NBA Lecture 1

Simplest bifurcations in *n*-dimensional ODEs

Yu.A. Kuznetsov (Utrecht University, NL)

March 14, 2011

Contents

- 1. Solutions and orbits:
 - equilibria
 - cycles
 - connecting orbits
 - other invariant sets
- 2. Bifurcations of n-dimensional ODEs
 - equilibrium bifurcations
 - local bifrcations of cycles
 - bifurcations of homoclinic orbits to equilibria

1. Solutions and orbits

Consider a smooth system

$$\dot{u} = f(u), \quad u \in \mathbb{R}^n.$$

Th. 1 If f is smooth than for any initial point u_0 there exists a unique locally defined solution $t \mapsto u(t)$ such that $u(0) = u_0$.

Def. 1 Let I be the maximal definition interval of a solution $t \mapsto u(t)$, $t \in I$. The oriented by the advance of time image $u(I) \subset \mathbb{R}^n$ is called the **orbit**.

Def. 2 Phase portrait of an ODE system is the collection of all its orbits in \mathbb{R}^n .

Def. 3 Two systems are called **topologically equivalent** if their phase portraits are homeomorphic, i.e. there is a continuous invertible transformation

$$h: \mathbb{R}^n \to \mathbb{R}^n, \quad u \mapsto w = h(u),$$

that maps orbits of one system onto orbits of the other, preserving their orientation.

Equilibria of ODEs

• An equilibrium u_0 satisfies

$$f(u_0) = 0$$

and its Jacobian matrix $A = f_u(u_0)$ has eigenvalues $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$.

- Linearized stability of u_0 :
 - If $\Re(\lambda_j) < 0$ for j = 1, 2, ..., n, the equilibrium is stable;

- If $\Re(\lambda_k) > 0$ for some $k \in \{1, 2, ..., n\}$, the equilibrium is unstable.

Def. 4 An equilibrium u_0 is hyperbolic if $\Re(\lambda_j) \neq 0$ for j = 1, 2, ..., n.

Stable and unstable invariant manifolds of equilibria:

If a hyperbolic equilibrium u_0 has n_s eigenvalues with $\Re(\lambda) < 0$ and n_u eigenvalues with $\Re(\lambda) > 0$, it has the n_s -dimensional smooth invariant manifold W^s composed of all orbits approaching u_0 as $t \to \infty$, and the n_u -dimensional smooth invariant manifold W^u composed of all orbits approaching u_0 as $t \to -\infty$

Periodic orbits (cycles)

A limit cycle C₀ corresponds to a periodic solution u₀(t+T₀) = u₀(t) of

$$\dot{u} = f(u), \quad u \in \mathbb{R}^n.$$

Floquet multipliers $\mu_1, \mu_2, \dots, \mu_{n-1}, \mu_n = 1$ are the eigenvalues of $M(T_0)$:

$$\dot{M}(t) - f_u(u_0(t))M(t) = 0, \quad M(0) = I_n.$$

- Linearized stability of C_0 :
 - If $|\mu_j| < 1$ for $j = 1, 2, \ldots, n-1$, the cycle is stable;

- If $|\mu_k| > 1$ for some $k \in \{1, 2, \dots, n-1\}$, the cycle is unstable.

Def. 5 A cycle C_0 is hyperbolic if $|\mu_j| \neq 1$ for j = 1, 2, ..., n - 1.

Stable and unstable invariant manifolds of cycles:

If a hyperbolic cycle C_0 has m_s multipliers with $|\mu| < 1$ and m_u multipliers with $|\mu| > 1$, it has the $(m_s + 1)$ -dimensional smooth invariant manifold W^s composed of all orbits approaching C_0 as $t \to \infty$, and the $(m_u +$ 1)-dimensional smooth invariant manifold W^u composed of all orbits approaching C_0 as $t \to -\infty$

Connecting orbits

Homoclinic orbits are intersections of W^u and W^s of an equilibrium/cycle. Heteroclinic orbits are intersections of W^u and W^s of two different equilibria/cycles.

Generically, the closure of the 2D invariant manifold near a homoclinic orbit Γ_0 to an equilibriun with real eigenvalues (saddle) in \mathbb{R}^3 is either simple (orientable) or twisted (non-orientable):

Compact invariant manifolds

1. tori

Example: 2D-torus \mathbb{T}^2 with periodic or quasi-periodic orbits

2. spheres

3. Klein bottles

Strange (chaotic) invariant sets

- have **fractal** structure (not a manifold);
- contain **infinite** number of hyperbolic cycles;
- demonstrate sensitive dependence of solutions on initial conditions;
- can be attracting (**strange attractors**);
- orbits can be coded by sequences of symbols (symbolic dynamics).

- 2. Bifurcations of *n*-dimensional ODEs $\dot{u} = f(u, \alpha)$
 - Local (equilibrium) bifurcations

Center manifold reduction: Let $u_0 = 0$ at $\alpha = 0$ be non-hyperbolic with stable, usntable, and critical eigenvalues:

Th. 2 For all sufficiently small $||\alpha||$, there exists a local invariant **center manifold** W_{α}^c of dimension n_c that is locally attracting if $n_u = 0$, repelling if $n_s = 0$, and of saddle type if $n_s n_u > 0$. Moreover W_0^c is tangent to the critical eigenspace of $A = f_u(0,0)$.

Remark: W_0^c is **not unique**; however, all W_0^c have the same Taylor expansion.

Th. 3 If $\dot{\xi} = g(\xi, \alpha)$ is the restriction of $\dot{u} = f(u, \alpha)$ to W^c_{α} , then this system is locally topologically equivalent to

$$\begin{cases} \dot{\xi} &= g(\xi, \alpha), \quad \xi \in \mathbb{R}^{n_c}, \alpha \in \mathbb{R}^m, \\ \dot{x} &= -x, \quad x \in \mathbb{R}^{n_s}, \\ \dot{y} &= +y, \quad y \in \mathbb{R}^{n_u}. \end{cases}$$

Codimension 1 bifurcations of equilibria

• Consider a smooth ODE system

$$\dot{u} = f(u, \alpha), \quad u \in \mathbb{R}^n, \alpha \in \mathbb{R}.$$

• Critical cases:

- Fold (limit point, LP): $\lambda_1 = 0$;
- Andronov-Hopf (H): $\lambda_{1,2} = \pm i\omega_0, \quad \omega_0 > 0.$

LP normal form on $W^c_{\beta(\alpha)}$

•
$$\dot{\xi} = \beta(\alpha) + b(\alpha)\xi^2 + O(|\xi|^3), \quad b(0) \neq 0.$$

• Approximation of equilibria:

$$\beta + b\xi^2 = 0 \Rightarrow \xi_{1,2} = \pm \sqrt{-\frac{\beta}{b}}$$

Generic LP bifurcation: $\lambda_1 = 0$ (b > 0)

Collision of two equilibria.

Hopf normal form on $W^c_{\beta(\alpha)}$

- $\dot{\xi} = (\beta(\alpha) + i\omega(\alpha))\xi + c(\alpha)\xi|\xi|^2 + O(|\xi|^4), \quad \omega(0) = \omega_0, l_1 \neq 0$
- First Lyapunov coeffeicient: $l_1 = \frac{1}{\omega_0} \Re(c(0))$

 $l_1 < 0$

 $l_1 > 0$

• Approximate cycle: $\begin{cases} \dot{\rho} = \rho(\beta + \Re(c)\rho^2), \\ \dot{\varphi} = \omega + \Im(c)\rho^2, \end{cases} \Rightarrow \rho_0 = \sqrt{-\frac{\beta}{\Re(c)}}$

Generic Hopf bifurcation: $\lambda_{1,2} = \pm i\omega_0$

Birth of a limit cycle.

• Neimark-Sacker (NS): $\mu_{1,2} = e^{\pm i\theta_0}, \ 0 < \theta_0 < \pi, \ \theta_0 \neq \frac{\pi}{2}, \frac{2\pi}{3}$

Generic LPC bifurcation

• Periodic parameter-dependent normal form on W_{β}^c :

$$\begin{cases} \frac{d\tau}{dt} = 1 + \nu(\beta) - \xi + a(\beta)\xi^2 + \mathcal{O}(\xi^3), \\ \frac{d\xi}{dt} = \beta + b(\beta)\xi^2 + \mathcal{O}(\xi^3), \end{cases}$$

where $a, b \in \mathbb{R}$ and the $\mathcal{O}(\xi^3)$ -terms are T_0 -periodic in τ .

• Collision and disappearance of two limit cycles (b(0) > 0):

Cycle manifold near LPC

Generic PD bifurcation

• Periodic parameter-dependent normal form on W_{β}^c :

$$\begin{cases} \frac{d\tau}{dt} = 1 + \nu(\beta) + a(\beta)\xi^2 + \mathcal{O}(\xi^4), \\ \frac{d\xi}{dt} = \beta\xi + c(\beta)\xi^3 + \mathcal{O}(\xi^4), \end{cases}$$

where $a, c \in \mathbb{R}$ and the $\mathcal{O}(\xi^3)$ -terms are $2T_0$ -periodic in τ .

• Period-doubling (c(0) < 0):

Generic NS bifurcation

• Periodic parameter-dependent normal form on W_{β}^c :

$$\begin{cases} \frac{d\tau}{dt} = 1 + \nu(\beta) + a(\beta)|\xi|^2 + \mathcal{O}(|\xi|^4), \\ \frac{d\xi}{dt} = \left(\beta + \frac{i\theta(\beta)}{T(\beta)}\right)\xi + d(\beta)\xi|\xi|^2 + \mathcal{O}(|\xi|^4), \end{cases}$$

where $a \in \mathbb{R}, d \in \mathbb{C}$ and the $\mathcal{O}(\|\xi\|^4)$ -terms are T_0 -periodic in τ

• Torus generation $(\Re(d(0)) < 0)$:

Codim 1 bifurcations of homoclinic orbits to equilibria

• Homoclinic orbit to a hyperbolic equilibrium:

Def. 6 Saddle quantity $\sigma = \Re(\mu_1) + \Re(\lambda_1)$.

Th. 4 (Homoclinic Center Manifold) Generically, there exists an invariant finitely-smooth manifold $W^h(\alpha)$ that is tangent to the central eigenspace at the homoclinic bifurcation.

Saddle homoclinic orbit: $\sigma = \mu_1 + \lambda_1$

Assume that Γ_0 approaches u_0 along the leading eigenvectors.

The Poincaré map near Γ_0 :

$$\xi \mapsto \tilde{\xi} = \beta + A\xi^{-\frac{\mu_1}{\lambda_1}} + \dots$$

where generically $A \neq 0$, so that a unique hyperbolic cycle bifurcates from Γ_0 (stable in W^h if $\sigma < 0$ and unstable in W^h if $\sigma > 0$).

3D saddle homoclinic bifurcation with $\sigma < 0$:

Assume that $\mu_2 < \mu_1 < 0 < \lambda_1$ (otherwise reverse time: $t \mapsto -t$).

3D saddle homoclinic bifurcation with $\sigma > 0$:

Assume that $\mu_2 < \mu_1 < 0 < \lambda_1$ (otherwise reverse time: $t \mapsto -t$).

Saddle-focus homoclinic orbit: $\sigma = \Re(\mu_1) + \lambda_1$

3D saddle-focus homoclinic bifurcation with $\sigma < 0$:

Assume that $\Re(\mu_2) = \Re(\mu_1) < 0 < \lambda_1$ (otherwise reverse time: $t \mapsto -t$).

3D saddle-focus homoclinic bifurcation with $\sigma > 0$:

CHAOTIC INVARIANT SET

Focus-focus homoclinic orbit: $\sigma = \Re(\mu_1) + \Re(\lambda_1)$

CHAOTIC INVARIANT SET

Homoclinic orbit(s) to a non-hyperbolic equilibrium

One homoclinic orbit: \Rightarrow a unique hyperbolic **cycle**

Several homoclinic orbits: \Rightarrow CHAOTIC INVARIANT SET