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1. Equilibria of autonomous ODEs

• Consider a family of autonomous ODEs:

u̇ = f(u, α), u ∈ R
n, α ∈ R,

where f : Rn × R → Rn is smooth.

• Equilibrium manifold:

α

u

f (u, α) = 0



2. Algebraic continuation problems

• Def. 1 ALCP: Find a curve M ⊂ RN+1 defined by

F(x) = 0, F : R
N+1 → R

N ,

starting from a point x0 ∈M .

Finding an equilibrium manifold is an example of ALCP with N = n,

x = (u, α) ≡

(

u

α

)

∈ R
n+1, F(x) = f(u, α).

• Def. 2 A point p ∈M is called regular for ALCP if rank Fx(p) = N .

v

x0

M

p

• Near any regular point p, the ALCP defines a solution curve M that

passes through p and is locally unique and smooth.



• If p ∈M is a regular point, then the linear equation

Jv = 0, J = Fx(p),

has a unique (modulus scaling) solution v ∈ RN+1.

• Lemma 1 A tangent vector v to M at p satisfies

Jv = 0.

Indeed, let x = x(s) be a smooth parametrization of M , such that

x(0) = p and ẋ(0) = v. The differentiation of F(x(s)) = 0 yields at

s = 0:
d

ds
F(x(s))

∣

∣

∣

∣

s=0
= Fx(x(0))ẋ(0) = Jv = 0

• Def. 3 A regular point p ∈M is a limit point for ALCP with respect

to a coordinate xj if vj = 0.



v =

(

w

0

)

M

p

x1

xN+1

If p is a limit point w.r.t. xN+1, then the N ×N matrix

A =

(

∂Fi(p)

∂xj

)

i,j=1,...,N

has eigenvalue λ = 0. Indeed, let x = x(s) be a smooth parametrization
of M , such that x(0) = p and ẋ(0) = v with

v =

(

w

0

)

6= 0, w ∈ R
N .

Then

Jv = Aw+
∂F(p)

∂xN+1
vN+1 = Aw = 0.



• Def. 4 A point p ∈ M is called a branching point for ALCP if

rank Fx(p) < N .

Let p = 0 be a branching point. Write

F(x) = Jx+
1

2
B(x, x) +O(‖x‖3),

where J = Fx(p). Introduce the null-spaces

N (J) = {v ∈ R
N+1 : Jv = 0}

and

N (JT) = {w ∈ R
N : JTw = 0}.

• Assume that rank J = N − 1, so that

dimN (J) = 2 and dimN (JT) = 1.

Let q1 and q2 span N (J) and ϕ span N (JT). Then

v = β1q1 + β2q2, w = αϕ,

where (β1, β2) ∈ R2, α ∈ R.



• Suppose we have a solution curve x = x(s) passing through the

branching point p = 0: x(0) = 0, ẋ(0) = v.

• By differentiating F(x(s)) = 0 twice with respect to s at s = 0,

taking the scalar product with ϕ, and using JTϕ = 0, one proves:

Lemma 2 Any tangent vector v ∈ R
N+1 to M at p = 0 satisfies the

equation

〈ϕ,B(v, v)〉 = 0.

• Substituting here v = β1q1+β2q2, we obtain the Algebraic Branch-

ing Equation:

b11β
2
1 + 2b12β1β2 + b22β

2
2 = 0,

where bij = 〈ϕ,B(qi, qj)〉, i, j = 1,2.



• Def. 5 A branching point, for which

(a) rank J = N − 1,

(b) b212 − b11b22 > 0,

is called a simple branching point.

0
v(1)

N (J)

x(1)

x(2)

v(2)



• Suppose that one solution curve x = x(1)(s) passing through a sim-

ple branch point p = 0 is known and v(1) = ẋ(1)(0) = q1, so that

β
(1)
1 = 1, β

(1)
2 = 0.

Thus, b11 = 0 and v(2) = β
(2)
1 q1 + β

(2)
2 q2 tangent to the second

solution curve x = x(2)(s) satisfies

2b12β
(2)
1 + b22β

(2)
2 = 0

or

β
(2)
1 = −

b22

2b12
β
(2)
2 .



Lemma 3 Consider the (N + 1) × (N + 1)-matrix

D(s) =





Fx(x(1)(s))
[

ẋ(1)(s)
]T



 .

Its determinant ψ(s) = detD(s) has a regular zero at the simple branch-

ing point.

Indeed, let q2 ∈ N (J) be a vector orthogonal to q1 = v(1). Then

D(0)q2 = 0,

so D(0) is singular and has the one-dimensional null-space.

Moreover, one can show that

ψ̇(0) = C〈ϕ,B(q1, q2)〉 = Cb12, C 6= 0,

where DT(0)p = 0 with p =

(

ϕ

0

)

.

Thus ψ̇(0) 6= 0.



3. Moore-Penrose numerical continuation

• Numerical solution of the ALCP means computing a sequence of

points

x(1), x(2), x(3), . . .

approximating the curve M with desired accuracy, given an initial

point x(0) that is sufficiently close to x0.

• Predictor-corrector method:

– Tangent prediction: X0 = x(i) + hiv
(i).

– Newton-Moore-Penrose corrections towards M :

(Xk, V k), k = 1,2,3, . . . .

– Adaptive step-size control.



• Def. 6 Let J be an N × (N + 1) matrix with rank J = N . Its

Moore-Penrose inverse is J+ = JT(JJT)−1.

• To compute J+b efficiently, set up the system for x ∈ RN+1:
{

Jx = b,

vTx = 0,

where b ∈ RN and v ∈ RN+1, Jv = 0, ‖v‖ = 1. Then x = J+b is a

solution to this system, since

JJ+b = b, vTJ+b = (Jv)T[(JJT)−1b] = 0.

• Let x(i) ∈ RN+1 be a regular point on the curve

F(x) = 0, f : R
N+1 → R

N ,

and v(i) ∈ R
N+1 be the tangent vector to this curve at x(i) such

that

Fx(x
(i))v(i) = 0, ‖v(i)‖ = 1.



For the next point x(i+1) ∈ R
N on the curve, solve the optimization

problem

min
x

{‖x−X0‖ | F(x) = 0},

i.e. look for a point x ∈M which is nearest to X0:

x
(i)

v
(i)

v

X
0

x

x
(i+1)

This is equivalent to solving the system
{

F(x) = 0,

vT(x−X0) = 0,

where v ∈ RN satisfies Fx(x)v = 0 with ‖v‖ = 1 and X0 is the prediction.



The linearization of the system about X0 is
{

F(X0) + Fx(X0)(X −X0) = 0,

(V 0)T(X −X0) = 0,

or
{

Fx(X0)(X −X0) = −F(X0),

(V 0)T(X −X0) = 0,

where Fx(X0)V 0 = 0 with ‖V 0‖ = 1. Thus

X = X0 − F+
x (X0)F(X0)

leading to the Moore-Penrose corrections:

Xk+1 = Xk − F+
x (Xk)F(Xk), k = 0,1,2, . . . ,

where V k ∈ RN+1 such that Fx(Xk)V k = 0 with ‖V k‖ = 1 should be

used to compute F+
x (Xk).



Geometry of the Moore-Penrose iterations

x
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v
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Each correction occurs within the plane orthogonal to the null-vector

V k at Xk.



Approximate V k : Fx(Xk−1)V k = 0.

V
0

X
2

x
(i)

v
(i)

x
(i+1)

v
(i+1)

V
2

X
1

X
0

V
1

Each correction occurs within the plane orthogonal to the previous null-

vector V k−1 at Xk.



Implementation

Iterate for k = 0,1,2, . . .

J = Fx(X
k), B =

(

J

V k
T

)

,

R =

(

JV k

0

)

, Q =

(

F(Xk)
0

)

,

W = V k −B−1R, V k+1 =
W

‖W‖

Xk+1 = Xk −B−1Q.

If ‖F(Xk)‖ < ε0 and ‖Xk+1 −Xk‖ < ε1 then

x(i+1) = Xk+1, v(i+1) = V k+1.



4. Limit cycles of autonomous ODEs

• Assume, the ODE system

u̇ = f(u, α), u ∈ R
n, α ∈ R,

has at α0 an isolated periodic orbit (limit cycle) C0.

u(0)

C0

• Let u0(t + T0) = u0(t) denote the corresponding periodic solution

with minimal period T0.



• Consider a periodic boundary-value problem on [0,1]:
{

ẇ − T0f(w, α) = 0,
w(0) − w(1) = 0.

Clearly, w(τ) = u0(T0τ + σ0), α = α0 is a solution to this BVP for

any phase shift σ0.

• Let v(τ) be a smooth period-1 function. To fix σ0, impose the

integral phase condition:

Ψ[w] =

∫ 1

0
〈w(τ), v̇(τ)〉dτ = 0



Lemma 4 The condition
∫ 1

0
〈w(τ), v̇(τ)〉dτ = 0

is a necessary condition for the L2-distance

ρ(σ) =

∫ 1

0
‖w(τ + σ) − v(τ)‖2dτ

between 1-periodic smooth functions w and v to achieve a local mini-

mum with respect to possible shifts σ at σ = 0.

Since ‖w‖2 = 〈w,w〉,

1

2
ρ̇(0) =

∫ 1

0
〈w(τ + σ) − v(τ), ẇ(τ + σ)〉dτ

∣

∣

∣

∣

∣

σ=0

=

∫ 1

0
〈w(τ) − v(τ), ẇ(τ)〉dτ

=
∫ 1

0
〈w(τ), ẇ(τ)〉dτ −

∫ 1

0
〈v(τ), ẇ(τ)〉dτ

=
1

2

∫ 1

0
d‖w(τ)‖2 −

∫ 1

0
〈v(τ), ẇ(τ)〉dτ

=

∫ 1

0
〈w(τ), v̇(τ)〉dτ .



5. Boundary-value continuation problems

• Def. 7 BVCP: Find a branch of solutions (u(τ), β) to the following

boundary-value problem with integral constraints


















u̇(τ) −H(u(τ), β) = 0, τ ∈ [0,1],
B(u(0), u(1), β) = 0,
∫ 1

0
C(u(τ), β) dτ = 0,

starting from a given solution (u0(τ), β0). Here u ∈ Rnu, β ∈ R
nβ and

H : R
nu × R

nβ → R
nu,

B : R
nu × R

nu × R
nβ → R

nb,

C : R
nu × R

nβ → R
nc

are smooth functions.

• The BVCP is (formally) well posed if

nβ = nb + nc − nu + 1.



6. Discretization via orthogonal collocation

• Mesh points: 0 = τ0 < τ1 < · · · < τN = 1.

• Basis points:

τi,j = τi +
j

m
(τi+1 − τi),

where i = 0,1, . . . , N − 1, j = 0,1, . . . ,m.

• Approximation:

u(i)(τ) =
m
∑

j=0

ui,jli,j(τ), τ ∈ [τi, τi+1],

where li,j(τ) are the Lagrange basis polynomials

li,j(τ) =
m
∏

k=0,k 6=j

τ − τi,k

τi,j − τi,k

and ui,m = ui+1,0.



• Orthogonal collocation:

F :















(

∑m
j=0 u

i,jl′i,j(ζi,k)
)

−H(
∑m
j=0 u

i,jli,j(ζi,k), β) = 0,

B(u0,0, uN−1,m, β) = 0,
∑N−1
i=0

∑m
j=0 ωi,jC(ui,j, β) = 0,

where ζi,k, k = 1,2, . . . ,m, are the Gauss points (roots of the Leg-

endre polynomials relative to the interval [τi, τi+1]), and ωi,j are the

Lagrange quadrature coefficients.

• Approximation error: Introduce

h = max
i=1,2,...,N

|τi − τi−1|

– in the basis points:

‖u(τi,j) − ui,j‖ = O(hm)

– in the mesh points:

‖u(τi) − ui,0‖ = O(h2m)



• BVCP for the limit cycle branch with α ∈ R:










ẇ(τ) − Tf(w(τ), α) = 0, τ ∈ [0,1],
w(0) − w(1) = 0,

∫ 1
0 〈w(τ), v̇(τ)〉 dτ = 0.

• Corresponding HUGE ALCP:

F(x) = 0, x = ({wj,k}, T, α) ∈ R
mnN+n+2

where j = 0,1, . . . , N − 1, k = 0,1, . . . ,m.

• The derivative of BVCP with respect to x = (w, T, α):






D − Tfw(w, α) −f(w, α) −Tfα(w, α)
δ0 − δ1 0 0
Intv̇ 0 0







has the one-dimensional null-space at a generic cycle.



• The orthogonal collocation produces a sparse Jacobian matrix Fx:





















































w
0,0
1 w

0,1
1 w

1,0
1 w

1,1
1 w

2,0
1 w

2,1
1 w

3,0
1 T1 α1

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • •
• • • •
• • • • • • • • • • • • • •





















































that has a one-dimensional null-space at generic points satisfying

F(x) = 0.



Computation of the multipliers

• After Gauss elimination:







































w
0,0
1 w

0,1
1 w

1,0
1 w

1,1
1 w

2,0
1 w

2,1
1 w

3,0
1 T1 α1

• • • • • • • •
• • ◦ • • • • •
• • ◦ ◦ • • • •
• • ◦ ◦ ◦ • • •

• • • • • • • •
• • ◦ • • • • •

• • ◦ ◦ ◦ ◦ • • • •
• • ◦ ◦ ◦ ◦ ◦ • • •

• • • • • • • •
• • ◦ • • • • •

∗ ∗ ◦ ◦ ◦ ◦ ⋆ ⋆ • •
∗ ∗ ◦ ◦ ◦ ◦ ⋆ ⋆ • •
• • • •
• • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •







































• Let P0 be the matrix block marked by ∗’s and P1 the matrix block

marked by ⋆’s. We have w
0,0
1 = w1(0), w

N,0 = w1(1) implying

P0w1(0) + P1w1(1) = P0u1(0) + P1u1(T) = 0 ⇒ M(T) = −P−1
1 P0


