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1. Equilibria of ODEs and their simplest (codim 1) bifurcations

• Consider a smooth ODE system

u̇ = f(u, α), u ∈ R
n, α ∈ R

m.

• An equilibrium u0 satisfies

f(u0, α0) = 0

and its Jacobian matrix A = fu(u0, α0) has eigenvalues {λ1, λ2, . . . , λn}.

• Critical cases: LP (λ1 = 0) and H (λ1,2 = ±iω0, ω0 > 0)
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Collision of two equilibria.



Generic H bifurcation: λ1,2 = ±iω0
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Birth of a limit cycle.



2. Detection of LP and H bifurcations

• Monitor eigenvalues of A(u, α) = fu(u, α) along the equilibrium

curve

f(u, α) = 0, u ∈ R
n, α ∈ R.

• Test function for LP: ψLP = Vn+1, the α-component of the normal-

ized tangent vector to the equilibrium curve in the (u, α)-space.

• Test function for H:

ψH = det(2A(u, α) ⊙ In),

where ⊙ denotes the bialternate matrix product with elements

(A⊙B)(i,j),(k,l) =
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,

where i > j, k > l.



Labeling of elements of A⊙B for n = 4

(3,2)(2,1), (4,1)(2,1), (4,2)(2,1),(3,1)(2,1),(2,1)(2,1),

(2,1) (3,1) (3,2) (4,1) (4,2) (4,3)

(2,1) (3,1) (3,2) (4,1) (4,2) (4,3)

(2,1) (3,1) (3,2) (4,1) (4,2) (4,3)

(2,1) (3,1) (3,2) (4,1) (4,2) (4,3)

(3,2), (3,2), (3,2), (3,2), (3,2), (3,2),

(4,1), (4,1), (4,1), (4,1), (4,1), (4,1),

(4,2), (4,2), (4,2), (4,2), (4,2), (4,2),

(4,3), (4,3), (4,3), (4,3), (4,3), (4,3),

(2,1) (3,1) (3,2) (4,1) (4,2) (4,3)(3,1), (3,1), (3,1), (3,1), (3,1), (3,1),

(4,3)(2,1),



Wedge product of vectors

• Two index pairs (i, j), (k, l) are listed in the lexicographic order if

either i < k or (i = k and j < l).

• The wedge product of two vectors v, w ∈ Cn is a vector v∧w ∈ Cm,

m = n(n−1)
2 , with the components:

(v ∧ w)(i,j) = viwj − vjwi, n ≥ i > j ≥ 1,

listed in the lexicographic order of their index pairs.

• For any v, w,w1,2 ∈ Cn, λ ∈ C: v ∧ w = −w ∧ v and

v ∧ (λw) = λ(v ∧ w), v ∧ (w1 + w2) = v ∧ w1 + v ∧ w2.

• If ei ∈ Cn, n ≥ i ≥ 1, form a basis in Cn, then ei ∧ ej ∈ Cm, n ≥ i >

j ≥ 1, form a basis in Cm.



Bialternate matrix product

• The matrix of the linear transformation of Cm defined by

(v ∧ w) 7→ (A⊙B)(v ∧ w) =
1

2
(Av ∧Bw − Aw ∧Bv)

in the standard basis {ei ∧ ej} is called the bialternate product of

two matrices A,B ∈ Cn×n.

• Stéphanos Theorem If A ∈ Cn×n has eigenvalues λ1, λ2, . . . , λn,

then

(i) A⊙ A has eigenvalues λiλj,

(ii) 2A⊙ In has eigenvalues λi + λj,

where n ≥ i > j ≥ 1.

Indeed, if {vi} are linearly-independent eigenvectors of A, then vi∧vj

is an eigenvector of both A⊙A and 2A⊙ In.

• (AB) ⊙ (AB) = (A⊙A)(B ⊙B), (A⊙A)−1 = A−1 ⊙ A−1.



3. Continuation of LP and Hopf bifurcations

3.1. Bordering technique

3.2. Continuation of LP bifurcation

3.3. Continuation of Hopf bifurcation



3.1. Bordering technique M ∈ Rn×n, vj, bj, cj ∈ Rn, gij, dij ∈ R

• Suppose the following system has invertible matrix:
(

M b1
cT1 d11

)(

v1
g11

)

=

(

0
1

)

.

Then M has rank defect 1 if and only if g11 = 0. Indeed, by Cramer’s

rule

g11 =
detM

det

(

M b1
cT1 d11

).

• Suppose the following system has invertible matrix:






M b1 b2
cT1 d11 d12

cT2 d21 d22













v1 v2
g11 g12
g21 g22






=







0 0
1 0
0 1






.

Then M has rank defect 2 if and only if

g11 = g12 = g21 = g22 = 0.



3.2. Continuation of LP bifurcation

• At a generic LP bifurcation A(u, α) = fu(u, α) has rank defect 1.

• Defining system: x = (u, α) ∈ Rn+2

{

f(u, α) = 0,
G(u, α) = 0,

where G is computed by solving the bordered system
(

A(u, α) p1
qT1 0

)(

q

G

)

=

(

0
1

)

• Vectors q1, p1 ∈ Rn are adapted along the LP-curve to make the

matrix of the linear system nonsingular.

• (Gu, Gα) can be computed efficiently using the adjoint linear system.



Derivatives of G

The α-derivative of the bordered system
(

A(u, α) p1
qT1 0

)(

qα
Gα

)

+

(

Aα(u, α) 0
0 0

)(

q

G

)

=

(

0
0

)

implies
(

A(u, α) w1

qT1 0

)(

qα
Gα

)

= −

(

Aα(u, α) 0
0 0

)(

q

G

)

Multiplication from the left by (pT h) satisfying
(

AT(u, α) q1
pT1 0

)(

p

h

)

=

(

0
1

)

gives

Gα = −pTAα(u, α)q = −〈p,Aα(u, α)q〉.



3.3. Continuation of Hopf bifurcation

• At a generic Hopf bifurcation A2(u, α) + ω2
0In has rank defect 2.

• Defining system: x = (u, α, κ) ∈ Rn+3











f(u, α) = 0,
G11(u, α, κ) = 0,
G22(u, α, κ) = 0,

where κ = ω2
0 and Gij are computed by solving







A2(u, α) + κIn p1 p2
qT1 0 0

qT2 0 0













r s

G11 G12
G21 G22






=







0 0
1 0
0 1







• Vectors q1,2, p1,2 ∈ Rn are adapted to ensure unique solvability.

• Efficient computation of derivatives of Gij is possible.



Remarks on continuation of bifurcations

• For each defining system holds: Simplicity of the bifurcation +

Transversality ⇒ Regularity of the defining system.

• Border adaptation using solutions of the adjoint linear system.

• Alternatives to bordering for LP:










f(u, α) = 0,
fu(u, α)q = 0,
〈q, q0〉 − 1 = 0

or

{

f(u, α) = 0,
det(fu(u, α)) = 0.

• Alternatives to bordering for H:






























f(u, α) = 0,
fu(u, α)q+ ωp = 0,
fu(u, α)p− ωq = 0,

〈q, q0〉 + 〈p, p0〉 − 1 = 0,
〈q, p0〉 − 〈q0, p〉 = 0

or

{

f(u, α) = 0,
det(2fu(u, α) ⊙ In) = 0.



4. Computation of normal forms for LP and Hopf bifurcations

4.1. Normal forms on center manifolds

4.2. Fredholm’s Alternative

4.3. Critical LP-coefficient

4.4. Critical H-coefficient

4.5. Approximation of multilinear forms by finite differences



4.1. Normal forms on center manifolds

• LP: ξ̇ = β + bξ2, b 6= 0

ξ ξ

00

b < 0 b > 0

ββ

Equilibria: β + bξ2 = 0 ⇒ ξ1,2 = ±
√

−β
b



• H: ξ̇ = (β + iω)ξ+ cξ|ξ|2, l1 = 1
ωℜ(c) 6= 0

ℑ(ξ)

β

ℜ(ξ)

β

l1 < 0

ℑ(ξ)

ℜ(ξ)

l1 > 0

Limit cycle:
{

ρ̇ = ρ(β + ℜ(c)ρ2),

ϕ̇ = ω+ ℑ(c)ρ2,
⇒ ρ0 =

√

−
β

ℜ(c)



4.2. Fredholm’s Alternative

• Lemma 1 The linear system Ax = b with b ∈ Rn and a singular n×n
real matrix A is solvable if and only if 〈p, b〉 = 0 for all p satisfying

ATp = 0.

Indeed, Rn = L⊕R with L ⊥ R, where

L = N (AT) = {p ∈ R
n : ATp = 0}

and

R = {x ∈ R
n : x = Ay for some y ∈ R

n}.

The proof is completed by showing that the orthogonal complement

L⊥ to L coincides with R.

• In the complex case:

R
n ⇒ C

n

〈p, b〉 = p̄Tb

AT ⇒ A∗ = ĀT



4.3. Critical LP-coefficient b

• Let Aq = ATp = 0 with 〈q, q〉 = 〈p, q〉 = 1.

• Write the RHS at the bifurcation as

F(u) = Au+
1

2
B(u, u) +O(‖u‖3),

and locally represent the center manifold W c
0 as the graph of a

function H : R → Rn,

u = H(ξ) = ξq+
1

2
h2ξ

2 +O(ξ3), ξ ∈ R, h2 ∈ R
n.

The restriction of u̇ = F(u) to W c
0 is

ξ̇ = G(ξ) = bξ2 +O(ξ3).

• The invariance of the center manifold Hξ(ξ)ξ̇ = F(H(ξ)) implies

Hξ(ξ)G(ξ) = F(H(ξ)).



Substitute all expansions into this homological equation:

A(ξq+
1

2
h2ξ

2) +
1

2
B(ξq, ξq) +O(|ξ|3) = bξ2q+ bξ3h2 + O(|ξ|4),

and collect the coefficients of the ξj-terms:

• The ξ-terms give the identity: Aq = 0.

• The ξ2-terms give the equation for h2:

Ah2 = −B(q, q) + 2bq.

It is singular and its Fredholm solvability

〈p,−B(q, q) + 2bq〉 = 0

implies

b =
1

2
〈p,B(q, q)〉



4.4. Critical H-coefficient c

• Aq = iω0q,A
Tp = −iω0p, 〈q, q〉 = 〈p, q〉 = 1.

• Write

F(u) = Au+
1

2
B(u, u) +

1

3!
C(u, u, u) +O(‖u‖4)

and locally represent the center manifold W c
0 as the graph of a

function H : C → Rn,

u = H(ξ, ξ) = ξq+ ξ q+
∑

2≤j+k≤3

1

j!k!
hjkξ

jξ
k
+O(|ξ|4).

The restriction of u̇ = F(u) to W c
0 is

ξ̇ = G(ξ, ξ) = iω0ξ+ cξ|ξ|2 +O(|ξ|4).

• The invariance of W c
0, Hξ(ξ, ξ)ξ̇+H

ξ
(ξ, ξ)ξ̇ = F(H(ξ, ξ)) implies

Hξ(ξ, ξ)G(ξ, ξ) +H
ξ
(ξ, ξ)G(ξ, ξ) = F(H(ξ, ξ)).



• Quadratic ξ2- and |ξ|2-terms give

h20 = (2iω0In − A)−1B(q, q),

h11 = −A−1B(q, q).

• Cubic w2w-terms give the singular system

(iω0In −A)h21 = C(q, q, q) +B(q, h20) + 2B(q, h11) − 2cq.

The solvability of this system implies

c =
1

2
〈p, C(q, q, q) +B(q, (2iω0In − A)−1B(q, q)) − 2B(q, A−1B(q, q))〉

• The first Lyapunov coefficient

l1 =
1

ω0
ℜ(c).



4.5. Approximation of multilinear forms by finite differences

• Finite-difference approximation of directional derivatives:

B(q, q) =
1

h2
[f(u0 + hq, α0) + f(u0 − hq, α0)]

+ O(h2)

C(r, r, r) =
1

8h3
[f(u0 + 3hr, α0)−3f(u0 + hr, α0)

+ 3f(u0 − hr, α0) − f(u0 − 3hr, α0)]

+ O(h2).

• Polarization identities:

B(q, r) =
1

4
[B(q+ r, q+ r) −B(q − r, q − r)] ,

C(q, q, r) =
1

6

[

C(q+ r, q+ r, q+ r) − C(q − r, q − r, q − r)
]

−
1

3
C(r, r, r).



5. Detection of codim 2 bifurcations

• codim 2 cases along the LP-curve:

– Bogdanov-Takens (BT): λ1,2 = 0

(ψBT = 〈p, q〉 with 〈q, q〉 = 〈p, p〉 = 1)

– fold-Hopf (ZH): λ1 = 0, λ2,3 = ±iω0

(ψZH = det(2A⊙ In))

– cusp (CP): λ1 = 0, b = 0 (ψCP = b)



• Critical cases along the H-curve:

– Bogdanov-Takens (BT): λ1,2 = 0

(ψBT = κ)

– fold-Hopf (ZH): λ1,2 = ±iω0, λ3 = 0

(ψZH = detA)

– double Hopf (HH): λ1,2 = ±iω0, λ3,4 = ±iω1

(ψHH = det(2A⊥ ⊙ In−2)

– Bautin (GH): λ1,2 = ±iω0, l1 = 0

(ψGH = l1)


