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1. BIFURCATIONS AND THEIR CLASSIFICATION

Consider a smooth 2D system depending on one parameter

Ẋ = f(X, α), X ∈ R
2, α ∈ R.

Definition 1 A point α0 is called a bifurcation point if in any neigh-

borhood of α0 there is a point α for which

Ẋ = f(X, α) 6∼ Ẋ = f(X, α0).

The appearance of a topologically non-equivalent system is called a

bifurcation.

Since the number of equilibria, the number of periodic orbits, and their

stability, as well as the presence of connecting orbits, are topological

invariants, a bifurcation of the 2D-system means a change of (some of)

these properties.



Definition 2 A codimension of a bifurcation is the number of condi-

tions on which the bifurcating phase object has to satisfy.

Classification of codimension-one bifurcations:

2 (near periodic orbits)
Local of cycles

3 and heteroclinic orbits
Bifurcations of homo−

− saddle homoclinic
− saddle−node homoclinic
− heteroclinic

− (Andronov−) Hopf
− saddle−node (fold)

Local (near equilibria)1

Bifurcations
in 2D ODEs Global

− (cyclic) fold

Only codim 1 bifurcations occur in generic one-parameter systems.



2. (LOCAL) BIFURCATIONS OF EQUILIBRIA

• If X0 is a hyperbolic equilibrium of Ẋ = f(X, α0), then it remains

hyperbolic for all α sufficiently close to α0 (but can slightly shift).

• A local bifurcation can happen only to a non-hyperbolic equilibrium

with ℜ(λ) = 0.

• Generic codimension-1 critical cases:

1. Fold (saddle-node): λ1 = 0 (λ2 6= 0, a 6= 0)
{

ẋ = ax2,

ẏ = λ2y.

2. Andronov-Hopf (weak focus): λ1,2 = ±iω (ω > 0, l1 6= 0)
{

ρ̇ = l1ρ3,

ϕ̇ = 1.



Fold: λ1 = 0

Theorem 1 If a 6= 0 and λ2 6= 0, then Ẋ = f(X, α) is locally topolog-

ically equivalent near the saddle-node to
{

ẋ = β(α) + ax2,

ẏ = λ2y,

where β(0) = 0.

β < 0 β = 0 β > 0

a > 0, λ2 < 0

O1 O2 0
W c W c W c

Two equilibria O1,2 =

(

∓
√

−β
a

,0

)

collide and disappear in the 1D center

manifold W c = {y = 0}, provided β′(0) 6= 0 .



Andronov-Hopf: λ1,2 = ±iω

Theorem 2 If l1 6= 0 and ω > 0, then Ẋ = f(X, α) is locally topologi-

cally equivalent near the weak focus to
{

ρ̇ = ρ(β(α) + l1ρ2),
ϕ̇ = 1.

where β(0) = 0.

A limit cycle ρ0 =

√

−β
l1

> 0 appears while the focus changes stability.

The direction of the cycle bifurcation is determined by the first Lya-

punov coefficient l1 of the weak focus:

• supercritical (soft, non-catastrophic) Andronov-Hopf bifurcation

(l1 < 0);

• subcritical (hard, catastrophic) Andronov-Hopf bifurcation (l1 > 0).



Supercritical Andronov-Hopf bifurcation: l1 < 0

x1

x2 x2

x1

x2

x1

α = 0 α > 0α < 0

β < 0 β = 0 β > 0

The stable equilibrium is replaced by small-amplitude oscillations within

an attracting domain.



Subcritical Andronov-Hopf bifurcation: l1 > 0

x1 x1x1

x2x2x2

α = 0α < 0 α > 0
β > 0β = 0β < 0

The domain of attraction of the stable focus shrinks, while it becomes

unstable.



Example:

{

ẋ = y,

ẏ = −x + αy + x2 + xy + y2.

At α = 0 the equilibrium x = y = 0 of the reversed system
{

ẋ = −y,

ẏ = x − x2 − xy − y2,

has eigenvalues λ1,2 = ±i (ω = 1).

Introduce z = x + iy, then x2 + y2 = |z|2 = zz̄ and

ż = ẋ + iẏ = − y + ix − ix2 − ixy − iy2

= iz − izz̄ −
1

4
(z2 − z̄2) = iz −

1

4
z2 − izz̄ +

1

4
z̄2

so that ω = 1, g20 = −
1

2
, g11 = −i, g02 =

1

2
, g21 = 0.

l̃1 =
1

2ω2
ℜ(ig20g11 + ωg21) =

1

2

(

i
1

2
i + 1 · 0

)

= −
1

4
.

For the original system, l1 = 1
4 > 0 ⇒ subcritical Hopf bifurcation (an

unstable cycle exists for small α < 0 but disappears for α > 0)



Practical computation of a and l1 in R2 (n = 2)

Suppose X0 = 0, α0 = 0 and write the Taylor expansion in the original

coordinates:

f(X,0) = AX +
1

2
B(X, X) +

1

6
C(X, X, X) + O(4)

where

(AX)i =
n
∑

j=1

∂fi(U,0)

∂Uj

∣

∣

∣

∣

∣

U=0

Xj,

Bi(X, Y ) =
n
∑

j,k=1

∂2fi(U,0)

∂Uj∂Uk

∣

∣

∣

∣

∣

U=0

XjYk,

Ci(X, Y, Z) =
n
∑

j,k,l=1

∂3fi(U,0)

∂Uj∂Uk∂Ul

∣

∣

∣

∣

∣

U=0

XjYkZl,

for i = 1, . . . , n.



Theorem 3 The fold normal form coefficient can be computed as

a =
1

2
〈p, B(q, q)〉

where p, q ∈ R2 satisfy

Aq = ATp = 0

and pTq ≡ 〈p, q〉 = 1.

Theorem 4 The first Lyapunov coefficient can be computed in 2D

as

l1 =
1

2ω2
ℜ [i〈p, B(q, q)〉〈p, B(q, q̄)〉 + ω〈p, C(q, q, q̄)〉]

where p, q ∈ C2 satisfy

Aq = iωq, ATp = −iωp

and p̄Tq ≡ 〈p, q〉 = 1.



Example: Hopf bifurcation in a prey-predator system

Consider the following system


















ẋ1 = rx1(1 − x1) −
cx1x2

α + x1

ẋ2 = −dx2 +
cx1x2

α + x1

∼

{

ẋ1 = rx1(α + x1)(1 − x1) − cx1x2
ẋ2 = −αdx2 + (c − d)x1x2

At α0 = c−d
c+d

the last system has the equilibrium

(

x
(0)
1 , x

(0)
2

)

=

(

d
c+d

, rc
(c+d)2

)

with eigenvalues λ1,2 = ±iω, where ω2 = rc2d(c−d)
(c+d)3

> 0.

Translate the origin of the coordinates to this equilibrium by










x1 = x
(0)
1 + X1,

x2 = x
(0)
2 + X2.



This transforms the system into


















Ẋ1 = −
cd

c + d
X2 −

rd

c + d
X2

1 − cX1X2 − rX3
1 ,

Ẋ2 =
rc(c − d)

(c + d)2
X1 + (c − d)X1X2,

that can be represented as

Ẋ = AX +
1

2
B(X, X) +

1

6
C(X, X, X),

where

A =











0 −
cd

c + d

ω2(c + d)

cd
0











, B(X, Y ) =







−
2rd

c + d
X1Y1 − c(X1Y2 + X2Y1)

(c − d)(X1Y2 + X2Y1)







and

C(X, Y, Z) =

(

−6rX1Y1Z1
0

)

.



The complex vectors

q =

(

cd

−iω(c + d)

)

, p =
1

2ωcd(c + d)

(

ω(c + d)
−icd

)

.

satisfy Aq = iωq, ATp = −iωp and 〈p, q〉 = 1.

Then

g20 = 〈p, B(q, q)〉 =
cd(c2 − d2 − rd) + iωc(c + d)2

(c + d)
,

g11 = 〈p, B(q, q̄)〉 = −
rcd2

(c + d)
, g21 = 〈p, C(q, q, q̄)〉 = −3rc2d2,

and the first Lyapunov coefficient

l1(α0) =
1

2ω2
Re(ig20g11 + ωg21) = −

rc2d2

ω
< 0.



Therefore, a stable cycle bifurcates from the equilibrium via the super-

critical Hopf bifurcation for α < α0.

0E
E0

x2x2

x1x1

α < α 0 α > α 0

0 01 1
α > α0

E0

E0

x1

x2 x2

0 11 0 x1

α < α0

One can prove that the cycle is unique.



3. LOCAL BIFURCATION OF CYCLES: µ = 1

ξ

C0

0ξ̃

Parameter-dependent Poincaré map:

ξ 7→ ξ̃ = P(ξ, α),

where P(ξ, 0) = ξ + O(2) (µ = 1)

Lemma 1 If

p2(0) =
1

2
Pξξ(0,0) 6= 0,

then there exists a smooth function δ = δ(α) such that the substitution

x = ξ + δ(α) reduces the map

ξ 7→ P(ξ, α) = p0(α) + [1 + g(α)]ξ + p2(α)ξ2 + O(3),

where g(0) = 0, p0(0) = P(0, 0) = 0, to the form

x 7→ x̃ = β(α) + x + b(α)x2 + O(3)

with β(0) = 0 and b(0) = p2(0) 6= 0.



Cyclic fold: x 7→ β + x + bx2, b > 0

x̃x̃x̃

µ = 1

xx1

x2

x

0

x

β < 0 β = 0 β > 0

C0

C1

C2

x

Two hyperbolic cycles (unstable C1 and stable C2) collide forming a

non-hyperbolic cycle C0, and disappear.



4. (GLOBAL) BIFURCATIONS OF CONNECTING ORBITS

• Saddle homoclinic bifurcation

0

1

1

y

x

ξ

η

η̃
∆

Q

β

Singular map: η 7→ ξ = η
−

λ1
λ2 .

Regular map:

ξ 7→ η̃ = β(α) + A(α)ξ + O(2), A(0) > 0.

Poincaré map:

η 7→ η̃ = β(α) + A(α)η
−

λ1
λ2 + . . .

unstable fixed point

stable fixed point

0
β = 0

β > 0

η̃ β > 0

β = 0

0

η

σ < 0 σ < 0

η

η̃

β < 0

β < 0



Saddle homoclinic bifurcation: σ < 0

β < 0 β = 0 β > 0

Γ0

Cβ

A stable cycle Cβ bifurcates from Γ0 while the separatrices exchange.



Saddle homoclinic bifurcation: σ > 0

β < 0 β = 0 β > 0

Γ0

Cβ

An unstable cycle Cβ bifurcates from Γ0 while the separatrices exchange.

Theorem 5 (Melnikov)

β′(0) 6= 0 ⇔
∫ ∞

−∞
exp

(

−
∫ t

0
div f(X0(s))ds

)(

f1
∂f2

∂α
− f2

∂f1

∂α

)

(X0(t))dt 6= 0



• Homoclinic saddle-node bifurcation:

Γ0

x1
x2 x0

β < 0 β = 0 β > 0

Cβ

• Heteroclinic saddle bifurcation:

β < 0 β = 0 β < 0



Example: Allee effect in a prey-predator system
{

ẋ = x(x − l)(1 − x) − xy,

ẏ = −γy(m − x).

1

2

4
5

1

2 4

5

3

3

m

l

1

1



Remarks:

1. There are no other codim 1 bifurcations in generic smooth 2D

ODEs.

2. Heteroclinic bifurcation points can accumulate:


