NBA Lecture 1

Simplest bifurcations in n-dimensional ODEs

Yu.A. Kuznetsov (Utrecht University, NL)

March 14, 2011

Contents

1. Solutions and orbits:

- equilibria
- cycles
- connecting orbits
- other invariant sets

2. Bifurcations of n-dimensional ODEs

- equilibrium bifurcations
- local bifrcations of cycles
- bifurcations of homoclinic orbits to equilibria

1. Solutions and orbits

Consider a smooth system

$$
\dot{u}=f(u), \quad u \in \mathbb{R}^{n} .
$$

Th. 1 If f is smooth than for any inital point u_{0} there exists a unique locally defined solution $t \mapsto u(t)$ such that $u(0)=u_{0}$.

Def. 1 Let I be the maximal definition interval of a solution $t \mapsto$ $u(t), t \in I$. The oriented by the advance of time image $u(I) \subset \mathbb{R}^{n}$ is called the orbit.

Def. 2 Phase portrait of an ODE system is the collection of all its orbits in \mathbb{R}^{n}.

Def. 3 Two systems are called topologically equivalent if their phase portraits are homeomorphic, i.e. there is a continuous invertible transformation

$$
h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad u \mapsto w=h(u),
$$

that maps orbits of one system onto orbits of the other, preserving their orientation.

Equilibria of ODEs

- An equilibrium u_{0} satisfies

$$
f\left(u_{0}\right)=0
$$

and its Jacobian matrix $A=f_{u}\left(u_{0}\right)$ has eigenvalues $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$.

- Linearized stability of u_{0} :
- If $\Re\left(\lambda_{j}\right)<0$ for $j=1,2, \ldots, n$, the equilibrium is stable;
- If $\Re\left(\lambda_{k}\right)>0$ for some $k \in\{1,2, \ldots, n\}$, the equilibrium is unstable.

Def. 4 An equilibrium u_{0} is hyperbolic if $\Re\left(\lambda_{j}\right) \neq 0$ for $j=1,2, \ldots, n$.

Stable and unstable invariant manifolds of equilibria:

If a hyperbolic equilibrium u_{0} has n_{s} eigenvalues with $\Re(\lambda)<0$ and n_{u} eigenvalues with $\Re(\lambda)>0$, it has the n_{s}-dimensional smooth invariant manifold W^{s} composed of all orbits approaching u_{0} as $t \rightarrow \infty$, and the n_{u}-dimensional smooth invariant manifold W^{u} composed of all orbits approaching u_{0} as $t \rightarrow-\infty$

$$
A v_{j}=\lambda_{j} v_{j}
$$

Periodic orbits (cycles)

- A limit cycle C_{0} corresponds to a periodic solution $u_{0}\left(t+T_{0}\right)=u_{0}(t)$ of

$$
\dot{u}=f(u), \quad u \in \mathbb{R}^{n}
$$

Floquet multipliers $\mu_{1}, \mu_{2}, \ldots, \mu_{n-1}, \mu_{n}=1$ are the eigenvalues of $M\left(T_{0}\right)$:

$$
\dot{M}(t)-f_{u}\left(u_{0}(t)\right) M(t)=0, \quad M(0)=I_{n}
$$

- Linearized stability of C_{0} :
- If $\left|\mu_{j}\right|<1$ for $j=1,2, \ldots, n-1$, the cycle is stable;
- If $\left|\mu_{k}\right|>1$ for some $k \in\{1,2, \ldots, n-1\}$, the cycle is unstable.

Def. 5 A cycle C_{0} is hyperbolic if $\left|\mu_{j}\right| \neq 1$ for $j=1,2, \ldots, n-1$.

Stable and unstable invariant manifolds of cycles:

If a hyperbolic cycle C_{0} has m_{s} multipliers with $|\mu|<1$ and m_{u} multipliers with $|\mu|>1$, it has the ($m_{s}+1$)-dimensional smooth invariant manifold W^{s} composed of all orbits approaching C_{0} as $t \rightarrow \infty$, and the ($m_{u}+$ 1)-dimensional smooth invariant manifold W^{u} composed of all orbits approaching C_{0} as $t \rightarrow-\infty$

Connecting orbits

Homoclinic orbits are intersections of W^{u} and W^{s} of an equilibrium/cycle. Heteroclinic orbits are intersections of W^{u} and W^{s} of two different equilibria/cycles.

Generically, the closure of the 2D invariant manifold near a homoclinic orbit Γ_{0} to an equilibriun with real eigenvalues (saddle) in \mathbb{R}^{3} is either simple (orientable) or twisted (non-orientable):

Compact invariant manifolds

1. tori

Example: 2D-torus \mathbb{T}^{2} with periodic or quasi-periodic orbits

2. spheres
3. Klein bottles

Strange (chaotic) invariant sets

- have fractal structure (not a manifold);
- contain infinite number of hyperbolic cycles;
- demonstrate sensitive dependence of solutions on initial conditions;
- can be attracting (strange attractors);
- orbits can be coded by sequences of symbols (symbolic dynamics).

2. Bifurcations of n-dimensional ODEs $\dot{u}=f(u, \alpha)$

- Local (equilibrium) bifurcations

Center manifold reduction: Let $u_{0}=0$ at $\alpha=0$ be nonhyperbolic with stable, usntable, and critical eigenvalues:

Th. 2 For all sufficiently small $\|\alpha\|$, there exists a local invariant center manifold W_{α}^{c} of dimension n_{c} that is locally attracting if $n_{u}=0$, repelling if $n_{s}=0$, and of saddle type if $n_{s} n_{u}>0$. Moreover W_{0}^{c} is tangent to the critical eigenspace of $A=f_{u}(0,0)$.

Remark: W_{0}^{c} is not unique; however, all W_{0}^{c} have the same Taylor expansion.

Th. 3 If $\dot{\xi}=g(\xi, \alpha)$ is the restriction of $\dot{u}=f(u, \alpha)$ to W_{α}^{c}, then this system is locally topologically equivalent to

$$
\left\{\begin{array}{l}
\dot{\xi}=g(\xi, \alpha), \quad \xi \in \mathbb{R}^{n_{c}}, \alpha \in \mathbb{R}^{m} \\
\dot{x}=-x, \quad x \in \mathbb{R}^{n_{s}} \\
\dot{y}=+y, \quad y \in \mathbb{R}^{n_{u}}
\end{array}\right.
$$

Codimension 1 bifurcations of equilibria

- Consider a smooth ODE system

$$
\dot{u}=f(u, \alpha), \quad u \in \mathbb{R}^{n}, \alpha \in \mathbb{R}
$$

- Critical cases:

- Fold (limit point, LP): $\lambda_{1}=0$;
- Andronov-Hopf (H): $\lambda_{1,2}= \pm i \omega_{0}, \quad \omega_{0}>0$.

LP normal form on $W_{\beta(\alpha)}^{c}$

- $\dot{\xi}=\beta(\alpha)+b(\alpha) \xi^{2}+O\left(|\xi|^{3}\right), \quad b(0) \neq 0$.

- Approximation of equilibria:

$$
\beta+b \xi^{2}=0 \Rightarrow \xi_{1,2}= \pm \sqrt{-\frac{\beta}{b}}
$$

Generic LP bifurcation: $\lambda_{1}=0 \quad(b>0)$

$\beta<0$

$\beta=0$

$\beta>0$

Collision of two equilibria.

Hopf normal form on $W_{\beta(\alpha)}^{c}$

- $\dot{\xi}=(\beta(\alpha)+i \omega(\alpha)) \xi+c(\alpha) \xi|\xi|^{2}+O\left(|\xi|^{4}\right), \quad \omega(0)=\omega_{0}, l_{1} \neq 0$
- First Lyapunov coeffeicient: $\quad l_{1}=\frac{1}{\omega_{0}} \Re(c(0))$

$$
l_{1}<0
$$

$$
l_{1}>0
$$

- Approximate cycle: $\left\{\begin{array}{l}\dot{\rho}=\rho\left(\beta+\Re(c) \rho^{2}\right), \\ \dot{\varphi}=\omega+\Im(c) \rho^{2},\end{array} \Rightarrow \rho_{0}=\sqrt{-\frac{\beta}{\Re(c)}}\right.$

Generic Hopf bifurcation: $\lambda_{1,2}= \pm i \omega_{0}$

Birth of a limit cycle.

Codimension 1 local bifurcations of cycles $\operatorname{dim} W_{\alpha}^{c}=m_{c}$

Critical cases:

- cyclic fold (LPC): $\mu_{1}=1$
- period-doubling (PD): $\mu_{1}=-1$
- Neimark-Sacker (NS): $\mu_{1,2}=e^{ \pm i \theta_{0}}, 0<\theta_{0}<\pi, \theta_{0} \neq \frac{\pi}{2}, \frac{2 \pi}{3}$

Generic LPC bifurcation

- Periodic parameter-dependent normal form on W_{β}^{c} :

$$
\left\{\begin{array}{l}
\frac{d \tau}{d t}=1+\nu(\beta)-\xi+a(\beta) \xi^{2}+\mathcal{O}\left(\xi^{3}\right) \\
\frac{d \xi}{d t}=\beta+b(\beta) \xi^{2}+\mathcal{O}\left(\xi^{3}\right)
\end{array}\right.
$$

where $a, b \in \mathbb{R}$ and the $\mathcal{O}\left(\xi^{3}\right)$-terms are T_{0}-periodic in τ.

- Collision and disappearance of two limit cycles $(b(0)>0)$:

$\beta<0$

$\beta=0$

$\beta>0$

Cycle manifold near LPC

Generic PD bifurcation

- Periodic parameter-dependent normal form on W_{β}^{c} :

$$
\left\{\begin{array}{l}
\frac{d \tau}{d t}=1+\nu(\beta)+a(\beta) \xi^{2}+\mathcal{O}\left(\xi^{4}\right) \\
\frac{d \xi}{d t}=\beta \xi+c(\beta) \xi^{3}+\mathcal{O}\left(\xi^{4}\right)
\end{array}\right.
$$

where $a, c \in \mathbb{R}$ and the $\mathcal{O}\left(\xi^{3}\right)$-terms are $2 T_{0}$-periodic in τ.

- Period-doubling $(c(0)<0)$:

Generic NS bifurcation

- Periodic parameter-dependent normal form on W_{β}^{c} :

$$
\left\{\begin{array}{l}
\frac{d \tau}{d t}=1+\nu(\beta)+a(\beta)|\xi|^{2}+\mathcal{O}\left(|\xi|^{4}\right) \\
\frac{d \xi}{d t}=\left(\beta+\frac{i \theta(\beta)}{T(\beta)}\right) \xi+d(\beta) \xi|\xi|^{2}+\mathcal{O}\left(|\xi|^{4}\right)
\end{array}\right.
$$

where $a \in \mathbb{R}, d \in \mathbb{C}$ and the $\mathcal{O}\left(\|\xi\|^{4}\right)$-terms are T_{0}-periodic in τ

- Torus generation $(\Re(d(0))<0)$:

Codim 1 bifurcations of homoclinic orbits to equilibria

- Homoclinic orbit to a hyperbolic equilibrium:

Def. 6 Saddle quantity $\sigma=\Re\left(\mu_{1}\right)+\Re\left(\lambda_{1}\right)$.

Th. 4 (Homoclinic Center Manifold) Generically, there exists an invariant finitely-smooth manifold $W^{h}(\alpha)$ that is tangent to the central eigenspace at the homoclinic bifurcation.

Saddle homoclinic orbit: $\sigma=\mu_{1}+\lambda_{1}$
Assume that Γ_{0} approaches u_{0} along the leading eigenvectors.

The Poincaré map near Γ_{0} :

$$
\xi \mapsto \tilde{\xi}=\beta+A \xi^{-\frac{\mu_{1}}{\lambda_{1}}}+\ldots
$$

where generically $A \neq 0$, so that a unique hyperbolic cycle bifurcates from Γ_{0} (stable in W^{h} if $\sigma<0$ and unstable in W^{h} if $\sigma>0$).

3D saddle homoclinic bifurcation with $\sigma<0$:

Assume that $\mu_{2}<\mu_{1}<0<\lambda_{1}$ (otherwise reverse time: $t \mapsto-t$).

$\beta<0$

$\beta=0$

$\beta>0$

3D saddle homoclinic bifurcation with $\sigma>0$:

Assume that $\mu_{2}<\mu_{1}<0<\lambda_{1}$ (otherwise reverse time: $t \mapsto-t$).

$A>0$

$A<0$

Saddle-focus homoclinic orbit: $\sigma=\Re\left(\mu_{1}\right)+\lambda_{1}$

3D saddle-focus homoclinic bifurcation with $\sigma<0$:
Assume that $\Re\left(\mu_{2}\right)=\Re\left(\mu_{1}\right)<0<\lambda_{1}$ (otherwise reverse time: $t \mapsto-t$).

$\beta<0$

$\beta=0$

$\beta>0$

3D saddle-focus homoclinic bifurcation with $\sigma>0$:

CHAOTIC INVARIANT SET

Focus-focus homoclinic orbit: $\sigma=\Re\left(\mu_{1}\right)+\Re\left(\lambda_{1}\right)$
CHAOTIC INVARIANT SET

Homoclinic orbit(s) to a non-hyperbolic equilibrium

One homoclinic orbit: \Rightarrow a unique hyperbolic cycle

Several homoclinic orbits: \Rightarrow CHAOTIC INVARIANT SET

