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1. SOLUTIONS AND ORBITS

Consider a smooth system

X3

X = f(X), X eR"
/

Orbits, phase portraits, and topological
equivalence are defined as in the case n = 2

e Equilibria: f(Xg) =0
Definition 1 An equilibrium is called hyperbolic if ®(\) %= 0 for all
eigenvalues of its Jacobian matrix A = fx(Xp).

Theorem 1 (Grobman-Hartman) If equilibrium Xg = 0 is hyper-
bolic, X = f(X) is locally topologically equivalent near the origin to
Y = AY.



Stable and unstable invariant manifolds of equilibria:

If a hyperbolic equilibrium Xy has ng eigenvalues with R(\) < 0 and ny
eigenvalues with ®(\) > 0, it has the ns-dimensional smooth invariant
manifold W* composed of all orbits approaching Xg as t —+ oo, and the
ny-dimensional smooth invariant manifold W% composed of all orbits
approaching Xpg as t - —oo

A?Jj = )\j’l}j




e Periodic orbits (cycles)

The Poincaré map ¢ — & = P(§)
is defined on a smooth (n — 1)-dimensional ’
crossection:

P:> —>.

If Cy coresponds to £ = 0 then
P(0) =0 and P(&) = M+ O(2)

PAMD - - fhp—1 = €XP (/OTO(div f)(Xo(t))dt> >0

Definition 2 A cycle is called hyperbolic if |u| = 1 for all eigenvalues
(multipliers) of the matrix M = P¢(0).

Theorem 2 (Grobman-Hartman for maps) The Poincaré map & —
P(&) of a hyperbolic cycle is locally topologically equivalent near the
origin to & — ME.



Stable and unstable invariant manifolds of cycles:

If a hyperbolic cycle Cy has ms multipliers with |u| < 1 and m, multipliers
with |u| > 1, it has the (ms 4 1)-dimensional smooth invariant manifold
Ws composed of all orbits approaching Cg as t — oo, and the (m, +
1)-dimensional smooth invariant manifold W% composed of all orbits
approaching Cg as t —+ —oo

{




e Connecting orbits

Homoclinic orbits are intersections of W% and W* of an equilibrium/cycle.

Heteroclinic orbits are intersections of W% and W?* of two different
equilibria/cycles.

WU

WS




Generically, the closure of the 2D invariant manifold near a homoclinic
orbit My to an equilibriun with real eigenvalues (saddle) in R3 is either
simple (orientable) or twisted (non-orientable):




e Compact invariant manifolds

1. tori

Example: 2D-torus T2 with periodic or quasi-periodic orbits

2. spheres

3. Klein bottles



e Strange (chaotic) invariant sets

have fractal structure (not a manifold);

contain infinite number of hyperbolic cycles;

demonstrate sensitive dependence of solutions on initial condi-
tions;

can be attracting (strange attractors);

orbits can be coded by sequences of symbols (symbolic dynamics).



2. BIFURCATIONS OF N-DIMENSIONAL ODES X = f(X,a)

e Local (equilibrium) bifurcations

Center manifold reduction: Let Xg = 0 be non-hyperbolic with
stable, usntable, and critical eigenvalues:

Im A\

Re A

Theorem 3 For all sufficiently small ||«||, there exists a local invari-
ant center manifold W¢(«) of dimension n. that is locally attracting
if ny, = 0, repelling if ns = 0, and of saddle type if nsn, > 0. More-
over W¢(0) is tangent to the critical eigenspace of A = fx(0,0).




U3

Ay 1M

e w( =
7 — 5%/ N
S

Re v,

Remark: W¢0) is not unique; however, all W¢0) have the same
Taylor expansion.

Theorem 4 If & = f(€, a) is the restriction of X = f(X,a) to W¢(a),
then this system is locally topologically equivalent to

¢ = f(&a), £€RY™ acR™,
r = —x, x¢€R"s,
y = vy, ye&R"™,



Codim 1 equilibrium bifurcations: o« € R

£(X,0) = AX + B(X X) + C(X X, X) 4+ 0(4)

e Fold (saddle-node): X =0 (nc=1)
Let a = 3(q, B(q,q)) where Ag=ATp =0 with (p,q) = (q,q) = 1.

If a #= 0 then the restriction of X = f(X,a) to its W¢(a) is locally
topologically equivalent to £ = 8(a) + a&?.

a >0, /\2<0

(N AN N
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e Andronov-Hopf: X\; o= fiw,w >0 (nc=2)

L = iﬂ? (p,C(2,9,7) — 2(p, B(q, A""B(q,)))
+ (p, B(7, (QiwEn — A) " B(q,9)))] .

where Ag = iwg, A'p = —iwp, (p,q) = (¢,q) = 1.

If I; # 0 then the restriction of X = f(X,a) to its W «) is locally

= p(B(a) +11p?),
1

topologically equivalent to { 5 -

[ <0, )\3<0




Codim 2 equilibrium bifurcations: o ¢ R2

1. Cusp: A1 =0,a=0 (ne=1)

If ¢ # 0, then the restriction of X = f(X,a) to W ) is locally
topologically equivalent to £ = B1(a) + B>(a)¢ + s£3, where s =
sign(c) = +1.

2. Bogdanov-Takens: \{ = A> =0 (nc = 2)

If ab #= 0, then the restriction of X = f(X,a) to W¢a) is locally
topologically equivalent to # = vy, ¥ = 81(a) + B>(a)z + 22 + szy,
where s = sign(ab) = +1.

3. Bautin: \; o = tiw,w > 0 (nc = 2)

If Iob #= 0, then the restriction of X = f(X,a) to W¢(«) is locally
topologically equivalent to p = p(B81(a) + Bo(a)p? + sp*), » = 1,
where s = sign(l,) = £1.



4. Fold-Hopf:. \{ = 0, )\2,3 = tiw,w > 0 (ne = 3)

Generically, the restriction of X = f(X,a) to W a) is smoothly
orbitally equivalent to

¢ = Brla)+ 24 s5p% 4+ P&, p, p, ),
p = p(Ba(a) +0(a)E+€2) + Q& p, o, @),
¢ = wila)+01(a)+ R, p, o, ),

where s = 1, (0) # 0,w1(0) >0, P,Q, R = O([| (&, p)[|*).

The bifurcation diagrams depend on O(4)-terms. “Big picture” is
determined by the ‘truncated normal form’ without the O(4)-terms.

There exist invariant tori and homoclinic orbits near the fold-Hopf
bifurcation.



5. Hopf-Hopf: )\1’2 = twi, )\3,4 = j:iwz,wj >0 (nc — 4)

Generically, the restriction of X = f(X,a) to W a) is smoothly
orbitally equivalent to

(71 r1(B81(a) + pll(a)ri + plz(a)ré + 81(04)7“§) + P1(7, 0, ),

ro = 7r2(B2(a) + po1(a)ri + poo(a)rs + so(a)ry) + Po(r, ¢, a),
Sbl — w]_(Oé) + Wl("“a 2P Oé),
L 2 = wo(a) + Wa(r, ¢, a)

where &; = O(||r||®), W, = O(|Ir|).

The bifurcation diagrams depend on ®,- and W -terms. “Big pic-
ture’” is determined by the ‘truncated normal form’ without these
terms.

There exist invariant tori and homoclinic orbits near the Hopf-
Hopf bifurcation.



Local bifurcations of cycles
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Critical cases of codim 1:

e cyclic fold (saddle-node): 1 =1

e period-doubling: u; = —1

e Neimark-Sacker (torus): puj, =™ 0<0 <

Re u



e Fold bifurcation of cycles: u1 =1 (me=1)

If b %= 0 then the restriction of the Poincaré map to its W¢(«) is locally
topologically equivalent to ¢ — & = ¢ + 8(a) + a&?.
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e Period-doubling: 1 = -1 (me¢=1)

If ¢ = 0 then the restriction of the Poincaré map to its W¢(«) is locally
topologically equivalent to ¢ — &€ = —(1 + B8(a))€ + €3




e Torus: p1o= et (m.=2)

If d(0) # 0 and e*%? £ 1 for k = 1,2,3,4, then the restriction of the
Poincaré map to its W¢(«) is locally smoothly equivalent to

( p ) N ( p(1 + () + d(a)p?) ) n < Is%gp,so,ag >
P, o,

© @ + 0(a)
where R = O(p?*), S = O(p?)




Codim1l bifurcations of homoclinic orbits to equilibria

e Homoclinic orbit to a hyperbolic equilibrium:

central

nonleading

nonleading
stable

unstable
2

A3 ;
leading |
unstable

| leading
. stable

200] Ao

Definition 3 Saddle quantity c = R(u1) + R(A1).

Theorem 5 (Homoclinic Center Manifold) Generically, there ex-
ists an invariant finitely-smooth manifold W"(«a) that is tangent to
the central eigenspace at the homoclinic bifurcation.



Saddle homoclinic orbit: o = u1 + )\

Assume that g approaches Xy along the leading eigenvectors.

w(0) Iy

The Poincaré map near [(:

_ G
=B+ AL M1+

where generically A # 0, so that a unique hyperbolic cycle bifurcates
from g (stable in W if ¢ < 0 and unstable in W" if & > 0).



3D saddle homoclinic bifurcation with ¢ < 0O:

Assume that pus < u1 < 0 < A1 (otherwise reverse time: t— —t).

WU WU




3D saddle homoclinic bifurcation with o > 0O:

Assume that pur < pu1 < 0 < A1 (otherwise reverse time:

t— —1).

A>0

A<



Saddle-focus homoclinic orbit: ¢ = ®(u1) + A1
3D saddle-focus homoclinic bifurcation with o < 0:

Assume that R(us) = R(u1) < 0 < A1 (otherwise reverse time: ¢t +— —t).

wH wH

W e




3D saddle-focus homoclinic bifurcation with o > 0O:

10

X3

CHAOTIC INVARIANT SET
Focus-focus homoclinic orbit: ¢ = ®(uq) + R(A1)

CHAOTIC INVARIANT SET



e Homoclinic orbit(s) to a non-hyperbolic equilibrium

WSS WU

1—\O FO

One homoclinic orbit: = a unique hyperbolic cycle

WU

<

Several homoclinic orbits: = CHAOTIC INVARIANT SET



e Some other cases

o Cp

p<0 f=0 £>0
Homoclinic tangency of a hyperbolic cycle: = CHAOS

Homoclinics to nonhyperbolic cycle: = torus/CHAOS/cycle



Example: Bifurcations in a food chain model

e The tri-trophic food chain model by Hogeweg & Hesper (1978):

(. 1 1 a1xr1T
1= ml( K) 1+ by’
Vip = eq—x1t2 BT g 00
1+b61x7 14+ boxo
i3 = ep—223 _ gogs,
\ 1 4 boxo

where

xr1 prey biomass
xo predator biomass
x3 Ssuper—predator biomass

e Yu.A. Kuznetsov, O. De Feo, and S. Rinaldi (2001), Belyakov ho-
moclinic bifurcations in a tritrophic food chain model, SIAM J. Appl.
Math. 62, 462—487



Local bifurcations
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Local and key global bifurcations
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