NBA Lecture 2

Continuation problems. Numerical continuation of equilibria and limit cycles of ODEs

Yu.A. Kuznetsov (Utrecht University, NL)

March 15, 2011

Contents

1. Equilibria of autonomous ODEs.
2. Algebraic continuation problems.
3. Moore-Penrose numerical continuation.
4. Limit cycles of autonomous ODEs.
5. Boundary-value continuation problems.
6. Discretization via orthogonal collocation.

1. Equilibria of autonomous ODEs

- Consider a family of autonomous ODEs:

$$
\dot{u}=f(u, \alpha), \quad u \in \mathbb{R}^{n}, \alpha \in \mathbb{R},
$$

where $f: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$ is smooth.

- Equilibrium manifold:

2. Algebraic continuation problems

- Def. 1 ALCP: Find a curve $M \subset \mathbb{R}^{N+1}$ defined by

$$
F(x)=0, \quad F: \mathbb{R}^{N+1} \rightarrow \mathbb{R}^{N}
$$

starting from a point $x_{0} \in M$.
Finding an equilibrium manifold is an example of ALCP with $N=n$,

$$
x=(u, \alpha) \equiv\binom{u}{\alpha} \in \mathbb{R}^{n+1}, \quad F(x)=f(u, \alpha)
$$

- Def. 2 A point $p \in M$ is called regular for ALCP if rank $F_{x}(p)=N$.

- Near any regular point p, the ALCP defines a solution curve M that passes through p and is locally unique and smooth.
- If $p \in M$ is a regular point, then the linear equation

$$
J v=0, \quad J=F_{x}(p)
$$

has a unique (modulus scaling) solution $v \in \mathbb{R}^{N+1}$.

- Lemma 1 A tangent vector v to M at p satisfies

$$
J v=0
$$

Indeed, let $x=x(s)$ be a smooth parametrization of M, such that $x(0)=p$ and $\dot{x}(0)=v$. The differentiation of $F(x(s))=0$ yields at $s=0$:

$$
\left.\frac{d}{d s} F(x(s))\right|_{s=0}=F_{x}(x(0)) \dot{x}(0)=J v=0
$$

- Def. 3 A regular point $p \in M$ is a limit point for ALCP with respect to a coordinate x_{j} if $v_{j}=0$.

If p is a limit point w.r.t. x_{N+1}, then the $N \times N$ matrix

$$
A=\left(\frac{\partial F_{i}(p)}{\partial x_{j}}\right)_{i, j=1, \ldots, N}
$$

has eigenvalue $\lambda=0$. Indeed, let $x=x(s)$ be a smooth parametrization of M, such that $x(0)=p$ and $\dot{x}(0)=v$ with

$$
v=\binom{w}{0} \neq 0, \quad w \in \mathbb{R}^{N}
$$

Then

$$
J v=A w+\frac{\partial F(p)}{\partial x_{N+1}} v_{N+1}=A w=0
$$

- Def. 4 A point $p \in M$ is called a branching point for ALCP if rank $F_{x}(p)<N$.

Let $p=0$ be a branching point. Write

$$
F(x)=J x+\frac{1}{2} B(x, x)+O\left(\|x\|^{3}\right)
$$

where $J=F_{x}(p)$. Introduce the null-spaces

$$
\mathcal{N}(J)=\left\{v \in \mathbb{R}^{N+1}: J v=0\right\}
$$

and

$$
\mathcal{N}\left(J^{\top}\right)=\left\{w \in \mathbb{R}^{N}: J^{\top} w=0\right\} .
$$

- Assume that rank $J=N-1$, so that

$$
\operatorname{dim} \mathcal{N}(J)=2 \text { and } \operatorname{dim} \mathcal{N}\left(J^{\top}\right)=1
$$

Let q_{1} and $q_{2} \operatorname{span} \mathcal{N}(J)$ and $\varphi \operatorname{span} \mathcal{N}\left(J^{\top}\right)$. Then

$$
v=\beta_{1} q_{1}+\beta_{2} q_{2}, \quad w=\alpha \varphi,
$$

where $\left(\beta_{1}, \beta_{2}\right) \in \mathbb{R}^{2}, \alpha \in \mathbb{R}$.

- Suppose we have a solution curve $x=x(s)$ passing through the branching point $p=0: x(0)=0, \dot{x}(0)=v$.
- By differentiating $F(x(s))=0$ twice with respect to s at $s=0$, taking the scalar product with φ, and using $J^{\top} \varphi=0$, one proves:

Lemma 2 Any tangent vector $v \in \mathbb{R}^{N+1}$ to M at $p=0$ satisfies the equation

$$
\langle\varphi, B(v, v)\rangle=0
$$

- Substituting here $v=\beta_{1} q_{1}+\beta_{2} q 2$, we obtain the Algebraic Branching Equation:

$$
b_{11} \beta_{1}^{2}+2 b_{12} \beta_{1} \beta_{2}+b_{22} \beta_{2}^{2}=0,
$$

where $b_{i j}=\left\langle\varphi, B\left(q_{i}, q_{j}\right)\right\rangle, \quad i, j=1,2$.

- Def. 5 A branching point, for which
(a) rank $J=N-1$,
(b) $b_{12}^{2}-b_{11} b_{22}>0$,
is called a simple branching point.

- Suppose that one solution curve $x=x^{(1)}(s)$ passing through a simple branch point $p=0$ is known and $v^{(1)}=\dot{x}^{(1)}(0)=q_{1}$, so that

$$
\beta_{1}^{(1)}=1, \beta_{2}^{(1)}=0
$$

Thus, $b_{11}=0$ and $v^{(2)}=\beta_{1}^{(2)} q_{1}+\beta_{2}^{(2)} q_{2}$ tangent to the second solution curve $x=x^{(2)}(s)$ satisfies

$$
2 b_{12} \beta_{1}^{(2)}+b_{22} \beta_{2}^{(2)}=0
$$

or

$$
\beta_{1}^{(2)}=-\frac{b_{22}}{2 b_{12}} \beta_{2}^{(2)} .
$$

Lemma 3 Consider the $(N+1) \times(N+1)$-matrix

$$
D(s)=\binom{F_{x}\left(x^{(1)}(s)\right)}{\left[\dot{x}^{(1)}(s)\right]^{\top}} .
$$

Its determinant $\psi(s)=\operatorname{det} D(s)$ has a regular zero at the simple branching point.

Indeed, let $q_{2} \in \mathcal{N}(J)$ be a vector orthogonal to $q_{1}=v^{(1)}$. Then

$$
D(0) q_{2}=0,
$$

so $D(0)$ is singular and has the one-dimensional null-space.
Moreover, one can show that

$$
\dot{\psi}(0)=C\left\langle\varphi, B\left(q_{1}, q_{2}\right)\right\rangle=C b_{12}, \quad C \neq 0
$$

where $D^{\top}(0) p=0$ with $p=\binom{\varphi}{0}$.
Thus $\dot{\psi}(0) \neq 0$.
3. Moore-Penrose numerical continuation

- Numerical solution of the ALCP means computing a sequence of points

$$
x^{(1)}, x^{(2)}, x^{(3)}, \ldots
$$

approximating the curve M with desired accuracy, given an initial point $x^{(0)}$ that is sufficiently close to x_{0}.

- Predictor-corrector method:
- Tangent prediction: $X^{0}=x^{(i)}+h_{i} v^{(i)}$.
- Newton-Moore-Penrose corrections towards M :

$$
\left(X^{k}, V^{k}\right), k=1,2,3, \ldots
$$

- Adaptive step-size control.
- Def. 6 Let J be an $N \times(N+1)$ matrix with rank $J=N$. Its Moore-Penrose inverse is $J^{+}=J^{\top}\left(J J^{\top}\right)^{-1}$.
- To compute $J^{+} b$ efficiently, set up the system for $x \in \mathbb{R}^{N+1}$:

$$
\left\{\begin{aligned}
J x & =b, \\
v^{\top} x & =0,
\end{aligned}\right.
$$

where $b \in \mathbb{R}^{N}$ and $v \in \mathbb{R}^{N+1}, J v=0,\|v\|=1$. Then $x=J^{+} b$ is a solution to this system, since

$$
J J^{+} b=b, \quad v^{\top} J^{+} b=(J v)^{\top}\left[\left(J J^{\top}\right)^{-1} b\right]=0 .
$$

- Let $x^{(i)} \in \mathbb{R}^{N+1}$ be a regular point on the curve

$$
F(x)=0, f: \mathbb{R}^{N+1} \rightarrow \mathbb{R}^{N},
$$

and $v^{(i)} \in \mathbb{R}^{N+1}$ be the tangent vector to this curve at $x^{(i)}$ such that

$$
F_{x}\left(x^{(i)}\right) v^{(i)}=0, \quad\left\|v^{(i)}\right\|=1
$$

For the next point $x^{(i+1)} \in \mathbb{R}^{N}$ on the curve, solve the optimization problem

$$
\min _{x}\left\{\left\|x-X^{0}\right\| \mid F(x)=0\right\}
$$

i.e. look for a point $x \in M$ which is nearest to X^{0} :

This is equivalent to solving the system

$$
\left\{\begin{aligned}
F(x) & =0 \\
v^{\top}\left(x-X^{0}\right) & =0
\end{aligned}\right.
$$

where $v \in \mathbb{R}^{N}$ satisfies $F_{x}(x) v=0$ with $\|v\|=1$ and X^{0} is the prediction.

The linearization of the system about X^{0} is

$$
\left\{\begin{aligned}
F\left(X^{0}\right)+F_{x}\left(X^{0}\right)\left(X-X^{0}\right) & =0, \\
\left(V^{0}\right)^{\top}\left(X-X^{0}\right) & =0,
\end{aligned}\right.
$$

or

$$
\left\{\begin{array}{ccc}
F_{x}\left(X^{0}\right)\left(X-X^{0}\right) & = & -F\left(X^{0}\right) \\
\left(V^{0}\right)^{\top}\left(X-X^{0}\right) & = & 0
\end{array}\right.
$$

where $F_{x}\left(X^{0}\right) V^{0}=0$ with $\left\|V^{0}\right\|=1$. Thus

$$
X=X^{0}-F_{x}^{+}\left(X^{0}\right) F\left(X^{0}\right)
$$

leading to the Moore-Penrose corrections:

$$
X^{k+1}=X^{k}-F_{x}^{+}\left(X^{k}\right) F\left(X^{k}\right), k=0,1,2, \ldots,
$$

where $V^{k} \in \mathbb{R}^{N+1}$ such that $F_{x}\left(X^{k}\right) V^{k}=0$ with $\left\|V^{k}\right\|=1$ should be used to compute $F_{x}^{+}\left(X^{k}\right)$.

Geometry of the Moore-Penrose iterations

Each correction occurs within the plane orthogonal to the null-vector V^{k} at X^{k}.

Approximate $V^{k}: F_{x}\left(X^{k-1}\right) V^{k}=0$.

Each correction occurs within the plane orthogonal to the previous nullvector V^{k-1} at X^{k}.

Implementation

Iterate for $k=0,1,2, \ldots$

$$
\begin{aligned}
& J=F_{x}\left(X^{k}\right), \quad B=\binom{J}{V^{k \top}} \\
& R=\binom{J V^{k}}{0}, \quad Q=\binom{F\left(X^{k}\right)}{0} \\
& W=V^{k}-B^{-1} R, \quad V^{k+1}=\frac{W}{\|W\|} \\
& X^{k+1}=X^{k}-B^{-1} Q
\end{aligned}
$$

If $\left\|F\left(X^{k}\right)\right\|<\varepsilon_{0}$ and $\left\|X^{k+1}-X^{k}\right\|<\varepsilon_{1}$ then

$$
x^{(i+1)}=X^{k+1}, \quad v^{(i+1)}=V^{k+1}
$$

4. Limit cycles of autonomous ODEs

- Assume, the ODE system

$$
\dot{u}=f(u, \alpha), \quad u \in \mathbb{R}^{n}, \quad \alpha \in \mathbb{R}
$$

has at α_{0} an isolated periodic orbit (limit cycle) C_{0}.

- Let $u_{0}\left(t+T_{0}\right)=u_{0}(t)$ denote the corresponding periodic solution with minimal period T_{0}.
- Consider a periodic boundary-value problem on $[0,1]$:

$$
\left\{\begin{aligned}
\dot{w}-T_{0} f(w, \alpha) & =0 \\
w(0)-w(1) & =0
\end{aligned}\right.
$$

Clearly, $w(\tau)=u_{0}\left(T_{0} \tau+\sigma_{0}\right), \alpha=\alpha_{0}$ is a solution to this BVP for any phase shift σ_{0}.

- Let $v(\tau)$ be a smooth period-1 function. To fix σ_{0}, impose the integral phase condition:

$$
\Psi[w]=\int_{0}^{1}\langle w(\tau), \dot{v}(\tau)\rangle d \tau=0
$$

Lemma 4 The condition

$$
\int_{0}^{1}\langle w(\tau), \dot{v}(\tau)\rangle d \tau=0
$$

is a necessary condition for the L_{2}-distance

$$
\rho(\sigma)=\int_{0}^{1}\|w(\tau+\sigma)-v(\tau)\|^{2} d \tau
$$

between 1-periodic smooth functions w and v to achieve a local minimum with respect to possible shifts σ at $\sigma=0$.

Since $\|w\|^{2}=\langle w, w\rangle$,

$$
\begin{aligned}
\frac{1}{2} \dot{\rho}(0) & =\left.\int_{0}^{1}\langle w(\tau+\sigma)-v(\tau), \dot{w}(\tau+\sigma)\rangle d \tau\right|_{\sigma=0} \\
& =\int_{0}^{1}\langle w(\tau)-v(\tau), \dot{w}(\tau)\rangle d \tau \\
& =\int_{0}^{1}\langle w(\tau), \dot{w}(\tau)\rangle d \tau-\int_{0}^{1}\langle v(\tau), \dot{w}(\tau)\rangle d \tau \\
& =\frac{1}{2} \int_{0}^{1} d\|w(\tau)\|^{2}-\int_{0}^{1}\langle v(\tau), \dot{w}(\tau)\rangle d \tau \\
& =\int_{0}^{1}\langle w(\tau), \dot{v}(\tau)\rangle d \tau
\end{aligned}
$$

5. Boundary-value continuation problems

- Def. 7 BVCP: Find a branch of solutions $(u(\tau), \beta)$ to the following boundary-value problem with integral constraints

$$
\left\{\begin{aligned}
\dot{u}(\tau)-H(u(\tau), \beta) & =0, \quad \tau \in[0,1] \\
B(u(0), u(1), \beta) & =0 \\
\int_{0}^{1} C(u(\tau), \beta) d \tau & =0
\end{aligned}\right.
$$

starting from a given solution $\left(u_{0}(\tau), \beta_{0}\right)$. Here $u \in \mathbb{R}^{n_{u}}, \beta \in \mathbb{R}^{n_{\beta}}$ and

$$
\begin{aligned}
& H: \mathbb{R}^{n_{u}} \times \mathbb{R}^{n_{\beta}} \rightarrow \mathbb{R}^{n_{u}} \\
& B: \mathbb{R}^{n_{u}} \times \mathbb{R}^{n_{u}} \times \mathbb{R}^{n_{\beta}} \rightarrow \mathbb{R}^{n_{b}} \\
& C: \mathbb{R}^{n_{u}} \times \mathbb{R}^{n_{\beta}} \rightarrow \mathbb{R}^{n_{c}}
\end{aligned}
$$

are smooth functions.

- The BVCP is (formally) well posed if

$$
n_{\beta}=n_{b}+n_{c}-n_{u}+1
$$

6. Discretization via orthogonal collocation

- Mesh points: $0=\tau_{0}<\tau_{1}<\cdots<\tau_{N}=1$.
- Basis points:

$$
\tau_{i, j}=\tau_{i}+\frac{j}{m}\left(\tau_{i+1}-\tau_{i}\right)
$$

where $i=0,1, \ldots, N-1, j=0,1, \ldots, m$.

- Approximation:

$$
u^{(i)}(\tau)=\sum_{j=0}^{m} u^{i, j} l_{i, j}(\tau), \quad \tau \in\left[\tau_{i}, \tau_{i+1}\right]
$$

where $l_{i, j}(\tau)$ are the Lagrange basis polynomials

$$
l_{i, j}(\tau)=\prod_{k=0, k \neq j}^{m} \frac{\tau-\tau_{i, k}}{\tau_{i, j}-\tau_{i, k}}
$$

and $u^{i, m}=u^{i+1,0}$.

- Orthogonal collocation:

$$
F:\left\{\begin{aligned}
\left(\sum_{j=0}^{m} u^{i, j} l_{i, j}^{\prime}\left(\zeta_{i, k}\right)\right)-H\left(\sum_{j=0}^{m} u^{i, j} l_{i, j}\left(\zeta_{i, k}\right), \beta\right) & =0 \\
B\left(u^{0,0}, u^{N-1, m}, \beta\right) & =0 \\
\sum_{i=0}^{N-1} \sum_{j=0}^{m} \omega_{i, j} C\left(u^{i, j}, \beta\right) & =0
\end{aligned}\right.
$$

where $\zeta_{i, k}, k=1,2, \ldots, m$, are the Gauss points (roots of the Legendre polynomials relative to the interval $\left.\left[\tau_{i}, \tau_{i+1}\right]\right)$, and $\omega_{i, j}$ are the Lagrange quadrature coefficients.

- Approximation error: Introduce

$$
h=\max _{i=1,2, \ldots, N}\left|\tau_{i}-\tau_{i-1}\right|
$$

- in the basis points:

$$
\left\|u\left(\tau_{i, j}\right)-u^{i, j}\right\|=O\left(h^{m}\right)
$$

- in the mesh points:

$$
\left\|u\left(\tau_{i}\right)-u^{i, 0}\right\|=O\left(h^{2 m}\right)
$$

- BVCP for the limit cycle branch with $\alpha \in \mathbb{R}$:

$$
\left\{\begin{aligned}
\dot{w}(\tau)-T f(w(\tau), \alpha) & =0, \tau \in[0,1] \\
w(0)-w(1) & =0 \\
\int_{0}^{1}\langle w(\tau), \dot{v}(\tau)\rangle d \tau & =0
\end{aligned}\right.
$$

- Corresponding HUGE ALCP:

$$
F(x)=0, \quad x=\left(\left\{w^{j, k}\right\}, T, \alpha\right) \in \mathbb{R}^{m n N+n+2}
$$

where $j=0,1, \ldots, N-1, k=0,1, \ldots, m$.

- The derivative of BVCP with respect to $x=(w, T, \alpha)$:

$$
\left[\begin{array}{ccc}
D-T f_{w}(w, \alpha) & -f(w, \alpha) & -T f_{\alpha}(w, \alpha) \\
\delta_{0}-\delta_{1} & 0 & 0 \\
\operatorname{Int}_{\dot{v}} & 0 & 0
\end{array}\right]
$$

has the one-dimensional null-space at a generic cycle.

- The orthogonal collocation produces a sparse Jacobian matrix F_{x} :

that has a one-dimensional null-space at generic points satisfying $F(x)=0$.

Computation of the multipliers

- After Gauss elimination:

- Let P_{0} be the matrix block marked by $*$'s and P_{1} the matrix block marked by \star 's. We have $w_{1}^{0,0}=w_{1}(0), w^{N, 0}=w_{1}(1)$ implying

$$
P_{0} w_{1}(0)+P_{1} w_{1}(1)=P_{0} u_{1}(0)+P_{1} u_{1}(T)=0 \Rightarrow M(T)=-P_{1}^{-1} P_{0}
$$

