcli’
parameter: [0.5000 -1 1 2.3460 0.2000 0.2000 1.5000]
mesh: [1x281 doublel]
degree: 4
profile: [2x281 double]
period: 115.5581
x1: [2x1 double]
x2: [2x1 double]
lambda_v: 0.3142
lambda_w: 0.3142
v: [2x1 double]
w: [2x1 double]
alpha: 1
epsilon: 2.9010e-04
success = 1

If we free a second parameter, we can continue this homoclinic orbit with respect to two free para-
meters. As a second free parameter, we choose 75. We first create a default branch of homoclinic orbits,
add hcliil as a first point, perturb it, and add the corrected perturbation as a second point.

>> figure(15);

>> branch6=df_brnch([4 7],’hcli’);

>> branch6.point=hclil;

>> hclil.parameter(7)=1.49;

>> [hclil,success]=p_correc(hclil,4, [],mh.point);
>> branch6.point(2)=hclil;

>> [branch6,s,r,f]l=br_contn(branch6,19);

Because of the symmetry in this example, which is not generic, we choose to discuss continuation and
analysis of branches of homoclinic orbits in a separate demo example. We refer to section 6.3.

6.2 sd-DDE demo: equations with (constant and) state-dependent delays

This demo describes how to use DDE-BIFTOOL to perform a bifurcation analysis on equations with
state-dependent delays. System definitions files (see section 4.2) can be found in the directory SD_DEMO.
The commands used in this demo are listed in the file sd_demo.m.

After the system has been implemented, bifurcation analysis can be performed. Since the bifurcation
analysis of DDEs and sd-DDEs with the package is very similar, we do not provide here an illustrative
ride-through as in section 6.1. Using the example (10), we perform the main steps of the analysis and
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Figure 12: Predictions and corrections in the (a21, 7s)-plane after computation of a branch of homoclinic orbits.

show new elements related to the state dependency of delays. The reader is recommended to read section
6.1 first, to be more familiar with the analysis.

The commands below are listed in the file sd_demo.m. The figures shown are produced during its
execution.

After starting Matlab in the directory of the system definition, we install the system by calling its
initialization file,

>> [name,n]=sys_init
name = sd_demo
n=>5

We define a steady state solution using the parameter values listed in stst.parameter and an initial
guess in stst.x. Then we get default point method parameters and correct the point,

>> stst.kind=’stst’;
>> stst.parameter=[4.5 0.04 -1.4 6 -0.45 -0.01 3 0.3 0.1 1 0.2];
>> stst.x=[[1.4 1.5 -25 0.6 1.4]7;
>> method=df_mthod(’stst’);
>> [stst,success]=p_correc(stst,[],[],method.point)
stst = kind: ’stst’
parameter: [1x11 double]
x: [5x1 double]
success = 1
>> stst.x
ans = 1.4134
1.5193
-25.1077
0.5886
1.3801

We will use this point as a first point to compute a branch of steady state solutions. First, we obtain
an empty branch with free parameter ps. To obtain a second starting point we change parameter value
ps slightly and correct again.

>> branchl=df_brnch(5,’stst’);

>> branchl.parameter.min_bound(1,:)=[5 -1];

>> branchl.parameter.max_bound(1,:)=[5 1];

>> branchl.parameter.max_step(1,:)=[5 0.1];

>> branchl.point=stst;

>> stst.parameter(5)=stst.parameter(5)-0.01;

>> [stst,success]=p_correc(stst,[],[],method.point);
>> branchl.point(2)=stst;
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With two starting points and suitable method parameters we continue the branch (with plotting)
versus parameter ps, see figure 13 (left).

>> figure(1); clf;
>> [branchl,s,f,r]=br_contn(branchi,20)
BR_CONTN warning: delay number_3 becomes negative.
branchl = method: [1x1 struct]
parameter: [1x1 struct]
point: [1x9 struct]

s =8
f=0
r=20

>> plot(branchl.point(end) .parameter(5) ,branchl.point(end) .x(1),’0%);
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Figure 13: Left: predictions and corrections after computation of a branch of steady state solutions versus
parameter ps. o - the last computed point in the branch (corresponding to 73 = 0). Right: Real parts of the
corrected roots of the characteristic equation along the branch.

During continuation, seven points were successfully computed before the state-dependent delay func-
tion 73 crossed zero (signalled by a warning). The computed point with 73 < 0 was not accepted. Instead,
the point corresponding to 73 = 0 was computed, see figure 13 (left). We compute the value of 75 at the
last point in the branch:

>> p_tau(branchl.point(end),3)
ans = 2.2204e-16

In similar cases, it might happen that the computed value of a delay is a very small negative value.
Because stability cannot be computed when there are negative delays, small negative delay values are
automatically neglected when their value is larger than the value defined in method.stability.delay_accuracy
(see table 7).

We compute the stability along the branch and after obtaining suitable measure structures we plot the
real part of the corrected roots of the characteristic equation along the branch versus the point numbers,
see figure 13 (right).

>> branchl.method.stability.minimal_real_part=-1;
>> branchil=br_stabl(branch1,0,0);

>> [xm,ym]=df_measr(1,branchl);

>> ym.subfield=’11’;

>> figure(2); clf;

>> br_plot(branchi, [1,ym,’b’);

>> br_plot(branchil, [],ym,’b.’);

>> plot ([0 10],[0 0],’-.7%);
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From this figure it is not clear which real parts correspond to real roots respectively complex pairs of
roots. We check point 5,

>> branchl.point(5).stability.1l1
ans = -0.0023 - 0.5488i

-0.0023 + 0.5488i

-0.0952

-0.4499

We select point 5 and turn it into an (approximate) Hopf-like bifurcation point.
>> hopf=p_tohopf (branchl.point(5));
We correct the Hopf-like point using appropriate method parameters and one free parameter (ps).

>> method=df_mthod(’hopf’) ;
>> [hopf,success]=p_correc(hopf,5, [],method.point)
hopf = kind: ’hopf’
parameter: [11x1 double]
x: [5x1 double]
v: [5x1 doublel
omega:0.5497
success = 1

In order to follow a branch of Hopf-like bifurcations in the two parameter space (ps2,pg) we again need
two starting points. We use the Hopf-like point already found and one perturbed in pg and corrected in
P2, to start on a branch of Hopf-like bifurcations.

>> branch2=df_brnch([2 9],’hopf’);

>> branch2.parameter.min_bound(1:2,:)=[[2 -1]> [9 -1]1°’]’;
>> branch2.parameter.max_bound(1:2,:)=[[2 10]> [9 10]°’]’;
>> branch2.parameter.max_step(1:2,:)=[[2 1]’ [9 1]°]’;

>> branch2.point=hopf;

>> hopf.parameter(9)=hopf.parameter(9)+0.1;

>> [hopf,success]=p_correc(hopf,2, [],method.point);

>> branch2.point(2)=hopf;

We continue the branch, see figure 14.

>> figure(3); clf;
>> [branch2,s,f,r]=br_contn(branch2,14);

Py

0 . . . .
0.038 0.042 0.046 0.05 0.054

Figure 14: Predictions and corrections in the (p2,po)-plane after computation of a branch of Hopf-like bifurca-
tions.

We use the first Hopf-like point in the branch2 to construct a small amplitude (1e—1) periodic solution
on an equidistant mesh of 15 intervals with piecewise polynomial degree 3.

34



>> hopf=branch2.point(1);
>> intervals=15;

>>
>>

>>
>>

degree=3;
[psol,stepcond]=p_topsol(hopf,le-1,degree,intervals);

The steplength condition returned ensures the branch switch from the Hopf to the periodic solution as
it avoids convergence of the amplitude to zero during corrections. Due to the presence of the steplength
condition we also need to free one parameter, here 7; (parameter 10).

method=df_mthod(’psol’);
[psol,success]=p_correc(psol,10,stepcond,method.point)

psol = kind: ’psol’

parameter: [1x11 double]

mesh: [1x46 double]
degree: 3
profile: [5x46 doublel
period: 11.4306

success = 1

m

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

Figure 15: Left: Branch of periodic solutions emanating from a Hopf-like point. o - the last computed point in
the branch (corresponding to 73(tz) = 0). Right: 73(¢/T") at the last computed point. Dots indicate representation

The result, along with a degenerate periodic solution with amplitude zero, is used to start on the
emanating branch of periodic solutions, see figure 15 (left). We use adaptive mesh selection. Note that
in the case of sd-DDEs, min_bound for a constant delay being a continuation parameter should be defined

the same way as for other continuation parameters.

branch3=df_brnch(10, psol’);
branch3.parameter.min_bound(1,:)=[10 0];
branch3.parameter.max_bound(1,:)=[10 10];
branch3.parameter.max_step(1,:)=[10 0.01];
deg_psol=p_topsol(first_hopf,0,degree,intervals);
branch3.point=deg_psol;

branch3.point(2)=psol;

figure(4); clf;
[branch3,s,f,r]=br_contn(branch3,10);
point=branch3.point (end);
p-ampl=max(point.profile(1,:))-min(point.profile(1,:));
plot(point.parameter(10),p_ampl,’o0’);
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points of the mesh used.

As in the case of computing branchl, we have a warning,

BR_CONTN warning: delay number_3 becomes negative.

35




indicating that the delay function 73(¢) became negative at some point(s) on the period interval of the
computed solution during continuation of the branch. The periodic solution with 73(¢) negative is not
accepted as the branch point. Instead, the following algorithm is executed. First, using the solution with
73(t) negative and a mesh refinement, a time point tz is computed at which 75(t) reaches its minimum.
Then, a periodic solution is computed under the conditions,

ms(tz) =0, drs(tz)/dt = 0. (11)

We compute and plot the delay 73(¢) on the mesh of representation points at the last accepted point in
the branch, see figure 15 (right).

>> tau_eva=p_tau(branch3.point(end),3);

>> figure(5); clf;

>> plot(branch3.point(end) .mesh,tau_eva);

>> hold;

>> plot(branch3.point(end) .mesh,tau_eva,’.’);
>> min(tau_eva)

ans = 9.6557e-04

The last result says that 75(t) has its minimal value at a point between two representation points.
Now we use the last Hopf-like point in the branch2 to compute a branch of periodic solutions as a
function of the parameter p;, see figure 16 (left).

>> hopf=branch2.point(end) ;
>> intervals=15;
>> degree=3;
>> [psol,stepcond]=p_topsol(hopf,le-1,degree,intervals);
>> method=df_mthod(’psol’);
>> [psol,success]=p_correc(psol,l,stepcond,method.point)
psol = kind: ’psol’
parameter: [1x11 double]
mesh: [1x46 double]
degree: 3
profile: [5x46 double]
period: 12.6610
success = 1

>> branch4=df_brnch(1, ’psol’);

>> branch4.parameter.min_bound(1,:)=[1 0];

>> branch4.parameter.max_bound(1,:)=[1 10];

>> branch4.parameter.max_step(1,:)=[1 0.01];
>> deg_psol=p_topsol(hopf,0,degree,intervals);
>> branch4.point=deg_psol;

>> branch4.point(2)=psol;

>> figure(5); clf;

>> [branch4,s,f,r]l=br_contn(branch4,10);

>> point=branch4.point (end);

>> p_ampl=max(point.profile(1,:))-min(point.profile(1,:));
>> plot(point.parameter(1l),p_ampl,’0’);

We again have a warning,

BR_CONTN warning: delay number_6 becomes negative.

We plot the delay 74(t) (recall that 74(t) = z5(¢)) on the mesh of representation points at the last
accepted point in the branch, see figure 16 (right).
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Figure 16: Left: Branch of periodic solutions emanating from a Hopf-like point. o - the last computed point in
the branch (corresponding to 76(tz) = 0). Right: 76(¢/T") at the last computed point. Dots indicate representation
points of the mesh used.

>> psol=branch4.point(end) ;

>> figure(7); clf;

>> plot(psol.mesh,psol.profile(5,:));

>> hold;

>> plot(psol.mesh,psol.profile(5,:),”.%);
>> min(psol.profile(5,:))

ans = -5.8556e-31

The minimal value of the delay 75 is a negative value. The stability of the corresponding solution
is computed if this value is larger than the one defined in method.stability.delay_accuracy (see table 7).
The result of computing and plotting stability (Floquet multipliers) of this periodic solution is shown in
figure 17. The solution is unstable.

>> psol.stability=p_stabil(psol,method.stability);
>> psol.stability.mu
ans = 1.3253
1.0000
0.0959
figure(8); clf;
p_splot(psol);
axis image;

6.3 Connecting orbits demo: analysis of branches of homoclinic orbits

This demo describes how to use DDE-BIFTOOL to perform a bifurcation analysis on equations with
several constant delays which exhibit connecting orbits. System definitions files (see section 4.1) can be
found in the directory HOM_DEMO. The commands used in this demo are listed in the file hom_demo.m. As
mentioned at the end of the first demo, one can compute connecting orbits using a direct method, when
the delays are not state-dependent In order to show the use of this method, we will now investigate a
model of neural activity, described in [19].

. 1
z1(t) = —=zi(t)+ Q11m —quaza(t—7)+ e
1 (12)

z2(t) = —=za(t) + Q21m + ez

37



>>
>>
>>
>>
>>
>>
>>
>>
>>

Figure 17: Floquet multipliers for the periodic solution at the last computed point in the branch4.

The focus will be on the analysis of the homoclinic orbits in this system. Therefore, we will not
repeat the standard bifurcation analysis. The reader is advised to run through section 6.1 to become
more familiar with the analysis. For the purpose of this demo, we start at a point where branches of Hopf
points and fold points have already been computed. Figure 18 shows branches of fold and Hopf points,
plotted with respect to the two free parameters of the system, g2 and e;. To obtain this figure, we first
load the precomputed (and saved) branches from the file hcl demo.mat. We choose to plot the branches
with respect to their default measure.

sys_init;

load hom_demo;

figure(1);

[xm,ym]=df _measr(0,fold_branch);
br_plot(fold_branch,xm,ym,’:’);
axis([1.28 1.62 -1.36 -1.24]);
hold on;
br_plot(hopfl_branch,xm,ym,’-.");
br_plot (hopf2_branch,xm,ym,’-.");

-1.24

-1.26¢

-1.28r

-1.3¢

-1.32r

-1.34¢

-1.36

13

1.35 14 145 g 15 1.55 16
12

Figure 18: Branches of fold (’-+-’) and Hopf (’—-') points of system (12).

We then select a Hopf point somewhere on the lower branch, and start the branch of periodic solutions
that emanates from it. For this purpose, we create a branch of periodic solutions with two points. We
choose to plot the period versus the free parameter while continuing, in order to visualize the approaching
of the homoclinic orbit, see Figure 19.
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>> hopf=hopfl
>> [psol,stp]

psol = kind:’
parameter:
degree:
profile:
period:
stp = kind:
parameter:
mesh:
degree:
profile:
period:

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

[psol,s]l=p
[psol,stp]
[psol,s]l=p

figure(2);
[xm,ym]=df

ym.col=1;
ym.row=1;

[psol_bran

Figure 19: Period of the periodic orbits of system (12), as a function of the parameter gi2.

It is shown in Figure 20 that the last point of this branch of periodic solutions is close to a homoclinic

orbit.

_branch.point(27);
=p_topsol (hopf,le-2,3,27)
psol’

[2.6000e+00 1.3428e+00 1 -1.3398e+00 -5.0000e-01 1]
3

[2x82 double]

5.5271e+01

’psol’

[000O0O0O0]

[1x82 double]

3

[2x82 double]

0

mpsol=df_mthod(’psol’);

_correc(psol,4,stp,mpsol.point);

psol_branch=df_brnch(4,’psol’);
psol_branch.point=psol;

=p_topsol (hopf,2e-2,3,27);
_correc(psol,4,stp,mpsol.point);

psol_branch.point(2)=psol;

clf;
_measr(0,psol_branch);

ym.field=’period’;

psol_branch.method.continuation.plot_measure.x=xm;
psol_branch.method.continuation.plot_measure.y=ym;

ch,s,r,f]=br_contn(psol_branch,20) ;

2201
2001
180r
160r
140r
120r
100r

80r

60

40
-1.34

-1.339
q12

>> figure(3);clf;
>> psol=psol_branch.point(end)

psol

kind:
parameter:
mesh:
degree:
profile:
period:

’psol’

[2.6000e+00 1.3428e+00 1 -1.3392e+00 -5.0000e-01 1]
[1x82 double]

3

[2x82 double]

2.1469e+02
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>> p_pplot(psol);

o

Figure 20: Profile of a periodic solution with large period of system (12), close to a homoclinic orbit

We convert this point to a point of homoclinic type. This yields an (uncorrected) initial homoclinic
profile. Note that the steady state is also uncorrected.

>> hcli=p_tohcli(psol)

hcli = kind:
parameter:
mesh:
degree:
profile:
period:
x1:

x2:
lambda_v:
lambda_w:
v:

w:

alpha:
epsilon:

’hcli’

[2.6000e+00 1.3428e+00 1 -1.3392e+00 -5.0000e-01 1]

[1x79 doublel
3

[2x79 double]
1.8216e+02
[2x1 doublel
[2x1 double]
1.6906e-01
1.6906e-01
[2x1 double]
[2x1 doublel
-1
5.2583e-06

We correct this point, after remeshing it on an adaptive mesh with 50 intervals. We plot this point
before and after correction, see Figure 21.

>> figure(4);clf;
>> p_pplot(hcli);
>> mhcli=df_mthod(*hcli’);
>> [hcli,s]=p_correc(hcli,4,[],mhcli.point);
>> hcli=p_remesh(hcli,3,50);
>> [hcli,s]=p_correc(hcli,4,[],mhcli.point)

hcli = kind:
parameter:
mesh:

degree:
profile:
period:

x1:

x2:

’hcli’

[2.6000e+00 1.3428e+00 1 -1.3392e+00 -5.0000e-01 1]

[1x151 double]
3

[2x151 doublel]
1.8806e+02
[2x1 double]
[2x1 double]
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lambda_v: 1.6905e-01
lambda_w: 1.6905e-01
v: [2x1 double]
w: [2x1 double]
alpha: -1
epsilon: 5.2583e-06
s =1
>> figure(5);clf;
>> p_pplot(hcli);

Figure 21: Left: initial profile (before correction) of a homoclinic orbit of system (12). Right: remeshed and
corrected profile of the same homoclinic orbit.

We slightly change parameter values of this homoclinic orbit, and compute a second homoclinic orbit.
With these two homoclinic solutions, we then create a branch, which is continued in two free parameters
(e1 and q12).

>> hcli_br=df_brnch([2 4],’hcli’);
>> hcli_br.point=hcli;
>> hcli.parameter(2)=hcli.parameter(2)+6e-3;
>> [hcli,s]=p_correc(hcli,4,[],mhcli.point);
>> hcli_br.point(2)=hcli;
>> figure(1);
>> [hcli_br,s,r,f]l=br_contn(hcli_br,85)
hcli_br = method: [1x1 struct]

parameter: [1x1 struct]

point: [1x71 struct]

s =70
r = 16
f=0

>> hcli_br=br_rvers(hcli_br);
>> [hcli_br,s,r,fl=br_contn(hcli_br,10)
hcli_br = method: [1x1 struct]
parameter: [1x1 struct]
point: [1x81 struct]

s = 11
r=20
f=0
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We do exactly the same for the second branch of Hopf points. Since the bifurcation diagram of this
system is completely symmetric, we also approach homoclinic orbits when we jump onto the branches of
periodic solutions emanating from those Hopf points. The commands are the same as in the above case,
so we simply list them, without further explanation. We also do not plot the branch of periodic solutions
while continuing.

>> hopf=hopf2_branch.point(27);

>> [psol,stpl=p_topsol (hopf,1e-2,3,27);

>> mpsol=df_mthod(’psol’);

>> [psol,s]=p_correc(psol,4,stp,mpsol.point);

>> psol_branch=df_brnch(4,’psol’);

>> psol_branch.point=psol;

>> [psol,stpl=p_topsol(hopf,2e-2,3,27);

>> [psol,s]=p_correc(psol,4,stp,mpsol.point);

>> psol_branch.point(2)=psol;

>> psol_branch.method.continuation.plot=0;

>> psol_branch.method.continuation.plot_progress=0;
>> [psol_branch,s,r,f]=br_contn(psol_branch,20);

>> psol=psol_branch.point(end-1);

>> hcli=p_tohcli(psol);

>> mhcli=df_mthod(’hcli’);

>> [hcli,s]=p_correc(hcli,4,[],mhcli.point);
>> hcli=p_remesh(hcli,3,50);

>> [hcli,s]=p_correc(hcli,4,[],mhcli.point);

>> hcli2_br=df_brnch([2 4],’hcli’);
>> hcli2_br.point=hcli;
>> hcli.parameter(4)=hcli.parameter(4)+le-3;
>> [hcli,s]=p_correc(hcli,2,[],mhcli.point);
>> hcli2_br.point(2)=hcli;
>> figure(1);
>> hcli2_br=br_rvers(hcli2_br);
>> [hcli2_br,s,r,fl=br_contn(hcli2_br,85)
hcli2_br = method: [1x1 struct]

parameter: [1x1 struct]

point: [1x70 struct]

s = 69
r = 17
f=0

>> hcli2_br=br_rvers(hcli2_br);
>> [hecli2_br,s,r,f]l=br_contn(hcli2_br,10)
hcli2_br = method: [1x1 struct]
parameter: [1x1 struct]
point: [1x80 struct]

s = 11
r=20
f=0

The resulting branches of homoclinic solutions are shown in Figure 22. They both end at the branch
of fold points, as the stability of the steady state changes at this point. At e; = —1.3, a double homoclinic
orbit exists. This is easily shown as follows. First, we look for the point on the branch where e; = —1.3.

>> figure(6);

>> [xm,ym]=df_measr(0,hcli_br);
>> br_plot(hcli2_br, [],ym);

>> hold on;
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Figure 22: Bifurcation diagram of system (12), like in Figure 18, now also showing two branches of homoclinic
solutions (predictions and corrections).

>> plot([0 110],[-1.3 -1.3],°r-.?);
>> axis([22 40 -1.304 -1.294]);

As Figure 23 shows, this is the 30th point along the lower branch and the 26th along the upper branch.
The double homoclinic orbit is plotted in Figure 24.

-1.294
-1.295-
-1.296 -
-1.2971
-1.298
-1.299

-13
-1.3011

-1.302F

-1303F

-1.304
22

Figure 23: Evolution of parameter e; vs. point number along the lower (solid) and upper (dashed) branches of
homoclinic orbits.

>> figure(7);

>> plot(hcli2_br.point(30).profile(1,:),hcli2_br.point(30).profile(2,:));
>> hold on;

>> plot(hcli_br.point(26).profile(1,:),hcli_br.point(26).profile(2,:));

Both branches of homoclinic orbits emanate from a Takens-Bogdanov bifurcation. As the amplitude
of the homoclinic orbits along the branch goes to zero, the steady state approaches a Takens-Bogdanov-
point. To illustrate this, Figure 25 shows the stability information of the last computed point on the
branch. We see two small eigenvalues, but we are still at some distance from the Takens-Bogdanov point.

>> figure(8);

>> stst=p_tostst(hcli_br.point(end));

>> stst=stst(1);

>> mstst=df_mthod(’stst’);

>> stst.stability=p_stabil(stst,mstst.stability);
>> p_splot(stst);
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Figure 25: Dominant eigenvalues of the saddle of the last point on the first branch of homoclinic orbits, near a
Takens-Bogdanov bifurcation.

In order to be able to continue the branch of homoclinic orbits closer to this Takens-Bogdanov point,
we form a new branch, starting from the last point (with the profile remeshed on a finer mesh), and
using a much smaller step size. If we would not do this, the steplength selection strategy (see section
9.3) will take too large steps, resulting in a turnaround and a backward computation of the same branch.
We continue this new branch. During this continuation, it is possible that Matlab displays a warning
concerning the near-singular character of the system being solved. This is an indication that we are close
to the Takens-Bogdanov singularity. We then look again to the dominant eigenvalues of the last point,
see Figure 26. It is clear that this point is much closer to the Takens-Bogdanov point.

>> hcli=hcli_br.point(end) ;

>> hcli=p_remesh(hcli,3,70);

>> [hcli,s]=p_correc(hcli,4,[],mhcli.point);

>> to_tb_branch=df_brnch([2 4],’hcli’);

>> to_tb_branch.point=hcli;

>> hcli.parameter(2)=hcli.parameter(2)-le-4;

>> hcli=p_remesh(hcli,3,70);

>> [hcli,s]=p_correc(hcli,4,[],mhcli.point);

>> to_tb_branch.point(2)=hcli;

>> to_tb_branch.method.continuation.plot=0;

>> to_tb_branch.method.continuation.plot_progress=0;
>> [to_tb_branch,s,r,f]l=br_contn(to_tb_branch,40);

>> figure(9);
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Figure 26: Dominant eigenvalues of the saddle of the last point on the more accurate branch of homoclinic orbits,
near a Takens-Bogdanov bifurcation.

>> stst=p_tostst(to_tb_branch.point(end));

>> stst=stst(1);

>> mstst=df_mthod(’stst’);

>> stst.stability=p_stabil(stst,mstst.stability);
>> p_splot(stst);

7 Point manipulation

Several of the point manipulation routines have already been used in the previous section. Here we outline
their functionality and input and output parameters. A brief description of parameters is also contained
within the source code and can be obtained in Matlab using the help command. Note that a vector of
zero elements corresponds to an empty matrix (written in Matlab as []).

function [point,success]=p_correc(point0,free_par,step_cnd,method,adapt,previous,d_nr,tz)
Function p_correc corrects a given point.

e point0: initial, approximate solution point as a point structure (see table 3).

e free_par: a vector of zero, one or more free parameters.

e step_cnd: a vector of zero, one or more linear steplength conditions. Each steplength condition is
assumed fulfilled for the initial point and hence only the coefficients of the condition with respect
to all unknowns are needed. These coefficients are passed as a point structure (see table 3). This
means that, for, e.g., a steady state solution point p the z-th steplength condition reads

step_cnd(i).parameter(p.parameter — point0.parameter)? + step_cnd(i).xT(p.x — point0.x) = 0,
and similar formulas hold for the other solution types.
e method: a point method structure containing the method parameters (see table 5).

e adapt (optional): if zero or absent, do not use adaptive mesh selection (for periodic solutions); if
one, correct, use adaptive mesh selection and recorrect.

e previous (optional): for periodic solutions and connecting orbits: if present and not empty, minimize
phase shift with respect to this point. Note that this argument should always be present when
correcting solutions for sd-DDEs, since in that case the argument d_nr always needs to be specified.
In the case of steady state, fold or Hopf-like points, one can just enter an empty vector.
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e d_nr: (only for equations with state-dependent delays) if present, number of a negative state-
dependent delay.

e tz: (omly for equations with state-dependent delays and periodic solutions) if present, a periodic
solution is computed such that 7(tz) = 0 and d7(tz)/dt = 0, where 7T is a negative state-dependent
delay with number d_nr. For steady state solutions, a solution corresponding to 7 = 0 is computed.

e point: the result of correcting point0 using the method parameters, steplength condition(s) and free
parameter(s) given. Stability information present in point0, is not passed onto point. If divergence
occurred, point contains the final iterate.

e success: nonzero if convergence was detected (that is, if the requested accuracy has been reached).
function stability=p_stabil(point,method)

Function p_stabil computes stability of a given point by approximating its stability-determining eigen-
values.

e point: a solution point as a point structure (see table 3).
e method: a stability method structure (see table 7).

e stability: the computed stability of the point through a collection of approximated eigenvalues (as
a structure described in table 4). For steady state, fold and Hopf points both approximations and
corrections to the rightmost roots of the characteristic equation are provided. For periodic solutions
approximations to the dominant Floquet multipliers are computed.

function p_splot(point)

Function p_splot plots the characteristic roots respectively Floquet multipliers of a given point (which
should contain nonempty stability information). Characteristic root approximations and Floquet multi-
pliers are plotted using ’x’, corrected characteristic roots using ’x’.

function stst_point=p_tostst(point)

function fold_point=p_tofold(point)

function hopf_point=p_tohopf (point)

function [psol_point,stepcond]=p_topsol(point,ampl,degree,nr_int)
function [psol_point,stepcond]=p_topsol(point,ampl,coll_points)
function [psol_point,stepcond]=p_topsol(hcli_point)

function hcli_point=p_tohcli(point)

The functions p_tostst, p_-tofold, p_tohopf, p-topsol and p_tohcli convert a given point into an
approximation of a new point of the kind indicated by their name. They are used to switch from a steady
state point to a Hopf point or fold point, from a Hopf point to a fold point or vice versa, from a (nearby
double) Hopf point to the second Hopf point, from a Hopf point to the emanating branch of periodic
solutions, from a periodic solution near a period doubling bifurcation to the period-doubled branch and
from a periodic solution near a homoclinic orbit to this homoclinic orbit. The function p_tostst is
also capable of extracting the initial and final steady states from a connecting orbit. When starting a
periodic solution branch from a Hopf point, an equidistant mesh is produced with nr_int intervals and
piecewise polynomials of degree col_degree and a steplength condition stepcond is returned which should
be used (together with a corresponding free parameter) in correcting the returned point. This steplength
condition (normally) prevents convergence back to the steady state solution (as a degenerate periodic
solution of amplitude zero). When jumping to a period-doubled branch, a period-doubled solution profile
is produced using coll_points for collocation points and a mesh which is the (scaled) concatenation of two
times the original mesh. A steplength condition is returned which (normally) prevents convergence back
to the single period branch. When jumping from a homoclinic orbit to a periodic solution, the steplength
condition prevents divergence, by keeping the period fixed. When extracting the steady states from a
connecting orbit, an array is returned in which the first element is the initial steady state, and the second
element is the final steady state.
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function rm_point=p_remesh(point,new_degree,new_mesh)

Function p_remesh changes the piecewise polynomial representation of a given periodic solution point.
e point: initial point, containing old mesh, old degree and old profile.
e new_degree: new degree of piecewise polynomials.

e new_mesh: mesh for new representation of periodic solution profile either as a (non-scalar) row
vector of mesh points (both interval and representation points, with the latter chosen equidistant
between the former, see section 5) or as the new number of intervals. In the latter case the new
mesh is adaptively chosen based on the old profile.

e rm_point: returned point containing new degree, new mesh and an appropriately interpolated (but
uncorrected!) profile.

function tau_eva=p_tau(point,d_nr,t)

Function p_tau evaluates state-dependent delay(s) with number(s) d_nr.
e point: a solution point as a point structure.
e d_nr: number(s) of delay(s) (in increasing order) to evaluate.

¢ t (absent for steady state solutions and optional for periodic solutions): mesh (a time point or a
number of time points). If present, delay function(s) are evaluated at the points of t, otherwise at
the point.mesh (if point.mesh is empty, an equidistant mesh is used).

e tau_eva: evaluated values of delays (at t).

The following routines are used within branch routines but are less interesting for the general user.
function sc_measure=p_measur(p,measure)
Function p_measur computes the (scalar) measure measure of the given point p (see table 10).
function p=p_axpy(a,x,y)

Function p_axpy performs the axpy-operation on points. That is, it computes p = ax + y where a is a
scalar, and x and y are two point structures of the same type. p is the result of the operation on all
appropriate fields of the given points. If x and y are solutions on different meshes, interpolation is used
and the result is obtained on the mesh of x. Stability information, if present, is not passed onto p.

function n=p_norm(point)
Function p_norm computes some norm of a given point structure.
function normalized_p=p_normlz(p)

Function p_-normlz performs some normalization on the given point structure p. In particular, fold, Hopf
and connecting orbit determining eigenvectors are scaled to norm 1.

function [delay_nr,tz]=p_tsgn(point)
Function p_tsgn detects a first negative state-dependent delay.
e point: a solution point as a point structure.
e delay_nr: number of the first (and only the first !) detected negative delay .

e tz (only for periodic solutions): tz € [0,1] is a (time) point such that the delay function 7(¢) has its
minimal value near this point. To compute tz, a refined mesh is used in the neighbourhood of the
minimum of the delay function. This point is later used to compute a periodic solution such that
7(tz) = 0 and dr(tz)/dt = 0.
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8 Branch manipulation

Usage of most of the branch manipulation routines has already been illustrated in section 6. Here we
outline their functionality and input and output variables. As for all routines in the package, a brief
description of the parameters is also contained within the source code and can be obtained in Matlab
using the help command.

function [c_branch,succ,fail,rjct]=br_contn(branch,max_tries)
The function br_contn computes (or rather extends) a branch of solution points.

e branch: initial branch containing at least two points and computation, stability and continuation
method parameter structures and a free parameter structure as described in table 8.

e max_tries: maximum number of corrections allowed.

e c_branch: the branch returned contains a copy of the initial branch plus the extra points computed
(starting from the end of the point array in the initial branch).

e succ: number of successful corrections.

e fail: number of failed corrections.

rjict: number of rejected points.

Note also that successfully computed points are normalized using the procedure p_normlz (see section

7).
function br_plot (branch,x_measure, y_measure, line_type)
Function br_plot plots a branch (in the current figure).

e branch: branch to plot (see table 8).

e x_measure: (scalar) measure to produce plotting quantities for the x-axis (see table 10). If empty,
the point number is used to plot against.

e y_measure: (scalar) measure to produce plotting quantities for the y-axis (see table 10). If empty,
the point number is used to plot against.

e line_type (optional): line type to plot with.

function [x_measure,y_measure]=br_dfmsr(stability,branch)
function [x_measure,y_measurel=br_dfmsr(stability,par_list,kind)

Function br_measur returns default measures for plotting.
e stability: nonzero if measures are required to plot stability information.

e branch: a given branch (see table 8) for which default measures should be constructed.

par_list: a list of parameters for which default measures should be constructed.

kind: a point type for which default measures should be constructed.

e x_measure: default scalar measure to use for the x-axis. x_measure is chosen as the first parameter
which varies along the branch or as the first parameter of par_list.
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e y_measure: default scalar measure to use for the y-axis. If stability is zero, the following choices
are made for y_measure. For steady state solutions, the first component which varies along the
branch; for fold and Hopf bifurcations the first parameter value (different from the one used for
x_measure) which varies along the branch. For periodic solutions, the amplitude of the fist varying
component. If stability is nonzero, y_measure selects the real part of the characteristic roots (for
steady state solutions, fold and Hopf bifurcations) or the modulus of the Floquet multipliers (for
periodic solutions).

function st_branch=br_stab1(branch,skip,recompute)
Function br_stabl computes stability information along a previously computed branch.
e branch: given branch (see table 8).

e skip: number of points to skip between stability computations. That is, computations are performed
and stability field is filled in every skip + 1-th point.

e recompute: if zero, do not recompute stability information present. If nonzero, discard and recom-
pute old stability information present (for points which were not skipped).

e st_branch: a copy of the given branch whose (non-skipped) points contain a non-empty stability
field with computed stability information (using the method parameters contained in branch).

function t_branch=br_rvers(branch)

To continue a branch in the other direction (from the beginning instead of from the end of its point
array), br_rvers reverses the order of the points in the branches point array.

function recmp_branch=br_recmp(branch,point_nu.mbers)
Function br_recmp recomputes part of a branch.
e branch: initial branch (see table 8).

e point_numbers (optional): vector of one or more point numbers which should be recomputed. Empty
or absent if the complete point array should be recomputed.

e recmp_branch: a copy of the initial branch with points who were (successfully) recomputed replaced.
If a recomputation fails, a warning message is given and the old value remains present.

This routine can, e.g., be used after changing some method parameters within the branch method struc-
tures.

function [col,lengths]=br_measr(branch,measure)
Function br_selec computes a measure along a branch.
e branch: given branch (see table 8).
e measure: given measure (see table 10).

e col: the collection of measures taken along the branch (over its point array) ordered row-wise. Thus,
a column vector is returned if measure is scalar. Otherwise, col contains a matrix.

e lengths: vector of lengths of the measures along the branch. If the measure is not scalar, it is
possible that its length varies along the branch (e.g. when plotting rightmost characteristic roots).
In this situation col is a matrix with number of columns equal to the maximal length of the measures
encountered. Extra elements of col are automatically put to zero by Matlab. lengths can then be
used to prevent plotting of extra zeros.
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9 Numerical methods

This section contains short descriptions of the numerical methods for DDEs and the method parameters
used in DDE-BIFTOOL. More details on the methods can be found in the articles [33, 15, 14, 13, 16, 35]
or in [12]. For details on applying these methods to bifurcation analysis of sd-DDEs see [32].

9.1 Determining systems

Below we state the determining systems used to compute and continue steady state solutions, steady
state fold and Hopf bifurcations, periodic solutions and connecting orbits of systems of delay differential
equations.

For each determining system we mention the number of free parameters necessary to obtain (gener-
ically) isolated solutions. In the package, the necessary number of free parameters is further raised by
the number of steplength conditions plus the number of extra conditions used. This choice ensures the
use of square Jacobians during Newton iteration. If, on the other hand, the number of free paramet-
ers, steplength conditions and extra conditions are not appropriately matched Newton iteration solves
systems with a non-square Jacobian (for which Matlab uses an over- or under-determined least squares
procedure). If possible, it is better to avoid such a situation.

Steady state solutions A steady state solution z* € R™ is determined from the following n X n-
dimensional determining system with no free parameters.

flz*,z*,... ,z*,n) =0. (13)

Steady state fold bifurcations Fold bifurcations, (z* € R™,v € R") are determined from the follow-
ing 2n + 1 X 2n + 1-dimensional determining system using one free parameter.

f(x*Jl‘*J"' 7$*7n):0

A(a*,m,0)0 = 0 (14)
cTv—1=0

Here, ¢cTv — 1 = 0 presents a suitable normalization of v. The vector ¢ € R™ is chosen as ¢ =

v(o)/(v(O)TU(O)), where v(°) is the initial value of v.

Steady state Hopf bifurcations Hopf bifurcations, (z* € R*,v € C",w € R) are determined from
the following 2n + 1 X 2n + 2-dimensional partially complex (and by this fact more properly called a
3n + 2 x 3n + 2-dimensional) determining system using one free parameter.

f(l'*’w*,"'7$*7/rl):0
Az*,m,iw)v =0 (15)
Hv—-1=0

Periodic solutions Periodic solutions are found as solutions (u(s), s € [0,1];T € R) of the following
(n(Ld+ 1)+ 1) x (n(Ld + 1) + 1)-dimensional system with no free parameters.
(ciy) = Tf(uleij),ul(ci; — F)mod1),...,u(ci; — ) mod1),n) =0,
i=0,...,L=1,j=1,....d
u(0) = u(1),
p(u) = 0.

Here p represents the integral phase condition

/0 u(s)Au(s)ds = 0, (17)
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where u is the current solution and Aw its correction. The collocation points are obtained as
Ci,j :ti+Cj(ti+1 —ti), ’L:O, ,L—]., ]: 1, ,d,

from the interval points ¢;, 2 =0,... , L —1 and the collocation parameters c;, 7 = 1,... ,d. The profile u
is discretized as a piecewise polynomial as explained in section 5. This representation has a discontinuous
derivative at the interval points. If ¢; ; coincides with ¢; the right derivative is taken in (16), if it coincides
with #;4; the left derivative is taken. In other words the derivative taken at c; ; is that of u restricted to

[ti, tig1]-

Connecting orbits Connecting orbits can be found as solutions of the following determining system

with st — s~ + 1 free parameters, where st and s~ denote the number of unstable eigenvalues of z7 and

x~ respectively.

( 1.1‘(01'73') = Tf(u(ciyj%u(ciyj - %)’ s au(ci,j - TJT )a 77) =0,
(:=0,...,L-1, j=1,...,d)

u(E):m +eX_ apog e TE €<o0
f@”,z7,m) =0
Pt n) = 0

A(z=, A, ,n)v, =0
cka_ —1=0

u . . (k=1,...,s7) 8
4 AT (@t N mwf =0 (18)
diwt —1=0
(k=1,...,s")
H . .
wﬁH(u(l) —zt)+ Zil giwy e‘kz(el"'T)Al(x"',n) (u(1+ GT) —zt)=0
(k=1,...,s")
u(0) =z~ +€Ef-;1 Ry
Zf:l |o£]<?|2 =1
[ p(u,m) =0

We choose the same phase condition as for periodic solutions and similar normalization of v;, and w+ k%
as in (15).

Point method parameters The point method parameters (see table 5) specify the following options.

e newton_max_iterations: maximum number of Newton iterations.

e newton_nmon_iterations: during a first phase of newton_nmon_iterations + 1 Newton iterations the
norm of the residual is allowed to increase. After these iterations, corrections are halted upon
residual increase.

e halting_accuracy: corrections are halted when the norm of the last computed residual is less than or
equal to halting_accuracy is reached.

e minimal_accuracy: a corrected point is accepted when the norm of the last computed residual is less
than or equal to minimal_accuracy.

e extra_condition: this parameter is nonzero when extra conditions are provided in a routine sys_cond .m
which should border the determining systems during corrections. The routine accepts the current
point as input and produces an array of condition residuals and corresponding condition derivatives
(as an array of point structures) as illustrated below (§9.2).
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e print_residual_info: when nonzero, the Newton iteration number and resulting norm of the residual
are printed to the screen during corrections.

For periodic solutions and connecting orbits, the extra mesh parameters (see table 6) provide the following
information.

e phase_condition: when nonzero the integral phase condition (17) is used.

o collocation_parameters: this parameter contains user given collocation parameters. When empty,
Gauss-Legendre collocation points are chosen.

e adapt_mesh_before_correct: before correction and if the mesh inside the point is nonempty, adapt
the mesh every adapt_mesh_before_correct points. E.g.: if zero, do not adapt; if one, adapt every
point; if two adapt the points with odd point number.

e adapt_mesh_after_correct: similar to adapt_mesh_before_correct but adapt mesh after successful cor-
rections and correct again.

9.2 Extra conditions

When correcting a point or computing a branch, it is possible to add one or more extra conditions
and corresponding free parameters to the determining systems presented earlier. These extra conditions
should be implemented using a file sys_cond.m in the directory of the system definition and setting the
method parameter extra_condition to 1 (cf. table 5). The function sys_cond accepts the current point as
input and produces a residual and corresponding condition derivatives (as a point structure) per extra
condition.

As an example, suppose we want to compute a branch of periodic solutions of system (9) subject to
the following extra conditions

{ T = 200,

2 2 _
ajy +a3 =1,

that is, we wish to continue a branch with fixed period T' = 200 and parameter dependence a2, +a3, = 1.
The following routine implements these conditions by evaluating and returning each residual for the given
point and the derivatives of the conditions w.r.t. all unknowns (that is, w.r.t. to all the components of
the point structure).

function [resi,condil=sys_cond(point)
% kappa beta al2 a2l taul tau2 tau_s

if point.kind==’psol’
% fix period at 200:
resi(1)=point.period-200;
% derivative of first condition wrt unknowns:
condi(1)=p_axpy(0,point, [1);
condi(1).period=1;
% parameter condition:
resi(2)=point.parameter(3) “2+point.parameter(4)~2-1;
% derivative of second condition wrt unknowns:
condi(2)=p_axpy(0,point, [1);
condi(2) .parameter(3)=2*point.parameter(3);
condi(2) .parameter(4)=2%point.parameter(4);
else
error(’SYS_COND: point is not psol.’);
end;

return;
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9.3 Continuation

During continuation, a branch is extended by a combination of predictions and corrections. A new point
is predicted based on previously computed points using secant prediction over an appropriate steplength.
The prediction is then corrected using the determining systems (13), (14), (15), (16) or (18) bordered
with a steplength condition which requires orthogonality of the correction to the secant vector. Hence
one extra free parameter is necessary compared to the numbers mentioned in the previous section.

The following continuation and steplength determination strategy is used. If the last point was
successfully computed, the steplength is multiplied with a given, constant factor greater than 1. If
corrections diverged or if the corrected point was rejected because its accuracy was not acceptable, a new
point is predicted, using linear interpolation, halfway between the last two successfully computed branch
points. If the correction of this point succeeds, it is inserted in the point array of the branch (before the
previously last computed point). If the correction of the interpolated point fails again, the last successfully
computed branch point is rejected (for fear of branch switch) and the interpolation procedure is repeated
between the (new) last two branch points. Hence, if, after a failure, the interpolation procedure succeeds,
the steplength is approximately divided by a factor two. Test results indicate that this procedure is quite
effective and proves an efficient alternative to using only (secant) extrapolation with steplength control.
The reason for this is mainly that the secant extrapolation direction is not influenced by halving the
steplength but it is by inserting a newly computed point in between the last two computed points.

The continuation method parameters (see table 9) have the following meaning.

e plot: if nonzero, plot predictions and corrections during continuation.

e prediction: this parameter should be 1, indicating that secant prediction is used (being currently
the only alternative).

o steplength_growth_factor: grow the steplength with this factor in every step except during interpol-
ation.

e plot_progress: if nonzero, plotting is visible during continuation process. If zero, only the final result
is drawn.

e plot_measure: if empty use default measures to plot. Otherwise plot_measure contains two fields, 'x’
and ’y’, which contain measures (see table 10) for use in plotting during continuation.

e halt_before_reject: If this parameter is nonzero, continuation is halted whenever (and instead of)
rejecting a previously accepted point based on the above strategy.

9.4 Roots of the characteristic equation

Roots of the characteristic equation are approximated using a linear multi-step (LMS-) method applied
to (2).
Consider the linear k-step formula

k k
D ey =hY Bifry (19)
3=0 3=0

Here, ag = 1, h is a (fixed) step size and y; presents the numerical approximation of y(t) at the mesh point
t; := jh. The right hand side f; := f(y;,9(t; — m1),... ,9(t; — 7m)) is computed using approximations
§(t; — 71) obtained from y; in the past, ¢ < j. In particular, the use of so-called Nordsieck interpolation,
leads to

g(tj +eh) =Y Pi(e)yjti, € € [0,1). (20)

l=—1r
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using

s e—k

Pi(e) :=
k=—r, k£l

The resulting method is explicit whenever 8y = 0 and min7; > sh. That is, Y4+ can then directly
be computed from (19) by evaluating

k—1 k
YLtk = — Z Q;yr+i + hZﬁjfLﬂ'-
j=0 7=0

whose right hand side depends only on y;, 7 < L + k.
For the linear variational equation (2) around a steady state solution z*(t) = z* we have

i = Aoy; + ) Aiii(t; — i) (21)

=0

where we have omitted the dependency of A; on z*. The stability of the difference scheme (19), (21) can
be evaluated by setting y; = p/~Lmin § = Loy, ..., L+ k where Ly, is the smallest index used, taking
the determinant of (19) and computing the roots u. If the roots of the polynomial in g all have modulus
smaller than 1, the trajectories of the LMS-method converge to zero. If roots exist with modulus greater
then trajectories exist which grow unbounded.

Since the LMS-method forms an approximation of the time integration operator over the time step
h, so do the roots p approximate the eigenvalues of S(h,0). The eigenvalues of S(h,0) are exponential
transforms of the roots A of the characteristic equation (4),

u = exp(Ah).

Hence, once p is found, A can be extracted using,

The imaginary part of A is found modulo 7 /h, using

_ arcsin((‘\flfﬁ)) -
S() = —— L (mod 7). (23)

For small h, 0 < h < 1, the smallest representation in (23) is assumed the most accurate one (that is,
we let arcsin map into [—7/2,7/2]).

The parameters r and s (from formula (20)) are chosen such that r < s < r+2 (see [24]). The choice
of h is based on the related heuristic outlined in [16].

Approximations for the rightmost roots A obtained from the LMS-method using (22), (23) can be
corrected using a Newton process on the system,

{ A(MNv=0 (24)

cTov—1=0

A starting value for v is the eigenvector of A(X) corresponding to its smallest eigenvalue (in modulus).

Note that the collection of successfully corrected roots presents more accurate yet less robust inform-
ation than the set of uncorrected roots. Indeed, attraction domains of roots of equations like (24) can be
very small and hence corrections may diverge or approximations of different roots may be corrected to a
single ’exact’ root thereby missing part of the spectrum. The latter does not occur when computing the
(full) spectrum of a discretization of S(h,0).
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Stability information is kept in the structure of table 4 (left). The time step used is kept in field
h. Approximate roots are kept in field 10, corrected roots in field I1. If unconverged corrected roots are
discarded, field nl is empty. Otherwise, the number of Newton iterations used is kept for each root in
the corresponding position of nl. Here, —1 signals that convergence to the required accuracy was not
reached. The stability method parameters (see table 7 (top)) now have the following meaning.

o Ims_parameter_alpha: LMS-method parameters a; ordered from past to present, j =0,1,... k.
o Ims_parameter_beta: LMS-method parameters 3; ordered from past to present, j =0,1,... k.

o Ims_parameter_rho: safety radius prums,c of the LMS-method stability region. For a precise definition,
see [12, §II1.3.2].

e interpolation_order: order of the interpolation in the past, 7 + s = interpolation_order.

e minimal_time_step: minimal time step relative to maximal delay, % > minimal_time_step.

e maximal_time_step: maximal time step relative to maximal delay, % < minimal_time_step.
e max_number_of _eigenvalues: maximum number of rightmost eigenvalues to keep.

e minimal_real_part: choose h such as to approximate eigenvalues with $()\) > minimal_real_part well,
discard eigenvalues with R(A) < minimal_real_part. If h is smaller than its minimal value, it is set
to the minimal value and a warning is uttered. If it is larger than its maximal value it is reduced
to that number without warning. If minimal and maximal value coincide, h is set to this value
without warning. If minimal_real_part is empty, the value minimal_real_part = % is used.

e max_newton iterations: maximum number of Newton iterations during the correction process (24).
e root_accuracy: required accuracy of the norm of the residual of (24) during corrections.

e remove_unconverged_roots: if this parameter is zero, unconverged roots are discarded (and stability
field n1 is empty).

e delay_accuracy (only for state-dependent delays): if the value of a state-dependent delay is less than
delay_accuracy, the stability is not computed.

9.5 Floquet multipliers

Floquet multipliers are computed as eigenvalues of the discretized time integration operator S(T',0).
The discretization is obtained using the collocation equations (16) without the modulo operation (and
without phase and periodicity condition). From this system a discrete, linear map is obtained between
the variables presenting the segment [—7/T,0] and those presenting the segment [—7/T + 1,1]. If these
variables overlap, part of the map is just a time shift.

Stability information is kept in the structure of table 4 (right). Approximations to the Floquet
multipliers are kept in field mu. The stability method parameters (see table 7 (bottom)) have the
following meaning.

e collocation_parameters: user given collocation parameters or empty for Gauss-Legendre collocation
points.

e max_number_of eigenvalues: maximum number of multipliers to keep.
e minimal_modulus: discard multipliers with |g| < minimal_modulus.

e delay_accuracy (only for state-dependent delays): if the value of a state-dependent delay is less than
delay_accuracy, the stability is not computed.
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10 Concluding comments

The first aim of DDE-BIFTOOL is to provide a portable, user-friendly tool for numerical bifurcation
analysis of steady state solutions and periodic solutions of systems of delay differential equations of the
kinds (1) and (6). Part of this goal was fulfilled through choosing the portable, programmer-friendly
environment offered by Matlab. Robustness with respect to the numerical approximation is achieved
through automatic steplength selection in approximating the rightmost characteristic roots and through
collocation using piecewise polynomials combined with adaptive mesh selection.

Although the package has been successfully tested on a number of realistic examples, a word of caution
may be appropriate. First of all, the package is essentially a research code (hence we accept no reliability)
in a quite unexplored area of current research. In our experience up to now, new examples did not fail
to produce interesting theoretical questions (e.g., concerning homoclinic or heteroclinic solutions) many
of which remain unsolved today. Unlike for ordinary differential equations, discretization of the state
space is unavoidable during computations on delay equations. Hence the user of the package is strongly
advised to investigate the effect of discretization using tests on different meshes and with different method
parameters; and, if possible, to compare with analytical results and/or results obtained using simulation.

Although there are no ’hard’ limits programmed in the package (with respect to system and/or mesh
sizes), the user will notice the rapidly increasing computation time for increasing system dimension and
mesh sizes. This exhibits itself most profoundly in the stability and periodic solution computations. In-
deed, eigenvalues are computed from large sparse matrices without exploiting sparseness and the Newton
procedure for periodic solutions is implemented using direct methods. Nevertheless the current version
is sufficient to perform bifurcation analysis of systems with reasonable properties in reasonable execution
times. Furthermore we hope future versions will include routines which scale better with the size of the
problem.

Other future plans include a graphical user interface and the extension to other types of delay equations
such as distributed delay and neutral functional differential equations.
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Appendix A: List of files

Version 2.00 of DDE-BIFTOOL contains the following files.

Layer 0 Layer 1 Layer 2 Layer 3 Extra
sys.cond auto_cnt  p_axpy br_contn  df_brnch
sys_.deri  auto.eqd p_correc  br_measr df_deriv
sys_dtau auto.msh p_measur br_plot df_derit
sys.ntau  auto.ord  p_norm brrecmp df measr
sys_nit  fold_jac p-normlz  br_refin df_mthod
sys_rhs hcli_eva p-pplot br_rvers  demol
sys_tau hcli_jac p-remesh br.stabl sd_demo

hopf_jac  p_secant hom_demo

mult_app p_splot genr_sys.mth

mult_dbl  p_stabil

mult_int  p_tau

mult_plt  p_tofold

poly_del  p_tohcli

poly_dla  p_tohopf

poly_d2l  p_topsol

poly_elg p-tostst

poly_gau  p_tsgn

poly_lgr

poly_lob

psol_eva

psol_jac

psol_msh

root_app

root_cha

root_int

root_nwt

root_plt

stst_jac

time_h

time_lms

time_nrd

time_saf
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Appendix B: Obtaining the package

DDE-BIFTOOL is freely available for scientific (non-commercial) use. It was started by the first author
as a part of his PhD at the Computer Science Department of the K.U.Leuven under supervision of Prof.
D. Roose.

The following terms cover the use of the software package DDE-BIFTOOL:

1. The package DDE-BIFTOOL can be used only for the purpose of internal research excluding any
commercial use of the package DDE-BIFTOOL as such or as a part of a software product.

2. K.U.LEUVEN, DEPARTMENT OF COMPUTER SCIENCE shall for all purposes be considered the
owner of DDE-BIFTOOL and of all copyright, trade secret, patent or other intellectual property
rights therein.

3. The package DDE-BIFTOOL is provided on an ”as is” basis and for the purposes described in
paragraph 1 only. In no circumstances can K.U.LEUVEN be held liable for any deficiency, fault or
other mishappening with regard to the use or performance of the package DDE-BIFTOOL.

4. All scientific publications, for which the package DDE-BIFTOOL has been used, shall mention
usage of the package DDE-BIFTOOL, and shall refer to the following publication:

K. Engelborghs, T. Luzyanina, G. Samaey. DDE-BIFTOOL v. 2.00 user manual: a
Matlab package for bifurcation analysis of delay differential equations. Technical Report
TW-330, Department of Computer Science, K.U.Leuven, Leuven, Belgium, 2001.

Upon acceptance of the above terms, one can obtain the package DDE-BIFTOOL (version 2.00) by
mailing your full name, affiliation and address to koen.engelborghs@cs.kuleuven.ac.be. The package
will then be forwarded to you.
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