NBA Lecture 3

Equilibrium bifurcations of ODEs and their
numerical analysis

Yu.A. Kuznetsov (Utrecht University, NL)

March 16, 2011



Contents

1. Equilibria of ODEs and their simplest (codim 1) bifurcations

2. Detection of fold (LP) and Andronov-Hopf (H) bifurcations

3. Continuation of LP and H bifurcations

4. Computation of normal forms for LP and H bifurcations

5. Detection of codim 2 bifurcations



1. Equilibria of ODEs and their simplest (codim 1) bifurcations

e Consider a smooth ODE system
v = f(u,a), uweR" aecR™

e An equilibrium ug satisfies

f(ug,a0) =0
and its Jacobian matrix A = fy,(ug, ag) has eigenvalues {A1, Ao, ..., A\n}.

o Critical cases: LP (A = 0) and H (A1 2 = Fiwg,wg > 0)
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Collision of two equilibria.



Generic H bifurcation: A\ > = $iwg

Birth of a limit cycle.



2. Detection of LP and H bifurcations

e Monitor eigenvalues of A(u,a) = fu(u,«) along the equilibrium
curve

f(u,a) =0, u € R" o€k

e Test function for LP: ¢¥yp =V, 11, the a-component of the normal-
ized tangent vector to the equilibrium curve in the (u, o)-space.

e [est function for H:

where ¢ denotes the bialternate matrix product with elements
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where 7 > 3, k > [.



(2,1),(2,1)
(31),(2,2)
(3,2),(2,1)
(4,1),(2,1)
4,2),(2,1)

4,3),(2,1)

(2,1),(3,1)
(32),(3,1)
(3,2),(3,1)
(41,31
4,2),(3,1)

4,3),(3,1)

(2,1),(3,2)
(3,1),(3,2)
(3,2),(3,2)
(4,1),(3,2
4,2),(3,2)

4,3),(3,2

Labeling of elements of A B for n =4

(2,1),(41)
(31),(4,1)
(3,2),(4,1)
(4,1),(4,2)
(4,2),(4,1)

(4,3),(41)

(2,1),(4,2)
(31),(4,2)
(3,2),(4,2)
(4,1),(4,2
(4,2),(4,2)

4,3),(4,2)

(2,1),(4,3)
(3,1),(4,3)
(3,2),(4,3)
(4,1),(4,3)
(4,2),(4,3)

4,3),(4,3)



Wedge product of vectors

e Two index pairs (7,7), (k,1) are listed in the lexicographic order if
either i<k or (i=k and j <1).

e The wedge product of two vectors v, w € C" is a vector v Aw € C™,

m = ”(”2_1), with the components:

(v /\’w)(%]) = V;Wj — vjw;, N >1>972>1,

listed in the lexicographic order of their index pairs.

e For any v,w,wb2 e C® \NeC: vAw = —wAwv and

v A Qw) = AvAw), vA @4 w?) =vAw + v AW

e Ifet €Cn, n>4>1, form a basis in C?, then e Ael € C™, n > i >
7 > 1, form a basis in C™.



Bialternate matrix product

e T he matrix of the linear transformation of C™ defined by
1
(vAw)— (A0 B)(vAw) = E(Av/\Bw—Aw/\Bv)
in the standard basis {e’ A e/} is called the bialternate product of

two matrices A, B € C"*",

e Stéphanos Theorem If A € C**"™ has eigenvalues A1, )Xo, ..., An,
then

(i) AO®A has eigenvalues \;\;,
(it) 2A © In has eigenvalues \; + \j,

wheren > 1> 35 > 1.
Indeed, if {+v'} are linearly-independent eigenvectors of A, then v Av?

is an eigenvector of both A® A and 2A ¢ I,,.

e (ABYO(AB)=(A0A)BGOB), (AcA)1=4a"104"1



3. Continuation of LP and Hopf bifurcations

3.1. Bordering technique

3.2. Continuation of LP bifurcation

3.3. Continuation of Hopf bifurcation



3.1. Bordering technique M c R"*", wv; b;,c; € R"?, g;5,d;; €R

e Suppose the following system has invertible matrix:

(7 i) (ot )=(3)

Then M has rank defect 1 if and only if g11 = 0. Indeed, by Cramer’s

rule
det M

gll_det<M bl )
c—lr di1

e Suppose the following system has invertible matrix:

M by b v1 U2 O O
ClT d11 dio g11 912 |=| 1 O
¢y dp1 dop 921 922 01

Then M has rank defect 2 if and only if

g11 = 912 = g21 = g2 = O.



3.2. Continuation of LP bifurcation

e At a generic LP bifurcation A(u,a) = fu(u,«) has rank defect 1.

e Defining system: x = (u, ) € Rn+2

{f(u,a) 0,
G(u,a) = 0,

where G is computed by solving the bordered system
A(w,0) p1\(a)_ (O
qir 0 G 1

e Vectors ¢g1,p1 € R™ are adapted along the LP-curve to make the
matrix of the linear system nonsingular.

e (Gy,Gq) can be computed efficiently using the adjoint linear system.



Derivatives of G

The a-derivative of the bordered system
A(ua O{) P1 do + AOé(ua Oé) O q
g1 O Ga 0 0/)\G
. 0
- 0
A(“’a Oé) ’LU]_ do — AOé(ua Oé) O q
¢ O Ga 0 0/)\G

Multiplication from the left by (p' k) satisfying
AT(u,0) g1 \(p\_ [0
p—lr 0 h 1

Go = —p ' Aa(u,a)q = —(p, Aa(u, a)q).

implies

gives



3.3. Continuation of Hopf bifurcation
e At a generic Hopf bifurcation A?(u,a) + w3l has rank defect 2.

e Defining system: =z = (u,a, k) € RrR7+3

f(u,a)
G]_]_(U,Oé,l‘il) -
Goo(u,a, k) = 0,

where k = wj and G;; are computed by solving

|l
oo

A?(u, @) + kIn p1 po T S 0O 0
qir O O Gi11 Gio | =110
a5 0O O Go1 Goo 01

e Vectors q1 2,p1,2 € R™ are adapted to ensure unique solvability.

e Efficient computation of derivatives of Gz-j IS possible.



Remarks on continuation of bifurcations

e For each defining system holds: Simplicity of the bifurcation -+
Transversality = Regularity of the defining system.

e Border adaptation using solutions of the adjoint linear system.

e Alternatives to bordering for LP:

f(U,Oé) — O,
— f(U,Oé) e O’
<§?€§§)’g)i] ; 87 > {det(fu(u,oz)) = 0.
e Alternatives to bordering for H:
’ flu,a) = 0,
fu(u,a)g+wp = 0,
— — f(U,O{) e O’
| <QaQO{uiu€p%z91;> _w:(l} ; 8: . {det(qu(uaO‘)@In) = 0.
\ <q’p0> o <QO7p> = 0




4. Computation of normal forms for LP and Hopf bifurcations

4.1.

4.2.

4.3.

4.4,

4.5.

Normal forms on center manifolds

Fredholm’'s Alternative

Critical LP-coefficient

Critical H-coefficient

Approximation of multilinear forms by finite differences



4.1. Normal forms on center manifolds

o LP:£=8+4+bL% b#0

§ 3
0 3 0
b <0 b >0

Equilibria: 8+b62=0= ¢ 5 =4/~




o H: £ = (B+iw)é+cflé]?, 11 = IR(c) #0

R(E) / \ R(E)
) m /ﬁ I
\\\ U /8 U //// /8
3(€) 3(€)
lh <0 1 >0
Limit cycle:
p = p(B4+ R(c)p?), _ | B
{ o = w4 3(c)p?, 0= R(c)



4.2. Fredholm’s Alternative

e Lemma 1 The linear system Ax = b with b € R™ and a singular n xn
real matrix A is solvable if and only if {(p,b) = 0 for all p satisfying
ATp=0.

Indeed, R" =L & R with L L R, where
L=NANY={peR": Alp =0}
and
R={xeR":z= Ay for some y e R"}.

The proof is completed by showing that the orthogonal complement
L1 to L coincides with R.

e In the complex case:
R" = C"
(p, b) 5 b

|
3



4.3. Critical LP-coefficient b
o Let Ag= Alp =0 with (¢,q) = (p,q) = 1.

e Write the RHS at the bifurcation as
1
F(u) = Au+ ZB(u, u) + O(||u®),

and locally represent the center manifold Wg as the graph of a
function H : R — R",

1
u=H(§) = &g+ Shat? + 0(6%), €€R, hp €R™,
The restriction of u = F(u) to W§ is

£ =G(&) =be? + 0(&3).

e The invariance of the center manifold H¢(£)§ = F(H(E)) implies
He(§)G(E) = F(H(E))-



Substitute all expansions into this homological equation:

1 1
A& + Shat®) + 5 B(¢a, €0) + O(€P%) = be%q + b6%ha + O(Ig|),

and collect the coefficients of the &J-terms:
e The &terms give the identity: Ag = 0.

e The gz—terms give the equation for hs:

Aho = —B(q, q) + 2bq.

It is singular and its Fredholm solvability

(p, —B(q,q) +2bg) =0

implies

b= %@,B(q, q))



4.4. Critical H-coefficient c

o Ag =iwgq, ATp = —iwgp, {q,q) = (p,q) = 1.
e Write
1 1
Fu) = Au+ ~B(u,u) + 2:C(u,u,u) + O(Jlul*)

and locally represent the center manifold Wg as the graph of a
function H : C — R",

_ _ 1 .
u=HED=C+Ea+ Y —hud +0(g".
2<j+k<3 "

The restriction of u = F(u) to W§ is
£ = G(£,€) = iwo + c€l€]® + O(lg|).
e The invariance of W5, He(€,€)€ + Hg(g,g)é = F(H(&,8)) implies



e Quadratic £2- and |¢|2-terms give

hog = (2iwgl, — A)"1B(q,q),
_A_]-B(qaq)

h11

e Cubic w?w-terms give the singular system

(iwgln — A)ho1 = C(q,q,9) + B(q, hog) + 2B(q, h11) — 2¢q.
T he solvability of this system implies

1

c=_(p,C(4,0.:0) + B(@ (2iwoIn — A) "' B(g,0)) ~ 2B(¢, A~ B(¢, D))

e [ he first Lyapunov coefficient

1 = i§R(c)

wo



4.5. Approximation of multilinear forms by finite differences

e Finite-difference approximation of directional derivatives:

B(q,q) = % [f(uo + hq, ap) + f(ug — hqg, ag)]

+ O(h?)
Cryrr) = 5 [fCuo + 3hr, a0) ~3f(uo + hr, ag)
+ 3f(up — hr,a0) — f(ug — 3hr, ag)]
+ O(h?).
e Polarization identities:
1
B(q,r) = Z[B(q+7°,q+?“) — B(qg—r,q—r1)],

C(q,q,7)

1 1
6[(J(q—l—nq+73q+7“)—C(q—"'“,q—r,q—?“)} -3¢ ).



5. Detection of codim 2 bifurcations

e codim 2 cases along the LP-curve:

— Bogdanov-Takens (BT): \; > =0
(Yer = (P, q) With (¢,q) = (p,p) = 1)

— fold-Hopf (ZH): \{ = 0, )\2,3 = Fiwq
(Yzg = det(2A © In))

— CUSp (CP)I A1 =0,b=0 (¢CP = b)



e Critical cases along the H-curve:

— Bogdanov-Takens (BT): \; > =0
(VBT = K)

— fold-Hopf (ZH): A1,2 = Fiwg, A3 =0
(Yzp = det A)

— double Hopf (HH): A1,2 = Tiwg, A3 4 = Lwwq
(W = det(2A+ 0 I,,_5)

— Bautin (GH): A1,2 = Tiwg,l1 =0
(Yor = 11)



