Initialization and Continuation of Homoclinic Orbits to Equilibria in MATLAB

Yuri A. Kuznetsov

Joint work with: W. Govaerts, B. Sautois, V. de Witte, and M. Friedman

July 7, 2010

Contents

- 1. Continuation of codim 1 homoclinic orbits
- 2. Continuation of invariant subspaces
- 3. Continuation of homoclinic orbits in MATCONT
- 4. Initialization by homotopy in MATCONT
- 5. Examples
- 6. Detection of codim 2 homoclinic bifurcations
- 7. Open problems

1. Continuation of codim 1 homoclinic orbits

- Doedel, E.J. and Friedman, M.J. 1989. Numerical computation of heteroclinic orbits. *J. Comput. Appl. Math.* **26**, 1-2, 155-170.
- Beyn, W.J. 1990. The numerical computation of connecting orbits in dynamical systems. *IMA J. Numer. Anal.* **10**, 3, 379-405.
- Champneys, A.R., Kuznetsov, Yu.A., and Sandstede, B. 1996. A numerical toolbox for homoclinic bifurcation analysis. *Int. J. Bifurcation Chaos* **6**, 5, 867-887.

Homoclinic orbits

• Consider a family of smooth ODEs

$$\dot{x} = f(x, \alpha), \quad x \in \mathbb{R}^n, \quad \alpha \in \mathbb{R}^m,$$

having a hyperbolic equilibrium x_0 with eigenvalues

$$\Re(\mu_{n_S}) \leq ... \leq \Re(\mu_1) < 0 < \Re(\lambda_1) \leq ... \leq \Re(\lambda_{n_U})$$

of $A(x_0, \alpha) = f_x(x_0, \alpha)$.

- Homoclinic orbit $\Gamma = W^S(x_0) \cap W^U(x_0)$ has codim 1.
- Homoclinic solution problem:

$$\begin{cases} f(x_0,\alpha) = 0, \\ \dot{x}(t) - f(x(t),\alpha) = 0, \\ \lim_{t \to \pm \infty} x(t) - x_0 = 0, \ t \in \mathbb{R}, \\ \int_{-\infty}^{\infty} \dot{\tilde{x}}(t)^{\mathsf{T}}(x(t) - \tilde{x}(t)) dt = 0, \end{cases}$$

where \tilde{x} is a reference solution.

Defining **BVP**

• Truncate with the **projection boundary conditions**:

$$\begin{cases} f(x_0, \alpha) = 0, \\ \dot{x}(t) - f(x(t), \alpha) = 0, t \in [-T, T] \\ \langle x(-T) - x_0, q_{0, n_U + i} \rangle = 0, i = 1, 2, \dots, n_S \\ \langle x(+T) - x_0, q_{1, n_S + i} \rangle = 0, i = 1, 2, \dots, n_U \\ \int_{-T}^{T} \dot{\tilde{x}}(t)^{\mathsf{T}}(x(t) - y(t)) dt = 0, \end{cases}$$

where the columns of

 $Q^{U^{\perp}} = [q_{0,n_U+1}, \dots, q_{0,n_U+n_S}]$ and $Q^{U^{\perp}} = [q_{1,n_S+1}, \dots, q_{1,n_S+n_U}]$ span the orthogonal complements to $T_{x_0}W^U(x_0)$ and $T_{x_0}W^S(x_0)$, resp.

• **Theorem** [Beyn] There is a locally unique solution to the truncated BVP for a regular homoclinic orbit with the $(x(\cdot), \alpha)$ -error that is $O(e^{-2\omega T})$, where $\omega = \min(|\mu|, \lambda)$ and (μ, λ) satisfy $\Re(\mu_1) < \mu < 0 < \lambda < \Re(\lambda_1)$.

2. Continuation of invariant subspaces

- Dieci, L., and Eirola, T. 1999. On smooth decompositions of matrices. *SIAM J. Matrix Anal. Appl.* **20**, 3, 800-819.
- Dieci, L., and Friedman, M.J. 2001. Continuation of invariant subspaces. *Numer. Linear Algebra Appl.* **8**, 317-327.
- Demmel, J.W., Dieci, L., and Friedman, M.J. 2001. Computing connecting orbits via an improved algorithm for continuing invariant subspaces. *SIAM J. Sci. Comput.* **22**, 1, 81-94.
- Bindel, D., Demmel, J., and Friedman, M. 2003. Continuation of invariant subspaces for large bifurcation problems. *SIAM J. Sci. Comput.* **30**, 2, 637-656.

Smooth Schur Block Factorization

Theorem Any paramter-dependent matrix $A(s) \in \mathbb{R}^{n \times n}$ can be written as

$$A(s) = Q(s) \begin{bmatrix} R_{11}(s) & R_{12}(s) \\ 0 & R_{22}(s) \end{bmatrix} Q^{\mathsf{T}}(s),$$

where $Q(s) = [Q_1(s) \ Q_2(s)]$ such that

- Q(s) is orthogonal, i.e. $Q^{\top}(s)Q(s) = I_n$;
- the columns of $Q_1(s) \in \mathbb{R}^{n \times m}$ span an eigenspace $\mathcal{E}(s)$ of A(s) corresponding to its m selected eigenvalues;
- the columns of $Q_2(s) \in \mathbb{R}^{n \times (n-m)}$ span the orthogonal complement $\mathcal{E}^{\perp}(s)$.
- the eigenvalues of $R_{11}(s) \in \mathbb{R}^{m \times m}$ are the selected m eigenvalues of A(s), while the eigenvalues of $R_{22}(s) \in \mathbb{R}^{(n-m) \times (n-m)}$ are the remaning (n-m) eigenvalues of A(s);
- $Q_i(s)$ and $R_{ij}(s)$ have the same smoothness as A(s).

Then holds the invariant subspace relation:

 $Q_2^{\mathsf{T}}(s)A(s)Q_1(s) = 0.$

CIS-algorithm [Dieci & Friedman, 2001]

• Define

$$\begin{bmatrix} T_{11}(s) & T_{12}(s) \\ T_{21}(s) & T_{22}(s) \end{bmatrix} = Q^{\mathsf{T}}(0)A(s)Q(0)$$

for small |s|, where $T_{11}(s) \in \mathbb{R}^{m \times m}$.

- Compute $Y \in \mathbb{R}^{(n-m) \times m}$ satisfying the **Riccati matrix equation** $YT_{11}(s) - T_{22}(s)Y + YT_{12}(s)Y = T_{21}(s).$
- Then Q(s) = Q(0)U(s) where

$$U(s) = [U_1(s) \ U_2(s)]$$

with

$$U_1(s) = \begin{pmatrix} I_m \\ Y \end{pmatrix} (I_{n-m} + Y^{\mathsf{T}}Y)^{-\frac{1}{2}}, \quad U_2(s) = \begin{pmatrix} -Y^{\mathsf{T}} \\ I_{n-m} \end{pmatrix} (I_{n-m} + YY^{\mathsf{T}})^{-\frac{1}{2}},$$

• The columns of

$$Q_1(s) = Q(0)U_1(s)$$

and

 $Q_2(s) = Q(0)U_2(s)$ form **orthogonal** bases in $\mathcal{E}(s)$ and $\mathcal{E}^{\perp}(s)$.

• The columns of

$$Q(0)\left[\begin{array}{c}I_m\\Y(s)\end{array}
ight],$$

and

$$Q(0) \left[\begin{array}{c} -Y(s)^{\mathsf{T}} \\ I_{n-m} \end{array} \right]$$

form bases in $\mathcal{E}(s)$ and $\mathcal{E}^{\perp}(s)$, which are in general **non-orthogonal**.

- 3. Continuation of homoclinic orbits in MATCONT
 - Basic defining BVP:

$$\begin{aligned} \dot{x}(t) - 2Tf(x(t), \alpha) &= 0, \\ f(x_0, \alpha) &= 0, \\ \int_0^1 \dot{\tilde{x}}(t)^{\mathsf{T}}(x(t) - \tilde{x}(t))dt &= 0, \\ \langle x(0) - x_0, q_{0,n_U+i} \rangle &= 0, \ i = 1, 2, \dots, n_S \\ \langle x(1) - x_0, q_{1,n_S+i} \rangle &= 0, \ i = 1, 2, \dots, n_U \\ T_{22U}Y_U - Y_U T_{11U} + T_{21U} - Y_U T_{12U}Y_U &= 0, \\ T_{22S}Y_S - Y_S T_{11S} + T_{21S} - Y_S T_{12S}Y_S &= 0, \\ \|x(0) - x_0\| - \epsilon_0 &= 0, \\ \|x(1) - x_0\| - \epsilon_1 &= 0, \end{aligned}$$

where

$$\begin{bmatrix} q_{0,n_U+1} & q_{0,n_U+2} & \cdots & q_{0,n_U+n_S} \end{bmatrix} = Q_U(0) \begin{bmatrix} -Y_U^{\mathsf{T}} \\ I_{n_S} \end{bmatrix}$$
$$\begin{bmatrix} q_{1,n_S+1} & q_{1,n_S+2} & \cdots & q_{1,n_S+n_U} \end{bmatrix} = Q_S(0) \begin{bmatrix} -Y_S^{\mathsf{T}} \\ I_{n_U} \end{bmatrix}$$

• Active: α_1, α_2 , and two out of three homoclinic parameters $T, \epsilon_0, \epsilon_1$.

4. Initialization by homotopy

- E.J. Doedel, M.J. Friedman, and A.C. Monteiro. 1994. On locating connecting orbits. *Appl. Math. Comput.* **65**, 231–239.
- E.J. Doedel, M.J. Friedman, and B.I. Kunin. 1997. Successive continuation for locating connecting orbits. *Numer. Algorithms* **14**, 103–124.
- Champneys, A.R., and Kuznetsov, Yu.A. 1994. Numerical detection and continuation of codimension-two homoclinic bifurcations. *Int. J. Bifurcation Chaos* **4**, 795-822.

Locating a connecting orbit, α is fixed

• Step 1: Integrate an orbit from

$$x(0) = x_0^{(0)} + \epsilon_0 (c_1 q_{0,1}^{(0)} + c_2 q_{0,2}^{(0)}),$$

where $c_2 = 0$ if λ_1 is real, and monitor ϵ_1 .

• Step k: For $k = 2, ..., n_U$ continue a solution to

$$\begin{cases} \dot{x} - 2Tf(x,\alpha) = 0, \\ \epsilon_0 c_i - \langle x(0) - x_0^{(0)}, q_{0,i}^{(0)} \rangle = 0, \quad i = 1, ..., n_U, \\ \tau_i - \frac{1}{\epsilon_1} \langle x(1) - x_0^{(0)}, q_{1,n_S+i}^{(0)} \rangle = 0, \quad i = 1, ..., n_U, \\ \langle x(0) - x_0^{(0)}, q_{0,n_U+i}^{(0)} \rangle = 0, \quad i = 1, ..., n_S, \\ \| x(0) - x_0^{(0)} \| - \epsilon_0 = 0, \\ \| x(1) - x_0^{(0)} \| - \epsilon_1 = 0, \end{cases}$$

to locate a zero of, say, τ_{k-1} (while $\tau_1, ..., \tau_{k-2} = 0$ are fixed). Active: $c_1, ..., c_k, \tau_{k-1}, ..., \tau_{n_U}, \epsilon_1$

Locating a connecting orbit, α varies

• Step $n_U + 1$: Continue a solution to

$$\begin{cases} \dot{x} - 2Tf(x, \alpha) = 0, \\ f(x_0, \alpha) = 0, \\ \langle x(0) - x_0, q_{0,n_U+i} \rangle = 0, & i = 1, ..., n_S, \\ \tau_i - \frac{1}{\epsilon_1} \langle x(1) - x_0, q_{1,n_S+i} \rangle = 0, & i = 1, ..., n_U, \\ T_{22U}Y_U - Y_UT_{11U} + T_{21U} - Y_UT_{12U}Y_U = 0, \\ T_{22S}Y_S - Y_ST_{11S} + T_{21S} - Y_ST_{12S}Y_S = 0, \\ \|x(0) - x_0\| - \epsilon_0 = 0, \\ \|x(1) - x_0\| - \epsilon_1 = 0, \end{cases}$$

to locate a zero of τ_{n_U} (while $\tau_1, \ldots, \tau_{n_U-1} = 0$ are fixed).

Active: $\alpha_1, \tau_{n_U}, \epsilon_1$.

Increasing accuracy of the connecting orbit, α varies

• Step $n_U + 2$: Continue a solution to

$$\begin{cases} \dot{x} - 2Tf(x,\alpha) = 0, \\ f(x_0,\alpha) = 0, \\ \langle x(0) - x_0, q_{0,n_U+i} \rangle = 0, & i = 1, ..., n_S, \\ \langle x(1) - x_0, q_{1,n_S+i} \rangle = 0, & i = 1, ..., n_U, \end{cases}$$

$$T_{22U}Y_U - Y_UT_{11U} + T_{21U} - Y_UT_{12U}Y_U = 0, \\ T_{22S}Y_S - Y_ST_{11S} + T_{21S} - Y_ST_{12S}Y_S = 0, \\ \|x(0) - x_0\| - \epsilon_0 = 0, \\ \|x(1) - x_0\| - \epsilon_1 = 0, \end{cases}$$

in the direction of decreasing ϵ_1 until this distance is 'small'.

Active: α_1, T, ϵ_1 .

Implementation in MATCONT

$c_j \equiv$ UParam1, UParam2, \ldots $au_j \equiv$ SParam1, SParam2, \ldots

📣 Starter		×
	Initial Point	*
t	0	
x1	0	
y1	0	
x2	0	
y2	0	
mu1	9.7	
mu2	-50	
p11	1	
p12	1.5	
p21	-2	
p22	-1	
s1	1.3	
s2	1.7	
w1	0.001	
w2	0.00235	
UParam1	-1	
UParam2	1	
eps0	1.4142e-4	
Sele	ect Connection	

starter	Initial Point
C	
mu1	9.7
c mu2	1-50
° p11	
p12	1.5
° p21	-2
p22	-1
s1	1.3
s2	1.7
C w1	0.001
~ w2	0.00235
Connec	tion parameters
UParam	0.70710678
UParam2	2 0.70710678
SParam	1-0.035495916
SParam2	2-0.7491075
Homoc	linic parameters
Т	0.503829
eps1	1.7691
eps	s1 tolerance
ps1tol	0.01
Jac	obian Data
ncrement	1e-005
Discr	etization Data
ntst	50
loor	4

- 5. Example: Lorenz System (dim $W^u = 1$)
 - Lorenz system:

$$\begin{cases} \dot{x}_1 = \sigma(x_2 - x_1), \\ \dot{x}_2 = rx_1 - x_2 - x_1x_3, \\ \dot{x}_3 = x_1x_2 - bx_3, \end{cases}$$

with the standard value $b = \frac{8}{3}$.

 Petrovskaya, N.V., and Judovich, V.I. 1980. Homoclinic loops of the Salzman-Lorenz system. In *Methods of Qualitative Theory of Differential Equations*, Gorkii State University, Gorkii, pp. 73-83 [In Russian] Homotopy for the (1,0)-homoclinic orbit

(a) Integration over T = 1.3 starting at $\epsilon_0 = 0.01$ for $\sigma = 10, r = 15.5$. (b) Continuation in (r, τ_1, ϵ_1) until $\tau_1 = 0$ at r = 16.1793. (c) Continuation in (r, T, ϵ_1) until $\epsilon_1 = 0.5$ at r = 13.9266.

Homotopy for the (1,1)-homoclinic orbit

A family of (1,1)-homoclinic orbits

Continuation in $(\sigma, r, T, \epsilon_1)$.

Homoclinic bifurcation curves

Historic remark on *T*-points

1. Bykov, V.V. 1978. On the structure of a neighborhood of a separatrix contour with a saddle-focus. In *Methods of Qualitative Theory of Differential Equations*, Gorkii State University, Gorkii, pp. 3-32 [In Russian]

2. Bykov, V.V. 1980. Bifurcations of dynamical systems close to systems with a separatrix contour containing a saddle-focus. *In Methods of Qualitative Theory of Differential Equations*, Gorkii State University, Gorkii, pp. 44-72 [In Russian]

Example: Perturbed Hopf-Hopf normal form (dim $W^u = 2$)

• The system:

 $\begin{cases} \dot{x_1} = x_1(\mu_1 + p_{11}(x_1^2 + y_1^2) + p_{12}(x_2^2 + y_2^2) + s_1(x_2^2 + y_2^2)^2) - y_1\omega_1 + 3y_1^6 \\ \dot{y_1} = y_1(\mu_1 + p_{11}(x_1^2 + y_1^2) + p_{12}(x_2^2 + y_2^2) + s_1(x_2^2 + y_2^2)^2) + x_1\omega_1 - 2x_2^6 \\ \dot{x_2} = x_2(\mu_2 + p_{21}(x_1^2 + y_1^2) + p_{22}(x_2^2 + y_2^2) + s_2(x_1^2 + y_1^2)^2) - y_2\omega_2 - 7y_1^6 \\ \dot{y_2} = y_2(\mu_2 + p_{21}(x_1^2 + y_1^2) + p_{22}(x_2^2 + y_2^2) + s_2(x_1^2 + y_1^2)^2) + x_2\omega_2 + x_1^6. \end{cases}$

• Parameter values: $\mu_1 = 9.7, \mu_2 = -50, p_{11} = 1, p_{12} = 1.5, p_{21} = -2, p_{22} = -1, s_1 = 1.3, s_2 = 1.7, \omega_1 = 0.001, \omega_2 = 0.00235.$

Initial orbit obtained by integration

Then make $\tau_1 = \tau_2 = 0$ by homotopy and decrease ϵ_1 to $\approx 10^{-5}$.

A family of focus-focus homoclinic orbits

Active parameters $(\mu_1, \mu_2, T, \epsilon_1)$.

6. Detection of codim 2 homoclinic bifurcations

Here * stands for S or U.

Type of object	Label	
Limit cycle	LC	
Homoclinic to Hyperbolic Saddle	HHS	
Homoclinic to Saddle-Node	HSN	
Neutral saddle	NSS	
Neutral saddle-focus	NSF	
Neutral Bi-Focus	NFF	
Shilnikov-Hopf	SH	
Double Real Stable leading eigenvalue	DRS	
Double Real Unstable leading eigenvalue	DRU	
Neutrally-Divergent saddle-focus (Stable)	NDS	
Neutrally-Divergent saddle-focus (Unstable)		
Three Leading eigenvalues (Stable)	TLS	
Three Leading eigenvalues (Unstable)	TLU	
Orbit-Flip with respect to the Stable manifold	OFS	
Orbit-Flip with respect to the Unstable manifold	OFU	
Inclination-Flip with respect to the Stable manifold		
Inclination-Flip with respect to the Unstable manifold		
Non-Central Homoclinic to saddle-node	NCH	

Orbit flips

$$A^{\top}(x_0, \alpha_0) \ p_1^s = \mu_1 \ p_1^s, \ A^{\top}(x_0, \alpha_0) \ p_1^u = \lambda_1 \ p_1^u.$$

• Orbit-flip with respect to the stable manifold

$$\psi = \begin{cases} e^{-\Re(\mu_1)T} \langle \Re(p_1^s), x(1) - x_0 \rangle \\ e^{-\Re(\mu_1)T} \langle \Im(p_1^s), x(1) - x_0 \rangle \end{cases}$$

• Orbit-flip with respect to the unstable manifold

$$\psi = \begin{cases} e^{\Re(\lambda_1)T} \langle \Re(p_1^u), x(0) - x_0 \rangle \\ e^{\Re(\lambda_1)T} \langle \Im(p_1^u), x(0) - x_0 \rangle \end{cases}$$

Inclination flips

$$A(x_0, \alpha_0) q_1^s = \mu_1 q_1^s, A(x_0, \alpha_0) q_1^u = \lambda_1 q_1^u.$$

• Inclination-flip with respect to the stable manifold

$$\psi = \begin{cases} e^{-\Re(\mu_1)T} \langle \Re(q_1^s), \phi(0) \rangle \\ e^{-\Re(\mu_1)T} \langle \Im(q_1^s), \phi(0) \rangle \end{cases}$$

• Inclination-flip with respect to the unstable manifold

$$\psi = \begin{cases} e^{\Re(\lambda_1)T} \langle \Re(q_1^u), \phi(1) \rangle \\ e^{\Re(\lambda_1)T} \langle \Im(q_1^u), \phi(1) \rangle \end{cases}$$

where $\phi(t) \perp (T_{x(t)}W^U(x_0) + T_{x(t)}W^S(x_0)).$

In MATCONT a new method to compute $\phi(0)$ and $\phi(1)$ is implemented.

The function $\phi \in C^1([0,1], \mathbb{R}^n)$ is the solution to the **adjoint system**:

$$\dot{\phi}(t) + 2T A^{\mathsf{T}}(x(t), \alpha_0) \phi(t) = 0
Q^{S,\mathsf{T}} \phi(1) = 0
Q^{U,\mathsf{T}} \phi(0) = 0
\int_0^1 \tilde{\phi}(t)^{\mathsf{T}} [\phi(t) - \tilde{\phi}(t)] dt = 0,$$
(1)

where the columns of Q^S and Q^U span the stable and the unstable eigenspaces of $A(x_0, \alpha_0)$, resp.

Theorem If ϕ is a solution to (1) and $\zeta_1 \in \mathbb{R}^{n_U}$, $\zeta_2 \in \mathbb{R}^{n_S}$, then

$$\begin{pmatrix} \phi(t) \\ \zeta_1 \\ \zeta_2 \end{pmatrix} \perp Range \begin{pmatrix} D-2TA(x(t),\alpha_0) \\ Q^{S^{\perp},\mathsf{T}}\delta(1) \\ Q^{U^{\perp},\mathsf{T}}\delta(0) \end{pmatrix} \iff \begin{cases} Q^{S^{\perp}}\zeta_1 = -\phi(1) \\ Q^{U^{\perp}}\zeta_2 = \phi(0). \end{cases}$$
(2)

Here D and δ are the differentiation and the evaluation operators, resp.

 $Q^{S^{\perp}}$ and $Q^{U^{\perp}}$ are known from CIS, ζ_1 and ζ_2 are computable via bordering a (sub)matrix of the discretized basic BVP that is also known.

6. Open problems

Theoretical:

- Dynamical implications of orbit and inclinations flips with complex leading eigenvalues.
- Bifurcation of Three Leading Eigenvalues (codim 2).

Numerical:

- Starting homoclinic orbits from codim 2 bifurcations of equilibria (only from BT is implemented; ZH and HH remain unsupported).
- Continuation of homoclinic orbits to limit cycles (no robust *n*-dimensional algorithm; a generalization of CIS to eigenspaces of differential operators is needed).