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Neural field models as dynamical systems

Neural activity dynamics V(t,r) in an open connected brain domain
Ω⊂ R3 is modeled by

∂V
∂ t

(t,r) =−αV(t,r) +
∫

Ω
J(r,r′)S(V(t− τ(r,r′),r′))dr′

[Wilson & Cowan, 1972; Amari, 1977]

(HJ) The connectivity kernel J ∈ C(Ω×Ω).

(HS) The synaptic activation function S ∈ C∞(R) and its kth
derivative is bounded for every k ∈ N0.

(Hτ ) The delay function τ ∈ C(Ω×Ω) is non-negative and not
identically zero.

0 < h := sup{τ(r,r′) : r,r′ ∈ Ω}< ∞
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Introduce

space norm
Y := C(Ω) ‖y‖ := supr∈Ω |y(r)|

X := C([−h,0];Y) ‖φ‖ := supt∈[−h,0] ‖φ(t, ·)‖

Define the nonlinear operator G : X→ Y by

G(φ)(r) :=
∫

Ω
J(r,r′)S(φ(−τ(r,r′),r′))dr′ ∀φ ∈ X, ∀r ∈ Ω

The operator G : X→ Y is Fréchet differentiable with derivative
DG(φ) ∈L (X,Y) in the point φ ∈ X given by

(DG(φ)ψ)(r) =
∫

Ω
J(r,r′)S′(φ(−τ(r,r′),r′))ψ(−τ(r,r′),r′))dr′

for all ψ ∈ X and all r ∈ Ω.

Local Bifurcations in Neural Field Equations April 16th, 2013 5 / 34



The operator G is in C∞(X,Y). For k = 1,2, . . . its kth Fréchet
derivative DkG(φ) ∈Lk(X,Y) in the point φ ∈ X is given by

(DkG(φ)(ψ1, . . . ,ψk))(r) =∫
Ω

J(r,r′)S(k)(φ(−τ(r,r′),r′))
k

∏
i=1

ψi(−τ(r,r′),r′)dr′

for ψ1, . . . ,ψk ∈ X and r ∈ Ω.

These derivatives will be used in the computations of the normal
form coefficients.
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Define the history at time t ≥ 0 by

Vt(θ) := V(t + θ) ∀ t ≥ 0, θ ∈ [−h,0]

Then studying of the neural field equation is equivalent to analyzing
the following Delay Differential Equation:{

V̇(t) = F(Vt) t ≥ 0

V(t) = φ(t) t ∈ [−h,0]
(DDE)

where V : [−h,∞)→ Y and φ ∈ X is the initial condition, while
F : X→ Y is given by

F(φ) :=−αφ(0) + G(φ) ∀φ ∈ X

The operator F is globally Lipschitz continuous.
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If F ≡ 0, then the solution semigroup corresponding to (DDE) is the
shift semigroup T0, defined as

(T0(t)φ)(θ) =

{
φ(t + θ) −h≤ t + θ ≤ 0
φ(0) 0≤ t + θ

for all φ ∈ X, t ≥ 0, θ ∈ [−h,0].

Let X� ⊂ X∗ be the maximal subspace of strong continuity of T∗0 :

X� = D(A∗0),

where A0 is the infinitesimal generator of T0. It holds

X� = Y∗×L1([0,h];Y∗),

where the second factor is the space of Bochner integrable Y∗-valued
functions on [0,h] [Greiner & Van Neerven, 1992]
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Let T�0 be the strongly continuous semigroup on X� obtained by
restriction of T∗0 to X�.

Its infinitesimal generator A�0 is

D(A�0 ) = {φ� ∈ D(A∗0) : A∗0φ
� ∈ X�}, A�0 φ

� = A∗0φ
�

Performing this construction once more, but now starting from the
strongly continuous semigroup T�0 (t) on the Banach space X�, we
obtain the adjoint semigroup T�?0 on the dual space X�?.

Inspired by Diekmann et al.[1995], we study the relationship
between DDEs and Abstract Integral Equations.
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The original space X is canonically embedded into X�? via
j : X→ X�? given by

〈φ�, jφ〉 := 〈φ ,φ�〉 ∀φ ∈ X, ∀φ
� ∈ X�

Define E : X→ X�? by

E(φ) := (F(φ),0)

for all φ ∈ X. Hence E maps into Y×{0} which is a closed subspace
of X�?.
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Consider the Abstract Integral Equation

u(t) = T0(t)φ + j−1
(∫ t

0
T�?0 (t− s)E(u(s))ds

)
∀ t ≥ 0 (AIE)

where φ ∈ X is an initial condition, u ∈ C([0,∞);X) is the unknown
and the convolution integral is of weak∗ Riemann type.
Then

(i) Suppose that u ∈ C([0,∞);X) satisfies (AIE). Define
x : [−h,∞)→ Y by x0 = φ and x(t) = u(t)(0) for t ≥ 0. Then
x is a global solution of (DDE).

(ii) Conversely, suppose that x is a global solution of (DDE).
Define u : [0,∞)→ X by u(t) = xt. Then u ∈ C([0,∞);X) and
u satisfies (AIE).

This implies that for any φ ∈ X problem (DDE) has a unique global
solution.
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Linearized problem and its spectral properties

Let L := DG(φ̂) ∈L (X,Y) be the Fréchet derivative of G at the
equilibrium φ̂ ∈ X, i.e. φ̂ is independent of time (but possibly
dependent on space) and

−αφ̂ + G(φ̂) = 0

The solution of the linearized problem{
ẋ(t) =−αx(t) + Lxt t ≥ 0

x(t) = φ(t) t ∈ [−h,0]

defines a strongly continuous semigroup T on X generated by
A : D(A)⊂ X→ X where

D(A) = {φ ∈ X : φ
′ ∈ X and φ

′(0) =−αφ(0) + Lφ}, Aφ = φ
′
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Since
D(A∗) = D(A∗0),

the sun-duals of X with respect to T0 and T are identical and may
both be denoted by X�. Moreover,

D(A�) = {φ� ∈ D(A∗) : A∗φ� ∈ X�}, A� = A∗

It also follows that if φ ∈ C1([−h,0];Y) then jφ ∈ D(A�?) and

A�?jφ = (0,φ ′) + (DF(φ̂)φ ,0).

Finally, all spectra coincide:

σ(A) = σ(A∗) = σ(A�) = σ(A�?)
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For f ∈ Y and z ∈ C, let (εz⊗ f ) ∈ X be such that

(εz⊗ f )(θ) = eθzf

for θ ∈ [−h,0]. Define

Lz ∈L (Y), Lzf := L(εz⊗ f )

Hz ∈L (X), (Hzφ)(θ) :=
∫ 0

θ

ez(θ−s)
φ(s)ds

Sz ∈L (X,Y), Szφ := φ(0) + LHzφ

for all f ∈ Y , φ ∈ X and θ ∈ [−h,0].

Introduce the characteristic operator

∆(z) := z + α−Lz ∈L (Y)
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Then φ ∈R(z−A) if and only if

∆(z)f = Szφ

has a solution f ∈ Y and, moreover, z ∈ ρ(A) if and only if f is also
unique. If such is the case, then

R(z,A)φ = (εz⊗∆(z)−1Szφ) + Hzφ

Furthermore, λ ∈ σ(A) if and only if 0 ∈ σ(∆(λ )) and ψ ∈ D(A) is
an eigenvector corresponding to λ if and only if ψ = ελ ⊗q where
q ∈ Y satisfies ∆(λ )q = 0 [Engel & Nagel, 2000].

The set σ(A)\{−α} consists of isolated eigenvalues of finite type.
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Normalization on Center Manifold

Assume φ̂ ≡ 0. Suppose that A has nc ≥ 1 critical eigenvalues with
Re λ = 0. This implies the existence of an invariant center manifold
W c

loc on which

u̇(t) = j−1 (A�?ju(t) + R(u(t))
)

∀ t ∈ R

where

R(φ) = E(φ)−DE(0)φ =
1
2

B(φ ,φ) +
1
3!

C(φ ,φ ,φ) + O(‖φ‖4)

The projection of u(t) onto X0 = T
φ̂
W c

loc satisfies the normal form in
some coordinates z ∈ Rnc on X0,

ż(t) = ∑
1≤|ν |≤3

gνzν (t) + O(|z(t)|4) ∀t ∈ R
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The invariance of W c
loc, which is given by the graph of

H (z) = ∑
1≤|ν |≤3

1
ν!

hνzν + O(|z|4),

implies the homological equation [Iooss & Adelmeyer, 1992]

A�?jH (z) + R(H (z)) = j(DH (z)ż)

Collecing the zν -terms leads to a linear equation

(λ −A�?)φ
�? = ψ

�?

Let λ ∈ C\{−α}. Then this equation is solvable for φ�? ∈ D(A�?)
given ψ�? ∈ X�? if and only if 〈φ�,ψ�?〉 = 0 for all
φ� ∈N (λ −A∗) (Fredholm Solvability)
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Andronov-Hopf Bifurcation λ1,2 =±iω0,ω0 > 0

Let φ and φ� be complex eigenvectors of A and A∗ corresponding to
λ1 = iω0,

Aφ = iω0φ , A∗φ� = iω0φ
�,

and satisfying 〈φ ,φ�〉 = 1.

• Poincaré normal form [Arnold, 1972]:

ż = iω0z + g21z|z|2 + O(|z|4), z ∈ C

where l1 = 1
2ω0

Re g21 is the first Lyapunov coefficient.
• Center manifold expansion:

H (z,z) = zφ + zφ + ∑
2≤j+k≤3

1
j!k!

hjkzjzk + O(|z|4)

Local Bifurcations in Neural Field Equations April 16th, 2013 20 / 34



The homological equation

A�?jH (z,z) + R(H (z,z)) = j
(
DzH (z,z)ż + DzH (z,z)ż

)
gives

jh20 =−(A�?)−1B(φ ,φ)

jh11 = (2iω0−A�?)−1B(φ ,φ)

as well as

(iω0I−A�?)jh21 = C(φ ,φ ,φ) + B(φ ,h20) + 2B(φ ,h11)−2g21jφ

so that

g21 =
1
2
〈φ�,C(φ ,φ ,φ) + B(φ ,h20) + 2B(φ ,h11)〉
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Evaluation of normal form coefficients

To compute ψ�? = R(z,A�?)(y,0), we need to solve

(z−A�?)ψ
�? = (y,0)

where z ∈ ρ(A), y ∈ Y and ψ�? ∈ D(A�?).

For each y ∈ Y the function ψ = εz⊗∆(z)−1y is the unique solution
in C1([−h,0];Y) of the system{

zψ(0)−DF(0)ψ = y

zψ−ψ
′ = 0

Then ψ�? = jψ .
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Let P� and P�? be the spectral projections on X� and X�?

corresponding to a simple λ ∈ σ(A). We want to evaluate 〈φ�,φ�?〉
where φ�? = (y,0) ∈ Y×{0} ⊂ X�?.
Since the range of P�? is spanned by jφ we have

P�?φ
�? = κjφ

for a certain κ ∈ C. Furthermore,

〈φ�,φ�?〉 = 〈P�φ
�,φ�?〉 = 〈φ�,P�?φ

�?〉 = κ〈φ�, jφ〉 = κ

Thus [Dunford & Schwartz, 1958]

P�?φ
�? =

1
2πi

∮
∂Cλ

R(z,A�?)φ
�? dz = κjφ

and the first component shows that κ can be found from

1
2πi

∮
∂Cλ

∆(z)−1ydz = κφ(0)
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Explicit example

Consider a homogeneous neural field with transmission delays due to
a finite propagation speed of action potentials as well as a finite, fixed
delay τ0 ≥ 0 caused by synaptic processes. Space and time are each
rescaled such that Ω = [−1,1] and the propagation speed is 1. This
yields

τ(r,r′) = τ0 + |r− r′| ∀r,r′ ∈ Ω

For the connectivity function we take a linear combination of N ≥ 1
exponentials,

J(r,r′) =
N

∑
i=1

cie−µi|r−r′| ∀r,r′ ∈ Ω

where

ci ∈ C with ci 6= 0, µi ∈ C with µi 6= µj for i 6= j
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We study the stability of a spatially homogeneous steady state φ̂ ≡ 0,
requiring that S(0) = 0 and S′(0) = 1.
Let

ki(λ ) := λ + µi ∀ i = 1, . . . ,N

and

S := {λ ∈ C : ∃i, j ∈ {1, . . . ,N}, i 6= j, s.t. k2
i (λ ) = k2

j (λ )}.

Define for λ /∈S the characteristic polynomial

P(ρ) :=
eλτ0(λ + α)

2

N

∏
j=1

(ρ
2− kj(λ )2) +

N

∑
i=1

ciki(λ )
N

∏
j=1
j 6=i

(ρ
2− kj(λ )2)

and assume that it has 2N distinct roots, denoted by ±ρi(λ ) for
i = 1,2, . . . ,N, and such that

kj(λ ) 6=±ρi(λ ) ∀ i, j = 1,2, . . . ,N
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Under above conditions, introduce

S(λ ) :=

[
S−

λ
S+

λ

S+
λ

S−
λ

]
where

[S−
λ

]j,i :=
eρi(λ)

λ + µj−ρi(λ )
, [S+

λ
]j,i :=

e−ρi(λ)

λ + µj + ρi(λ )

Then λ is an eigenvalue of A if and only if detS(λ ) = 0. The
corresponding eigenfunction is ελ ⊗qλ with

qλ (x) =
N

∑
i=1

[
γieρi(λ)x + γ−ie−ρi(λ)x] ∀x ∈ [−1,1]

where Γ = [γ1,γ2, . . . ,γN ,γ−1,γ−2, . . . ,γ−N ] is a solution to S(λ )Γ = 0.
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Suppose that z ∈ ρ(A) and the above conditions hold. Then the
solution to the resolvent equation

(z−A)ψ = φ , φ ∈ X,

is given by ψz = εz⊗qz + Hzφ with

qz(x) =
hz(x)

z + α
+

N

∑
i=1

[
γi,z(x)eρi(z)x + γ−i,z(x)e−ρi(z)x] ∀x ∈ [−1,1]

where

hz(x) := φ(0,x) +
∫ 1

−1

∫ 0

−τ0−|x−r|
J(x,r)e−z(τ0+s)−z|x−r|

φ(s,r)dsdr

and
Γz = [γ1,z,γ2,z, . . . ,γN,z,γ−1,z,γ−2,z, . . . ,γ−N,z]

can be found by matrix inversion and integration.
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Numerical Example

Take

J(r,r′) = ĉ1e−µ1|r−r′|+ ĉ2e−µ2|r−r′| ∀r,r′ ∈ [−1,1]

and
S(V) =

1
1 + e−rV −

1
2

∀V ∈ R

Here S′(0) = r
4 and hence ci = r

4 ĉi for i = 1,2.
Let

α = 1, τ0 = 1, ĉ1 = 3, ĉ2 =−5.5, µ1 = 0.5, µ2 = 1.

Simulations can be performed by reduction to a classical DDE via the
finite-difference approximation and its numerical integration [Faye &
Faugeras, 2010].
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Hopf bifurcation at r = 4.220215

0

0

2

4
Discretisation
Analytical

The approximate eigenvalues were computed with DDE-BIFTOOL
[Engelborghs et al., 2002].
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φ(t,x) = eλ t[
γ1(eρ1x + e−ρ1x) + γ2(eρ2x + e−ρ2x)

]
∀ t ∈ [−h,0]

where

ρ1 = 0.321607348361597−0.880461478656249i,

ρ2 = 0.110838003673357−2.312123026384049i

γ1 =−0.191821747840362−0.172140605861736i,

γ2 =−0.080160108888561

corresponding to λ = iω0 = 1.644003102046893i.

g21 =
1
2
〈φ�,D3E(0)(φ ,φ ,φ)〉 ≈ −0.326 + 0.0389i
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Thus, the first Lyapunov coefficient is l1 ≈−0.198 < 0 indicating a
supercritical Hopf bifurcation.

A transient to periodic inhomogeneous oscillations at r = 6:

0 10 20 30 40 50 60

−1

−0.5

0

0.5

1
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Additional remarks

• The double Hopf case has been treated as well. We have
observed multiple stable periodic inhomogeneous oscillations.

• The theory covers bifurcations from inhomogeneous
equilibria, although we do not have relevant numerical examples
yet.

• Unbounded domains ???

• Arbitrary Banach space Y [Thursday’s talk by S. Janssens].
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