BIFURCATION PHENOMENA

Lecture 2: One-parameter bifurcations of planar ODEs

Yuri A. Kuznetsov

August, 2010

Contents

1. Bifurcations and their classification.
2. (Local) bifurcations of equilibria.
3. Local bifurcation of cycles.
4. (Global) bifurcations of connecting orbits.

Literature

1. A.A. Andronov, E.A. Leontovich, I.I. Gordon, and A.G. Maier Theory of Bifurcations of Dynamic Systems on a Plane, Willey \& Sons, London, 1973
2. L.P. Shilnikov, A.L. Shilnikov, D.V. Turaev, and L.O. Chua Methods of Qualitative Theory in Nonlinear Dynamics, Part II, World Scientific, Singapore, 2001
3. Yu.A. Kuznetsov Elements of Applied Bifurcation Theory, 3rd ed. Applied Mathematical Sciences 112, Springer-Verlag, New York, 2004

1. BIFURCATIONS AND THEIR CLASSIFICATION

Consider a smooth 2D system depending on one parameter

$$
\dot{X}=f(X, \alpha), \quad X \in \mathbb{R}^{2}, \alpha \in \mathbb{R}
$$

Definition 1 A point α_{0} is called a bifurcation point if in any neighborhood of α_{0} there is a point α for which

$$
\dot{X}=f(X, \alpha) \quad \nsim \quad \dot{X}=f\left(X, \alpha_{0}\right)
$$

The appearance of a topologically non-equivalent system is called a bifurcation.

Since the number of equilibria, the number of periodic orbits, and their stability, as well as the presence of connecting orbits, are topological invariants, a bifurcation of the 2D-system means a change of (some of) these properties.

Definition 2 A codimension of a bifurcation is the number of conditions on which the bifurcating phase object has to satisfy.

Classification of codimension-one bifurcations:

Only codim 1 bifurcations occur in generic one-parameter systems.

2. (LOCAL) BIFURCATIONS OF EQUILIBRIA

- If X_{0} is a hyperbolic equilibrium of $\dot{X}=f\left(X, \alpha_{0}\right)$, then it remains hyperbolic for all α sufficiently close to α_{0} (but can slightly shift).
- A local bifurcation can happen only to a non-hyperbolic equilibrium with $\Re(\lambda)=0$.
- Generic codimension-1 critical cases:

1. Fold (saddle-node): $\lambda_{1}=0\left(\lambda_{2} \neq 0, a \neq 0\right)$

$$
\left\{\begin{array}{l}
\dot{x}=a x^{2} \\
\dot{y}=\lambda_{2} y
\end{array}\right.
$$

2. Andronov-Hopf (weak focus): $\lambda_{1,2}= \pm i \omega\left(\omega>0, l_{1} \neq 0\right)$

$$
\left\{\begin{array}{l}
\dot{\rho}=l_{1} \rho^{3} \\
\dot{\varphi}=1
\end{array}\right.
$$

Fold: $\lambda_{1}=0$
Theorem 1 If $a \neq 0$ and $\lambda_{2} \neq 0$, then $\dot{X}=f(X, \alpha)$ is locally topologically equivalent near the saddle-node to

$$
\left\{\begin{array}{l}
\dot{x}=\beta(\alpha)+a x^{2}, \\
\dot{y}=\lambda_{2} y,
\end{array}\right.
$$

where $\beta(0)=0$.

$\beta<0$

$\beta=0$

$\beta>0$

Two equilibria $O_{1,2}=\left(\mp \sqrt{\frac{-\beta}{a}}, 0\right)$ collide and disappear in the 1D center manifold $W^{c}=\{y=0\}$, provided $\beta^{\prime}(0) \neq 0$.

Andronov-Hopf: $\lambda_{1,2}= \pm i \omega$

Theorem 2 If $l_{1} \neq 0$ and $\omega>0$, then $\dot{X}=f(X, \alpha)$ is locally topologically equivalent near the weak focus to

$$
\left\{\begin{array}{l}
\dot{\rho}=\rho\left(\beta(\alpha)+l_{1} \rho^{2}\right) \\
\dot{\varphi}=1
\end{array}\right.
$$

where $\beta(0)=0$.
A limit cycle $\rho_{0}=\sqrt{\frac{-\beta}{l_{1}}}>0$ appears while the focus changes stability.
The direction of the cycle bifurcation is determined by the first Lyapunov coefficient l_{1} of the weak focus:

- supercritical (soft, non-catastrophic) Andronov-Hopf bifurcation ($l_{1}<0$) ;
- subcritical (hard, catastrophic) Andronov-Hopf bifurcation ($l_{1}>0$).

Supercritical Andronov-Hopf bifurcation: $l_{1}<0$

The stable equilibrium is replaced by small-amplitude oscillations within an attracting domain.

Subcritical Andronov-Hopf bifurcation: $l_{1}>0$

The domain of attraction of the stable focus shrinks, while it becomes unstable.

Example: $\left\{\begin{array}{l}\dot{x}=y, \\ \dot{y}=-x+\alpha y+x^{2}+x y+y^{2} .\end{array}\right.$
At $\alpha=0$ the equilibrium $x=y=0$ of the reversed system

$$
\left\{\begin{array}{l}
\dot{x}=-y \\
\dot{y}=x-x^{2}-x y-y^{2}
\end{array}\right.
$$

has eigenvalues $\lambda_{1,2}= \pm i(\omega=1)$.
Introduce $z=x+i y$, then $x^{2}+y^{2}=|z|^{2}=z \bar{z}$ and

$$
\begin{aligned}
\dot{z} & =\dot{x}+i \dot{y}=-y+i x-i x^{2}-i x y-i y^{2} \\
& =i z-i z \bar{z}-\frac{1}{4}\left(z^{2}-\bar{z}^{2}\right)=i z-\frac{1}{4} z^{2}-i z \bar{z}+\frac{1}{4} \bar{z}^{2}
\end{aligned}
$$

so that $\omega=1, g_{20}=-\frac{1}{2}, g_{11}=-i, g_{02}=\frac{1}{2}, g_{21}=0$.

$$
\tilde{l}_{1}=\frac{1}{2 \omega^{2}} \Re\left(i g_{20} g_{11}+\omega g_{21}\right)=\frac{1}{2}\left(i \frac{1}{2} i+1 \cdot 0\right)=-\frac{1}{4}
$$

For the original system, $l_{1}=\frac{1}{4}>0 \Rightarrow$ subcritical Hopf bifurcation (an unstable cycle exists for small $\alpha<0$ but disappears for $\alpha>0$)

Practical computation of a and l_{1} in $\mathbb{R}^{2}(n=2)$

Suppose $X_{0}=0, \alpha_{0}=0$ and write the Taylor expansion in the original coordinates:

$$
f(X, 0)=A X+\frac{1}{2} B(X, X)+\frac{1}{6} C(X, X, X)+O(4)
$$

where

$$
\begin{aligned}
(A X)_{i} & =\left.\sum_{j=1}^{n} \frac{\partial f_{i}(U, 0)}{\partial U_{j}}\right|_{U=0} X_{j}, \\
B_{i}(X, Y) & =\left.\sum_{j, k=1}^{n} \frac{\partial^{2} f_{i}(U, 0)}{\partial U_{j} \partial U_{k}}\right|_{U=0} X_{j} Y_{k}, \\
C_{i}(X, Y, Z) & =\left.\sum_{j, k, l=1}^{n} \frac{\partial^{3} f_{i}(U, 0)}{\partial U_{j} \partial U_{k} \partial U_{l}}\right|_{U=0} X_{j} Y_{k} Z_{l},
\end{aligned}
$$

for $i=1, \ldots, n$.

Theorem 3 The fold normal form coefficient can be computed as

$$
a=\frac{1}{2}\langle p, B(q, q)\rangle
$$

where $p, q \in \mathbb{R}^{2}$ satisfy

$$
A q=A^{\top} p=0
$$

and $p^{\top} q \equiv\langle p, q\rangle=1$.
Theorem 4 The first Lyapunov coefficient can be computed in 2D as

$$
l_{1}=\frac{1}{2 \omega^{2}} \Re[i\langle p, B(q, q)\rangle\langle p, B(q, \bar{q})\rangle+\omega\langle p, C(q, q, \bar{q})\rangle]
$$

where $p, q \in \mathbb{C}^{2}$ satisfy

$$
A q=i \omega q, \quad A^{\top} p=-i \omega p
$$

and $\bar{p}^{\top} q \equiv\langle p, q\rangle=1$.

Example: Hopf bifurcation in a prey-predator system

Consider the following system
$\left\{\begin{array}{l}\dot{x}_{1}=r x_{1}\left(1-x_{1}\right)-\frac{c x_{1} x_{2}}{\alpha+x_{1}} \\ \dot{x}_{2}=-d x_{2}+\frac{c x_{1} x_{2}}{\alpha+x_{1}}\end{array} \sim\left\{\begin{array}{l}\dot{x}_{1}=r x_{1}\left(\alpha+x_{1}\right)\left(1-x_{1}\right)-c x_{1} x_{2} \\ \dot{x}_{2}=-\alpha d x_{2}+(c-d) x_{1} x_{2}\end{array}\right.\right.$
At $\alpha_{0}=\frac{c-d}{c+d}$ the last system has the equilibrium $\left(x_{1}^{(0)}, x_{2}^{(0)}\right)=\left(\frac{d}{c+d}, \frac{r c}{(c+d)^{2}}\right)$ with eigenvalues $\lambda_{1,2}= \pm i \omega$, where $\omega^{2}=\frac{r c^{2} d(c-d)}{(c+d)^{3}}>0$.

Translate the origin of the coordinates to this equilibrium by

$$
\left\{\begin{array}{l}
x_{1}=x_{1}^{(0)}+X_{1} \\
x_{2}=x_{2}^{(0)}+X_{2}
\end{array}\right.
$$

This transforms the system into

$$
\left\{\begin{aligned}
\dot{X}_{1} & =-\frac{c d}{c+d} X_{2}-\frac{r d}{c+d} X_{1}^{2}-c X_{1} X_{2}-r X_{1}^{3} \\
\dot{X}_{2} & =\frac{r c(c-d)}{(c+d)^{2}} X_{1}+(c-d) X_{1} X_{2}
\end{aligned}\right.
$$

that can be represented as

$$
\dot{X}=A X+\frac{1}{2} B(X, X)+\frac{1}{6} C(X, X, X),
$$

where

$$
A=\left(\begin{array}{cc}
0 & -\frac{c d}{c+d} \\
\frac{\omega^{2}(c+d)}{c d} & 0
\end{array}\right), B(X, Y)=\binom{-\frac{2 r d}{c+d} X_{1} Y_{1}-c\left(X_{1} Y_{2}+X_{2} Y_{1}\right)}{(c-d)\left(X_{1} Y_{2}+X_{2} Y_{1}\right)}
$$

and

$$
C(X, Y, Z)=\binom{-6 r X_{1} Y_{1} Z_{1}}{0}
$$

The complex vectors

$$
q=\binom{c d}{-i \omega(c+d)}, \quad p=\frac{1}{2 \omega c d(c+d)}\binom{\omega(c+d)}{-i c d} .
$$

satisfy $A q=i \omega q, A^{\top} p=-i \omega p$ and $\langle p, q\rangle=1$.

Then

$$
\begin{gathered}
g_{20}=\langle p, B(q, q)\rangle=\frac{c d\left(c^{2}-d^{2}-r d\right)+i \omega c(c+d)^{2}}{(c+d)} \\
g_{11}=\langle p, B(q, \bar{q})\rangle=-\frac{r c d^{2}}{(c+d)}, \quad g_{21}=\langle p, C(q, q, \bar{q})\rangle=-3 r c^{2} d^{2}
\end{gathered}
$$

and the first Lyapunov coefficient

$$
l_{1}\left(\alpha_{0}\right)=\frac{1}{2 \omega^{2}} \operatorname{Re}\left(i g_{20} g_{11}+\omega g_{21}\right)=-\frac{r c^{2} d^{2}}{\omega}<0
$$

Therefore, a stable cycle bifurcates from the equilibrium via the supercritical Hopf bifurcation for $\alpha<\alpha_{0}$.

One can prove that the cycle is unique.

3. LOCAL BIFURCATION OF CYCLES: $\mu=1$

 Parameter-dependent Poincaré map:$$
\xi \mapsto \tilde{\xi}=P(\xi, \alpha),
$$

where $P(\xi, 0)=\xi+O(2) \quad(\mu=1)$

Lemma 1 If

$$
p_{2}(0)=\frac{1}{2} P_{\xi \xi}(0,0) \neq 0,
$$

then there exists a smooth function $\delta=\delta(\alpha)$ such that the substitution $x=\xi+\delta(\alpha)$ reduces the map

$$
\xi \mapsto P(\xi, \alpha)=p_{0}(\alpha)+[1+g(\alpha)] \xi+p_{2}(\alpha) \xi^{2}+O(3),
$$

where $g(0)=0, p_{0}(0)=P(0,0)=0$, to the form

$$
x \mapsto \tilde{x}=\beta(\alpha)+x+b(\alpha) x^{2}+O(3)
$$

with $\beta(0)=0$ and $b(0)=p_{2}(0) \neq 0$.

Cyclic fold: $x \mapsto \beta+x+b x^{2}, b>0$

Two hyperbolic cycles (unstable C_{1} and stable C_{2}) collide forming a non-hyperbolic cycle C_{0}, and disappear.

4. (GLOBAL) BIFURCATIONS OF CONNECTING ORBITS

- Saddle homoclinic bifurcation

Singular map: $\eta \mapsto \xi=\eta^{-\frac{\lambda_{1}}{\lambda_{2}}}$.
Regular map:

$$
\xi \mapsto \tilde{\eta}=\beta(\alpha)+A(\alpha) \xi+O(2), \quad A(0)>0 .
$$

Poincaré map:

$$
\eta \mapsto \tilde{\eta}=\beta(\alpha)+A(\alpha) \eta^{-\frac{\lambda_{1}}{\lambda_{2}}}+\ldots
$$

$\sigma<0$

$\sigma<0$

Saddle homoclinic bifurcation: $\sigma<0$

A stable cycle C_{β} bifurcates from Γ_{0} while the separatrices exchange.

Saddle homoclinic bifurcation: $\sigma>0$

An unstable cycle C_{β} bifurcates from Γ_{0} while the separatrices exchange.
Theorem 5 (Melnikov)
$\beta^{\prime}(0) \neq 0 \Leftrightarrow \int_{-\infty}^{\infty} \exp \left(-\int_{0}^{t} \operatorname{div} f\left(X^{0}(s)\right) d s\right)\left(f_{1} \frac{\partial f_{2}}{\partial \alpha}-f_{2} \frac{\partial f_{1}}{\partial \alpha}\right)\left(X^{0}(t)\right) d t \neq 0$

- Homoclinic saddle-node bifurcation:

- Heteroclinic saddle bifurcation:

$\beta<0$

$\beta=0$

$\beta<0$

Example: Allee effect in a prey-predator system

$$
\left\{\begin{array}{l}
\dot{x}=x(x-l)(1-x)-x y, \\
\dot{y}=-\gamma y(m-x) .
\end{array}\right.
$$

Remarks:

1. There are no other codim 1 bifurcations in generic smooth 2D ODEs.
2. Heteroclinic bifurcation points can accumulate:

