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Neural Field Equations

Neural activity dynamics in an open simply-connected domain Ω⊂Rn is
modeled by

∂V

∂t
(t,r) =−αV (t,r)+

∫
Ω

J(r,r′)S(V (t −τ(r,r′),r′))dr′ (NFE)

[Wilson & Cowan 1972; Amari 1977]

(HJ ) The connectivity kernel J ∈ C(Ω×Ω).
(HS) the synaptic activation function S ∈ C∞(R) and its kth

derivative is bounded for every k ∈N0.
(Hτ) The transmission delay function τ ∈ C(Ω×Ω)

0 < h := sup{τ(r,r′) : r,r′ ∈Ω} <∞
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Explicit 1D example

Ω= [−1,1] and

τ(x,x′) = τ(|x−x′|) = τ0 +|x−x′| ∀x,x′ ∈Ω

S(V ) = 1

1+e−rV
− 1

2
∀V ∈R

For the connectivity kernel we take a linear combination of N ≥ 1
exponentials,

J(x,x′) = J(|x−x′|) =
N∑

i=1
cie

−µi|x−x′| ∀x,x′ ∈Ω

where ci ∈C with ci ̸= 0 and µi ∈C with µi ̸=µj for i ̸= j
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Simple discretization

Introduce the uniform mesh

−1 = x0 < x1 < ·· · < xm−1 < xm = 1, xi+1 −xi =∆= 2

m
.

Approximating each integral in

∂V

∂t
(t,x) =−αV (t,x)+

m∑
i=1

∫ xi

xi−1

J(x,x′)S(V (t −τ(x,x′),x′))dx′

with the two-point trapezoid rule, one obtains for Vj(t) = V (xj, t)

dVj(t)

dt
=−αVj(t)+ 2

m

m∑
i=1

wjJ(∆|i− j|)S(V (t −τ0 −∆|i− j|)),

where j = 0,1, . . . ,m and wj = 1
2 for j ∈ {0,m} and wj = 1 for j ̸∈ {0,m}.
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Simulation with MATLAB dde23

G. Faye and O. Faugeras
Some theoretical and numerical results for delayed neural field
equations
Physica D: 239 (9) 561–578, 2010.
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Question

Can oscillations in NFE be explained by a Hopf bifurcation on an invariant
manifold of some dynamical system in an appropriate function space X ?

• Existence of solutions

• Principle of linearized (in)stability

• Invariant (center) manifolds

• Local bifurcations and their normal forms
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Local bifurcations of codim 1

• Consider a smooth autonomous ODE system

u̇ = f (u,α), u ∈Rn,α ∈R (ODE)

• Let u0 = 0 be an equilibrium at α= 0 with nc critical eigenvalues.

• Simplest non-hyperbolic cases:

λ1

λ2

λ1

• Fold (limit point, LP): λ1 = 0;
• Andronov-Hopf (H): λ1,2 =±iω0, ω0 > 0.
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Center manifold reduction for ODEs

There exists a local invariant center manifold W c
α of dimension nc, such

that W c
0 is tangent to the critical eigenspace of A = Duf (0,0).

v1

λ2 λ1

λ1

λ2

λ3

W
c
0

W
c
0

0 0

v2

v3

ℜ(v1)

ℑ(v1)
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Technical tools for ODEs

The standard proof of the existence of W c
0 for

u̇ = Au+R(u), R(u) ∈ O(∥u∥2)

is based on

• finite-dimensionality of the phase spaceRn

• smoothness of R

• variation-of-constants formula:

u(t) = eAtu0 +
∫ t

0
eA(t−s)R(u(s))ds

• T(t) = eAt forming a group

• A being the generator of T = {T(t)}t∈R
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Hopf normal form on W c
α

• ż = (β(α)+ iω(α))z+ c1(α)z|z|2 +O(|z|4), β(0) = 0, ω(0) =ω0 > 0.

• First Lyapunov coefficient: L1 = 1

ω0
ℜ(c1(0)) ̸= 0

L1 > 0

ℑ(z)

β

ℜ(z)

β

L1 < 0

ℑ(z)

ℜ(z)

• Approximate cycle:

{
ρ̇ = ρ(β+ℜ(c1)ρ2)
φ̇ = ω+ℑ(c1)ρ2 ⇒ ρ0 =

√
− β

ℜ(c1)
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Hopf bifurcation inRn

W c
0

β < 0 β = 0 β > 0

W c
β

W c
β

Cβ

(n = 3,ns = 1,nu = 0,nc = 2,L1 < 0)
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Computation of c1(0)

• Aq = iω0q,ATp =−iω0p,〈q,q〉 = 〈p,q〉 = 1, where 〈p,q〉 = p̄Tq.

• Let

F(u) = Au+ 1

2
B(u,u)+ 1

3!
C(u,u,u)+O(∥u∥4)

• Locally represent W c
0 as

u = H(z,z) = zq+z q+
∑

2≤j+k≤3

1

j!k!
hjkzjzk +O(|z|4)

Assume the restriction of u̇ = F(u) to W c
0 to be in the normal form

ż = G(z,z) = iω0z+c1(0)z|z|2 +O(|z|4)

• The invariance of W c
0 implies the homological equation

DzH(z,z)G(z,z)+DzH(z,z)G(z,z) = F(H(z,z))
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• Quadratic z2- and |z|2-terms give nonsingular linear systems

(2iω0In −A)h20 = B(q,q)

−Ah11 = B(q,q)

• Cubic z2z-terms give the singular system

(iω0In −A)h21 = C(q,q,q)+B(q,h20)+2B(q,h11)−2c1(0)q

The Fredholm solvability of this system implies

c1(0) = 1

2
〈p,C(q,q,q)+B(q,h20)+2B(q,h11)〉

• The first Lyapunov coefficient

L1 = 1

ω0
ℜ(c1(0))
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NFE as Abstract Delay Differential Equation
Let Y = C(Ω) and X = C([−h,0];Y ). Define G : X → Y by

G(ϕ)(r) =
∫
Ω

J(r,r′)S(ϕ(−τ(r,r′),r′))dr′ ∀ϕ ∈ X , ∀r ∈Ω

and introduce

x(t)(r) = V (t,r)

xt(θ)(r) = V (t +θ,r), −h ≤ θ ≤ 0 (history at time t)

Then the NFE equation can be written as{
ẋ(t) = F(xt) t ≥ 0

x(t) =ϕ(t) t ∈ [−h,0]
(ADDE)

where
F(ϕ) =−αϕ(0)+G(ϕ) ∀ϕ ∈ X
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ADDE as a Dynamical System

t0−h

initial condition ϕ

history xt at time t

t −h

x(t) ∈ Y
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Strategy

• Embed X in a larger state space. This space is called X⊙∗, pronounce
X-sun-star.

• There is a canonical way to obtain this space.

• The canonical embedding is called j : X 7→ X⊙∗.

• On this larger subspace the translation semigroup is also defined: T⊙∗
0

• The variation-of-constants formula holds on this larger subspace.

• But if we start in X, we stay there!

O. Diekmann, S.A. van Gils, S. Verduyn Lunel, and H.-O. Walther
Delay Equations: Functional, complex, and nonlinear analysis
Applied Mathematical Sciences 110 , Springer-Verlag, 1995
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The shift semigroup T0 on X

Define a strongly continuous semigroup on X by

(T0(t)ϕ)(θ) =
{
ϕ(t +θ) −h ≤ θ ≤−t

ϕ(0) −t < θ ≤ 0
∀ϕ ∈ X , t ≥ 0

This semigroup solves the trivial (ADDE) (with F ≡ 0){
ẋ(t) = 0 t ≥ 0

x(t) =ϕ(t) t ∈ [−h,0]

for given ϕ ∈ X . The infinitesimal generator is given by

D(A0) = {ϕ ∈ C1([−h,0],Y ) : ϕ′(0) = 0}

A0ϕ=ϕ′
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The sun-dual space X⊙ and the semigroup T⊙
0

Let X⊙ be the subspace of X∗ on which T∗
0 is strongly continuous:

• X⊙ is positively invariant under T∗
0

• X⊙ = D(A∗
0 ). In particular it is norm-closed.

• It holds X⊙ = Y ∗×L1([0,h];Y ∗), where the second factor is the space of
Bochner integrable Y ∗-valued functions on [0,h] [Greiner & Van
Neerven, 1992]

Let T⊙
0 be the restriction of T∗

0 to X⊙. Its generator A⊙
0 is the part of A∗

0 in X⊙:

D(A⊙
0 ) = {ϕ⊙ ∈ D(A∗

0 ) : A∗
0ϕ

⊙ ∈ X⊙}

Yuri A. Kuznetsov () Local Bifurcations in Neural Field Equations October 10 2013 23 / 43



Introduction and motivation Hopf bifurcation in ODEs Hopf bifurcation of NFEs Future directions

Embedding of X in X⊙∗

X is canonically embedded in X⊙∗ via

j : X → X⊙⋆

given by
〈ϕ⊙, jϕ〉 = 〈ϕ,ϕ⊙〉 ∀ϕ ∈ X , ∀ϕ⊙ ∈ X⊙

where 〈ϕ,ϕ⊙〉 :=ϕ⊙(ϕ) (postfix notation).

If ϕ ∈ C1([−h,0];Y ) then jϕ ∈ D(A⊙⋆
0 ) and

A⊙⋆
0 jϕ= (0,ϕ′) ∈ X⊙⋆ = Y ∗∗× (L1([0,h];Y ∗))∗
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The Abstract Integral Equation

There is a one-to-one correspondence between solutions of ADDE and
solutions u ∈ C([0,∞);X) of

u(t) = T0(t)ϕ+ j−1
(∫ t

0
T⊙⋆

0 (t − s)E(u(s))ds

)
∀ t ≥ 0 (AIE)

for the nonlinearity E : X → X⊙⋆ defined as

E(ϕ) := (F(ϕ),0)

The weak∗ Riemann integral by definition is the unique ϕ⊙⋆ ∈ X⊙⋆ such
that

〈ϕ⊙,ϕ⊙⋆〉 =
∫ t

0
〈ϕ⊙,T⊙⋆

0 (t − s)E(u(s))〉ds ∀ϕ⊙ ∈ X⊙
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Linearisation at a steady state

Let L = DG(ϕ̂) ∈L (X ,Y ) where ϕ̂ ∈ X is an equilibrium, i.e.

F(ϕ̂) =−αϕ̂(0)+G(ϕ̂) = 0

The solution of the linearized problem{
ẋ(t) =−αx(t)+Lxt t ≥ 0

x(t) =ϕ(t) t ∈ [−h,0]

defines a semigroup T on X generated by A : D(A) ⊂ X → X where

D(A) = {ϕ ∈ C1([−h,0],Y ) : ϕ′(0) =−αϕ(0)+Lϕ︸ ︷︷ ︸
DF(ϕ̂)ϕ

}, Aϕ=ϕ′
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Since
D(A∗) = D(A∗

0 ),

the sun-duals of X with respect to T0 and T are identical and may both be
denoted by X⊙. Let T⊙ be the restriction of T∗ to X⊙ and let A⊙ be its
generator, then

D(A⊙) = {ϕ⊙ ∈ D(A∗) : A∗ϕ⊙ ∈ X⊙}, A⊙ = A∗

It can be shown that

D(A⊙⋆)∩ j(X) = D(A⊙⋆
0 )∩ j(X)

It also follows that if ϕ ∈ C1([−h,0];Y ) then jϕ ∈ D(A⊙⋆) and

A⊙⋆jϕ= (0,ϕ′)+ (DF(ϕ̂)ϕ,0)

Finally, all spectra coincide: σ(A) =σ(A∗) =σ(A⊙) =σ(A⊙⋆).
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Characterization of the spectrum

For f ∈ Y and z ∈C, let (εz ⊗ f ) ∈ X be such that

(εz ⊗ f )(θ) = eθzf ∀θ ∈ [−h,0]

and
Lz ∈L (Y ), Lzf = L(εz ⊗ f ) ∀θ ∈ [−h,0]

Introduce the characteristic operator:

∆(z) = z+α−Lz ∈L (Y )

It holds that λ ∈σ(A) if and only if 0 ∈σ(∆(λ)) and ψ ∈ D(A) is an
eigenvector corresponding to λ if and only if ψ= ελ⊗q where q ∈ Y satisfies
∆(λ)q = 0 [Engel & Nagel, 2000].

For NFEs, the set σ(A) \ {−α} consists of isolated eigenvalues of finite type.
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Explicit 1D example

Since S(0) = 0, we study stability of ϕ̂≡ 0. Let

ki(λ) =λ+µi ∀ i = 1, . . . ,N

and
S = {λ ∈C : ∃i, j ∈ {1, . . . ,N}, i ̸= j, s.t. k2

i (λ) = k2
j (λ)}.

Define for λ ∉S the characteristic polynomial

P (ρ) = eλτ0 (λ+α)

2

N∏
j=1

(ρ2 −kj(λ)2)+
N∑

i=1
ciki(λ)

N∏
j=1
j ̸=i

(ρ2 −kj(λ)2)

and assume that it has 2N distinct roots, denoted by ±ρi(λ) for
i = 1,2, . . . ,N .
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Spectrum

Under above conditions, introduce

S(λ) =
[

S−
λ

S+
λ

S+
λ

S−
λ

]
where

[S−
λ ]j,i = eρi(λ)

λ+µj −ρi(λ)
, [S+

λ ]j,i = e−ρi(λ)

λ+µj +ρi(λ)

Then λ is an eigenvalue of A if and only if detS(λ) = 0. The corresponding
eigenfunction is ελ⊗qλ with

qλ(x) =
N∑

i=1

[
γie

ρi(λ)x +γ−ie
−ρi(λ)x] ∀x ∈ [−1,1]

where Γ= [γ1,γ2, . . . ,γN ,γ−1,γ−2, . . . ,γ−N ] is a solution to S(λ)Γ= 0.
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Example: Inverse “wizard hat" connectivity
Take α= τ0 = 1 and

J(x,x′) = ĉ1e−µ1|x−x′|+ ĉ2e−µ2|x−x′| ∀x,x′ ∈ [−1,1]

with ĉ1 = 3, ĉ2 =−5.5, µ1 = 0.5, µ2 = 1. Since S′(0) = r

4
, we have ci = r

4
ĉi.
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Hopf bifurcation at r = 4.220215

0

0

2

4
Discretisation
Analytical

The approximate eigenvalues were computed with DDE-BIFTOOL
[Engelborghs et al., 2002].
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Center Manifold for NFEs

Suppose that A has nc ≥ 1 critical eigenvalues with ℜ(λ) = 0. This implies
the existence of an invariant center manifold W c

loc on which

u̇(t) = j−1 (
A⊙⋆ju(t)+R(u(t))

) ∀ t ∈R

where R : X → X⊙⋆ is

R(ϕ) = E(ϕ)−DE(ϕ̂)ϕ= 1

2
B(ϕ,ϕ)+ 1

3!
C(ϕ,ϕ,ϕ)+O(∥ϕ∥4)

For NFEs, we can apply the finite-dimensional approach, taking into
account that for λ ∈C\ {−α} the linear equation

(λ−A⊙⋆)ϕ⊙⋆ =ψ⊙⋆

is solvable for ϕ⊙⋆ ∈ D(A⊙⋆) given ψ⊙⋆ ∈ X⊙⋆ if and only if 〈ϕ⊙,ψ⊙⋆〉 = 0 for
all ϕ⊙ ∈N (λ−A∗) (Fredholm Solvability).
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Andronov-Hopf bifurcation in NFEs

Let ϕ and ϕ⊙ be complex eigenvectors of A and A∗ corresponding to
λ1 = iω0,

Aϕ= iω0ϕ, A∗ϕ⊙ = iω0ϕ
⊙, ω0 > 0,

and satisfying 〈ϕ,ϕ⊙〉 = 1.

• The projection of u(t) ∈W c
loc onto the tangent space to W c

loc at ϕ̂ satisfies

ż = iω0z+c1z|z|2 +O(|z|4), z ∈C

• Center manifold representation:

u =H (z,z) = zϕ+zϕ+ ∑
2≤j+k≤3

1

j!k!
hjkzjzk +O(|z|4)
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The invariance of W c
loc implies the homological equation

A⊙⋆jH (z,z)+R(H (z,z)) = j
(
DzH (z,z)ż+DzH (z,z)ż

)
that gives{

−A⊙⋆ jh20 = B(ϕ,ϕ)

(2iω0 −A⊙⋆) jh11 = B(ϕ,ϕ)
=⇒

{
jh20 = R(0,A⊙⋆)B(ϕ,ϕ)

jh11 = R(2iω,A
⊙⋆)B(ϕ,ϕ)

as well as

(iω0I −A⊙⋆)jh21 = C(ϕ,ϕ,ϕ)+B(ϕ,h20)+2B(ϕ,h11)−2c1jϕ

so that the Fredholm Solvability implies

c1 = 1

2
〈ϕ⊙,C(ϕ,ϕ,ϕ)+B(ϕ,h20)+2B(ϕ,h11)〉

and

L1 = 1

ω0
ℜ(c1)
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Computation of resolvents

To compute ψ⊙⋆ = R(z,A⊙⋆)(y,0), we need to solve

(z−A⊙⋆)ψ⊙⋆ = (y,0)

where z ∈ ρ(A), y ∈ Y and ψ⊙⋆ ∈ D(A⊙⋆).

For each y ∈ Y the function ψ= εz ⊗∆(z)−1y is the unique solution in
C1([−h,0];Y ) of the system{

zψ(0)−DF(ϕ̂)ψ= y

zψ−ψ′ = 0

Then

ψ⊙⋆ = jψ=
[

∆(z)−1y
εz ⊗∆(z)−1y

]
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Evaluation of pairings

Let P⊙ and P⊙⋆ be the spectral projections on X⊙ and X⊙⋆ corresponding to
a simple λ ∈σ(A).
We want to evaluate 〈ϕ⊙,ϕ⊙⋆〉 where

ϕ⊙⋆ = (y,0) ∈ Y × {0} ⊂ X⊙⋆

Since the range of P⊙⋆ is spanned by jϕ we have

P⊙⋆ϕ⊙⋆ = κjϕ

for a certain κ ∈C. Furthermore,

〈ϕ⊙,ϕ⊙⋆〉 = 〈P⊙ϕ⊙,ϕ⊙⋆〉 = 〈ϕ⊙,P⊙⋆ϕ⊙⋆〉 = κ〈ϕ⊙, jϕ〉 = κ
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On the other hand [Dunford & Schwartz, 1958]

P⊙⋆ϕ⊙⋆ = 1

2πi

∮
∂Cλ

R(z,A⊙⋆)ϕ⊙⋆ dz = κjϕ

and the first component shows that κ can be found from

1

2πi

∮
∂Cλ

∆(z)−1y dz = κϕ(0)

For the explicit 1D example, the computation of pairings can be reduced
further.
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Explicit 1D example

ϕ(t,x) = eλt[γ1(eρ1x +e−ρ1x)+γ2(eρ2x +e−ρ2x)
] ∀ t ∈ [−h,0]

where

ρ1 = 0.321607348361597−0.880461478656249i

ρ2 = 0.110838003673357−2.312123026384049i

γ1 =−0.191821747840362−0.172140605861736i

γ2 =−0.080160108888561

corresponding to λ= iω0 = 1.644003102046893i.

c1 = 1

2
〈ϕ⊙,C(ϕ,ϕ,ϕ)〉 ≈−0.326+0.0389i
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Simulations after Hopf bifurcation

Thus, the first Lyapunov coefficient is L1 = 1
ω0

ℜ(c1) ≈−0.198 < 0 indicating a
supercritical Hopf bifurcation.
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Forward time simulation of discretized system (m = 50) for r = 6 beyond
Hopf bifurcation. A long transient is observed before the solution
approaches the stable limit cycle.
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Double Hopf bifurcation (no Chaos)
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Bi-stability near the double Hopf bifurcation: for r = 6 and µ2 = 1 the time
evolution is shown for different initial conditions (m = 50).

four normal form coefficients needed
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Future directions

• Spatially extended neurons as extensions of neural fields.

• Extend the explicit spectral analysis to more dimensions.

• Include extracellular dynamics.

• Extend the theory to abstract semilinear delay differential equations of
the form

ẋ(t) = Bx(t)+F(xt) t ≥ 0

x(t) =ϕ(t) t ∈ [−h,0]

where B : D(B) ⊆ Y 7→ Y is the generator of a C0-semigroup S on Y .
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