Numerical bifurcation analysis of dynamical systems: Recent progress and perspectives *Yuri A. Kuznetsov*

> Department of Mathematics Utrecht University, The Netherlands

Content:

- 1. Mathematical analysis of deterministic systems
- 2. Equilibria of ODEs and their bifurcations
- 3. Limit cycles of ODEs and their local bifurcations
- 4. Bifurcations of homoclinic orbits
- 5. Open problems
- 6. References

1. Mathematical analysis of deterministic systems

Example: Hodgkin-Huxley [1952] axon equations

$$C\dot{V} = I - g_{Na}m^{3}h(V - V_{Na}) - g_{K}n^{4}(V - V_{K}) - g_{L}(V - V_{L}),$$

$$\dot{m} = \phi((1 - m)\alpha_{m} - m\beta_{m}),$$

$$\dot{h} = \phi((1 - h)\alpha_{h} - h\beta_{h}),$$

$$\dot{n} = \phi((1 - n)\alpha_{n} - n\beta_{n}),$$

where

$$\phi = 3^{(T-6.3)/10}, \ \psi_{\alpha_m} = (25 - V)/10, \ \psi_{\alpha_n} = (10 - V)/10,$$
$$\alpha_m = \frac{\psi_{\alpha_m}}{\exp(\psi_{\alpha_m}) - 1}, \ \alpha_h = 0.07 \exp(-V/20), \ \alpha_n = 0.1 \frac{\psi_{\alpha_n}}{\exp(\psi_{\alpha_n}) - 1},$$
$$\theta_m = 4 \exp(-V/18), \ \beta_h = \frac{1}{1 + \exp((30 - V)/10)}, \ \beta_n = 0.125 \exp(-V/80).$$

Other models: Connor et al. [1977], Moris-Lecar [1981]; Traub-Miles

Numerical analysis of dynamical systems

- Simulation at fixed parameter values
 - initial-value problems;
 - spectral analysis;
 - Lyapunov exponents.
- Bifurcation analysis of parameter-dependent systems
 - stability boundaries;
 - sensitive dependence on control parameters;
 - bifurcation diagrams.

- Continuation of orbits:
 - Equilibria (fixed points) and cycles
 - Orbits in invariant manifolds of equilibria and cycles

- Continuation of orbits:
 - Equilibria (fixed points) and cycles
 - Orbits in invariant manifolds of equilibria and cycles
- Continuation of bifurcations:
 - Bifurcations of equilibria and cycles
 - Bifurcations of homoclinic and heteroclinic orbits

- *Continuation of orbits*:
 - Equilibria (fixed points) and cycles
 - Orbits in invariant manifolds of equilibria and cycles
- Continuation of bifurcations:
 - Bifurcations of equilibria and cycles
 - Bifurcations of homoclinic and heteroclinic orbits
- *Combined center manifold reduction and normalization:*
 - Normal forms for bifurcations of equilibria
 - Periodic normal forms for bifurcations of cycles

- Continuation of orbits:
 - Equilibria (fixed points) and cycles
 - Orbits in invariant manifolds of equilibria and cycles
- Continuation of bifurcations:
 - Bifurcations of equilibria and cycles
 - Bifurcations of homoclinic and heteroclinic orbits
- *Combined center manifold reduction and normalization:*
 - Normal forms for bifurcations of equilibria
 - Periodic normal forms for bifurcations of cycles
- Branch switching at bifurcations

Software tools for bifurcation analysis

Standard bifurcation and continuation software:

- LOCBIF [1986-1992]
- AUTO97 (HOMCONT[1994-1997], SLIDECONT[2001-2005])
- CONTENT [1993-1998]
- MATCONT [2000-]

Strategy of local bifurcation analysis of ODEs

$$\frac{dx}{dt} = f(x, \alpha), \ x \in \mathbb{R}^n, \alpha \in \mathbb{R}^m$$

2. Equilibria of ODEs and their bifurcations

$$\frac{dx}{dt} = f(x, \alpha), \ x \in \mathbb{R}^n, \alpha \in \mathbb{R}^m.$$

An equilibrium x_0 satisfies

$$f(x_0, \alpha_0) = 0$$

and has eigenvalues $\{\lambda_1, \lambda_2, \dots, \lambda_n\} = \sigma(f_x(x_0, \alpha_0))$

Im λ

0

 ${\rm Re}\;\lambda$

2. Equilibria of ODEs and their bifurcations

$$\frac{dx}{dt} = f(x, \alpha), \ x \in \mathbb{R}^n, \alpha \in \mathbb{R}^m.$$

An equilibrium x_0 satisfies

 $f(x_0, \alpha_0) = 0$

and has eigenvalues $\{\lambda_1, \lambda_2, \dots, \lambda_n\} = \sigma(f_x(x_0, \alpha_0))$

 $\mathrm{Im} \ \lambda$

0

• Fold (LP): $\lambda_1 = 0;$

Un

 $\underline{\mathrm{Re}} \lambda$

2. Equilibria of ODEs and their bifurcations

$$\frac{dx}{dt} = f(x, \alpha), \ x \in \mathbb{R}^n, \alpha \in \mathbb{R}^m.$$

An equilibrium x_0 satisfies

 $f(x_0, \alpha_0) = 0$

and has eigenvalues $\{\lambda_1, \lambda_2, \dots, \lambda_n\} = \sigma(f_x(x_0, \alpha_0))$

- Fold (LP): $\lambda_1 = 0;$
- Andronov-Hopf (H): $\lambda_{1,2} = \pm i\omega_0$.

Continuation of LP bifurcation in two parameters

Defining system:
$$(x, \alpha) \in \mathbb{R}^n \times \mathbb{R}^2$$

$$\begin{cases} f(x, \alpha) = 0, \\ g(x, \alpha) = 0, \end{cases}$$

where *g* is computed by solving the *bordered system* [Griewank & Reddien, 1984; Govaerts, 2000]

$$\left(\begin{array}{cc} A(x,\alpha) & w_1 \\ v_1^{\mathrm{T}} & 0 \end{array}\right) \left(\begin{array}{c} v \\ g \end{array}\right) = \left(\begin{array}{c} 0 \\ 1 \end{array}\right)$$

where $A(x, \alpha) = f_x(x, \alpha)$.

Continuation of LP bifurcation in two parameters

Defining system:
$$(x, \alpha) \in \mathbb{R}^n \times \mathbb{R}^2$$

$$\begin{cases} f(x, \alpha) = 0, \\ g(x, \alpha) = 0, \end{cases}$$

where *g* is computed by solving the *bordered system* [Griewank & Reddien, 1984; Govaerts, 2000]

$$\begin{pmatrix} A(x,\alpha) & w_1 \\ v_1^{\mathrm{T}} & 0 \end{pmatrix} \begin{pmatrix} v \\ g \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

where $A(x, \alpha) = f_x(x, \alpha)$.

• Vectors $v_1, w_1 \in \mathbb{R}^n$ are adapted along the LP-curve to make the linear system nonsingular.

Continuation of LP bifurcation in two parameters

• Defining system:
$$(x, \alpha) \in \mathbb{R}^n \times \mathbb{R}^2$$

$$\begin{cases} f(x, \alpha) = 0, \\ g(x, \alpha) = 0, \end{cases}$$

where *g* is computed by solving the *bordered system* [Griewank & Reddien, 1984; Govaerts, 2000]

$$\begin{pmatrix} A(x,\alpha) & w_1 \\ v_1^{\mathrm{T}} & 0 \end{pmatrix} \begin{pmatrix} v \\ g \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

where $A(x, \alpha) = f_x(x, \alpha)$.

• Vectors $v_1, w_1 \in \mathbb{R}^n$ are adapted along the LP-curve to make the linear system nonsingular.

• (g_y, g_α) can be computed efficiently using the adjoint linear Universiteit Utrech System.

Generic fold (LP) bifurcation: $\lambda_1 = 0$

• Smooth normal form on CM:

$$\dot{\xi} = \beta + b\xi^2 + O(\xi^3), \ b \neq 0.$$

• Topological normal form on CM:

 $\beta(\alpha) < 0$

$$\dot{\xi} = \beta + b\xi^2, \ b \neq 0.$$

Collision and disappearance of two equilibria: $O^- + O^+ \rightarrow \emptyset$.

 $\beta(\alpha) = 0$

 $\beta(\alpha) > 0$

Critical LP-coefficient b

Write following [Coullet & Spiegel, 1983]

$$F(H) := f(x_0 + H, \alpha_0) = AH + \frac{1}{2}B(H, H) + O(||H||^3),$$

and locally represent the center manifold W_0^c as the graph of a function $H: \mathbb{R} \to \mathbb{R}^n$,

$$x = H(\xi) = \xi q + \frac{1}{2}h_2\xi^2 + O(\xi^3), \ \xi \in \mathbb{R}, \ h_2 \in \mathbb{R}^n.$$

The restriction of $\dot{x} = F(x)$ to W_0^c is

$$\dot{\xi} = G(\xi) = b\xi^2 + O(\xi^3).$$

The invariance of the center manifold W_0^c implies $H_{\xi}\dot{\xi} = F(H(\xi))$.

$$A(\xi q + \frac{1}{2}h_2\xi^2) + \frac{1}{2}B(\xi q, \xi q) + O(|\xi|^3) = b\xi^2 q + \frac{1}{2}h_2\xi^2 + O(|\xi|^3)$$

• The ξ -terms give the identity: Aq = 0.

• The ξ^2 -terms give the equation for h_2 :

$$Ah_2 = -B(q,q) + 2bq.$$

It is singular and its *Fredholm solvability* implies

$$b = \frac{1}{2} \langle p, B(q, q) \rangle,$$

where $Aq = A^{\mathrm{T}}p = 0, \langle q, q \rangle = \langle p, q \rangle = 1.$

$$\frac{dx}{dt} = f(x, \alpha), \ x \in \mathbb{R}^n, \alpha \in \mathbb{R}^m.$$

A limit cycle C_0 corresponds to a periodic solution $x_0(t + T_0) = x_0(t)$ and has Floquet multipliers $\{\mu_1, \mu_2, \dots, \mu_{n-1}, \mu_n = 1\} = \sigma(M(T_0))$, where

 $\dot{M}(t) - f_x(x_0(t), \alpha_0)M(t) = 0, \ M(0) = I_n.$

$$\frac{dx}{dt} = f(x, \alpha), \ x \in \mathbb{R}^n, \alpha \in \mathbb{R}^m.$$

A limit cycle C_0 corresponds to a periodic solution $x_0(t + T_0) = x_0(t)$ and has Floquet multipliers $\{\mu_1, \mu_2, \dots, \mu_{n-1}, \mu_n = 1\} = \sigma(M(T_0))$, where

 $\dot{M}(t) - f_x(x_0(t), \alpha_0)M(t) = 0, \ M(0) = I_n.$

• Fold (LPC): $\mu_1 = 1;$

$$\frac{dx}{dt} = f(x, \alpha), \ x \in \mathbb{R}^n, \alpha \in \mathbb{R}^m.$$

A limit cycle C_0 corresponds to a periodic solution $x_0(t + T_0) = x_0(t)$ and has Floquet multipliers $\{\mu_1, \mu_2, \dots, \mu_{n-1}, \mu_n = 1\} = \sigma(M(T_0))$, where

$$\dot{M}(t) - f_x(x_0(t), \alpha_0)M(t) = 0, \ M(0) = I_n.$$

- Fold (LPC): $\mu_1 = 1;$
- Flip (PD): $\mu_1 = -1;$

$$\frac{dx}{dt} = f(x, \alpha), \ x \in \mathbb{R}^n, \alpha \in \mathbb{R}^m.$$

A limit cycle C_0 corresponds to a periodic solution $x_0(t + T_0) = x_0(t)$ and has Floquet multipliers $\{\mu_1, \mu_2, \dots, \mu_{n-1}, \mu_n = 1\} = \sigma(M(T_0))$, where

 $\dot{M}(t) - f_x(x_0(t), \alpha_0)M(t) = 0, \ M(0) = I_n.$

- Fold (LPC): $\mu_1 = 1;$
- Flip (PD): $\mu_1 = -1;$
- Torus (NS): $\mu_{1,2} = e^{\pm i\theta_0}$.

Simple bifurcation points

$$\dot{\Phi}(\tau) - T f_x(u(\tau), \alpha_0) \Phi(\tau) = 0, \quad \Phi(0) = I_n, \dot{\Psi}(\tau) + T f_x^{\mathrm{T}}(u(\tau), \alpha_0) \Psi(\tau) = 0, \quad \Psi(0) = I_n.$$

• LPC:

 $(\Phi(1)-I_n)q_0 = 0, (\Phi(1)-I_n)q_1 = q_0, (\Psi(1)-I_n)p_0 = 0, (\Psi(1)-I_n)p_1$ • PD:

$$(\Phi(1) + I_n)q_2 = 0, \ (\Psi(1) + I_n)p_2 = 0.$$

• NS: $\kappa = \cos \theta_0$

 $(\Phi(1) - e^{i\theta_0}I_n)(q_3 + iq_4) = 0, \quad (\Psi(1) - e^{-i\theta_0}I_n)(p_3 + ip_4) = 0.$ We have $(I_n - 2\kappa\Phi(1) + \Phi^2(1))q_{3,4} = 0.$

Continuation of bifurcations in two parameters

• PD and LPC: $(u, T, \alpha) \in C^1([0, 1], \mathbb{R}^n) \times \mathbb{R} \times \mathbb{R}^2$

 $\dot{u}(\tau) - Tf(u(\tau), \alpha) = 0, \ \tau \in [0, 1],$ u(0) - u(1) = 0, $\int_0^1 \langle \dot{\tilde{u}}(\tau), u(\tau) \rangle \ d\tau = 0,$ $G[u, T, \alpha] = 0.$ • NS: $(u, T, \alpha, \kappa) \in C^1([0, 1], \mathbb{R}^n) \times \mathbb{R} \times \mathbb{R}^2 \times \mathbb{R}$ $\dot{u}(\tau) - Tf(u(\tau), \alpha) = 0, \ \tau \in [0, 1],$ u(0) - u(1) = 0, $\int_0^1 \langle \dot{\tilde{u}}(\tau), u(\tau) \rangle \ d\tau = 0,$ $\overline{G_{11}[u, T, \alpha, \kappa]} = 0,$ $G_{22}[u, T, \alpha, \kappa] = 0.$

PD-continuation

• There exist $v_{01}, w_{01} \in C^0([0,1], \mathbb{R}^n)$, and $w_{02} \in \mathbb{R}^n$, such that $N_1 : C^1([0,1], \mathbb{R}^n) \times \mathbb{R} \to C^0([0,1], \mathbb{R}^n) \times \mathbb{R}^n \times \mathbb{R}$,

$$N_{1} = \begin{bmatrix} D - Tf_{x}(u, \alpha) & w_{01} \\ \delta_{0} - \delta_{1} & w_{02} \\ \text{Int}_{v_{01}} & 0 \end{bmatrix},$$

is one-to-one and onto near a simple PD bifurcation point.

• Define G by solving
$$N_1 \begin{pmatrix} v \\ G \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{cases} \dot{v}(\tau) - Tf_x(u(\tau), \alpha)v(\tau) + Gw_{01}(\tau) &= 0, \ \tau \in [0, 1], \\ v(0) + v(1) + Gw_{02} &= 0, \\ \int_0^1 \langle v_{01}(\tau), v(\tau) \rangle d\tau - 1 &= 0. \end{cases}$$

• If G = 0 then $\Phi(1)$ has eigenvalue $\mu_1 = -1$.

• One can take

 $w_{02} = 0$

and

 $w_{01}(\tau) = \Psi(\tau)p_2, \ v_{01}(\tau) = \Phi(\tau)q_2.$

LPC-continuation

• There exist $v_{01}, w_{01} \in C^0([0,1], \mathbb{R}^n), w_{02} \in \mathbb{R}^n$, and $v_{02}, w_{03} \in \mathbb{R}$ such that $N_2: C^1([0,1], \mathbb{R}^n) \times \mathbb{R}^2 \to C^0([0,1], \mathbb{R}^n) \times \mathbb{R}^n \times \mathbb{R}^2$,

$N_2 =$	$\int D - T f_x(u, \alpha)$	$-f(u, \alpha)$	w_{01} -	
	$\delta_0-\delta_1$	0	w_{02}	,
	$\mathrm{Int}_{f(u, lpha)}$	0	w_{03}	
	$\operatorname{Int}_{v_{01}}$	v_{02}	0	

is one-to-one and onto near a simple LPC bifurcation point.

Define G by solving
$$N_2 \begin{pmatrix} v \\ S \\ G \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

NS-continuation

• There exist $v_{01}, v_{02}, w_{11}, w_{12} \in C^0([0, 2], \mathbb{R}^n)$, and $w_{21}, w_{22} \in \mathbb{R}^n$, such that $N_3: C^1([0, 2], \mathbb{R}^n) \times \mathbb{R}^2 \to C^0([0, 2], \mathbb{R}^n) \times \mathbb{R}^n \times \mathbb{R}^2$,

$$N_{3} = \begin{bmatrix} D - Tf_{x}(u, \alpha) & w_{11} & w_{12} \\ \delta_{0} - 2\kappa\delta_{1} + \delta_{2} & w_{21} & w_{22} \\ & \text{Int}_{v_{01}} & 0 & 0 \\ & & \text{Int}_{v_{02}} & 0 & 0 \end{bmatrix},$$

is one-to-one and onto near a simple NS bifurcation point.

• Define
$$G_{jk}$$
 by solving $N_3 \begin{pmatrix} r & s \\ G_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$

UTwente - p. 20/

Remarks on continuation of bifurcations

- After discretization via orthogonal collocation, all linear BVPs for *G*'s have sparsity structure that is identical to that of the linearization of the BVP for limit cycles.
- For each defining system holds: *Simplicity of the bifurcation* + *Transversality* ⇒ *Regularity of the defining BVP*.
- Jacobian matrix of each (discretized) defining BVP can be efficiently computed using adjoint linear BVP.
- Border adaptation using solutions of the adjoint linear BVPs.
- Actually implemented in MatCont, also with compiled C-codes for the Jacobian matrices.

Periodic normalization on center manifolds

- Parameter-dependent periodic normal forms for LPC, PD, and NS [Iooss, 1988]
- Computation of critical normal form coefficients

Generic LPC-bifurcation

 T_0 -periodic normal form on W^c_{α} :

$$\begin{cases} \frac{d\tau}{dt} = 1 + \nu(\alpha) - \xi + a(\alpha)\xi^2 + \mathcal{O}(\xi^3), \\ \frac{d\xi}{dt} = \beta(\alpha) + b(\alpha)\xi^2 + \mathcal{O}(\xi^3), \end{cases}$$

where $a, b \in \mathbb{R}$.

U

Generic PD-bifurcation

 $2T_0$ -periodic normal form on W^c_{α} :

$$\begin{cases} \frac{d\tau}{dt} = 1 + \nu(\alpha) + a(\alpha)\xi^2 + \mathcal{O}(\xi^4), \\ \frac{d\xi}{dt} = \beta(\alpha)\xi + c(\alpha)\xi^3 + \mathcal{O}(\xi^4), \end{cases}$$

where $a, c \in \mathbb{R}$.

Generic NS-bifurcation

 T_0 -periodic normal form on W^c_{α} :

$$\begin{cases} \frac{d\tau}{dt} = 1 + \nu(\alpha) + a(\alpha)|\xi|^2 + \mathcal{O}(|\xi|^4), \\ \frac{d\xi}{dt} = \left(\beta(\alpha) + \frac{i\theta(\alpha)}{T(\alpha)}\right)\xi + d(\alpha)\xi|\xi|^2 + \mathcal{O}(|\xi|^4), \end{cases}$$

where $a \in \mathbb{R}, d \in \mathbb{C}$.

niversiteit Utrecht

Critical normal form coefficients

At a codimension-one point write

 $f(x_0(t)+v,\alpha_0) = f(x_0(t),\alpha_0) + A(t)v + \frac{1}{2}B(t;v,v) + \frac{1}{6}C(t;v,v,v) + O(||v||^4),$

where $A(t) = f_x(x_0(t), \alpha_0)$ and the components of the multilinear functions *B* and *C* are given by

$$B_i(t; u, v) = \sum_{j,k=1}^n \left. \frac{\partial^2 f_i(x, \alpha_0)}{\partial x_j \partial x_k} \right|_{x=x_0(t)} u_j v_k$$

and

$$C_i(t; u, v, w) = \sum_{j,k,l=1}^n \left. \frac{\partial^3 f_i(x, \alpha_0)}{\partial x_j \partial x_k \partial x_l} \right|_{x=x_0(t)} u_j v_k w_l,$$

for i = 1, 2, ..., n. These are T_0 -periodic in t.

Universiteit Utre
Fold (LPC): $\mu_1 = 1$

• Critical center manifold $W_0^c : \tau \in [0, T_0], \ \xi \in \mathbb{R}$

 $x = x_0(\tau) + \xi v(\tau) + H(\tau, \xi),$ where $H(T_0, \xi) = H(0, \xi),$ $H(\tau, \xi) = \frac{1}{2}h_2(\tau)\xi^2 + O(\xi^3)$

• Critical periodic normal form on W_0^c :

$$\begin{cases} \frac{d\tau}{dt} = 1 - \xi + a\xi^2 + \mathcal{O}(\xi^3), \\ \frac{d\xi}{dt} = b\xi^2 + \mathcal{O}(\xi^3), \end{cases}$$

where $a, b \in \mathbb{R}$, while the $\mathcal{O}(\xi^3)$ -terms are T_0 -periodic in τ .

LPC: Eigenfunctions

$$\begin{aligned} \dot{v}(\tau) - A(\tau)v(\tau) - f(x_0(\tau), \alpha_0) &= 0, \ \tau \in [0, T_0], \\ v(0) - v(T_0) &= 0, \\ \int_0^{T_0} \langle v(\tau), f(x_0(\tau), \alpha_0) \rangle d\tau &= 0, \end{aligned}$$

implying

$$\int_{0}^{T_{0}} \langle \varphi^{*}(\tau), f(x_{0}(\tau), \alpha_{0}) \rangle \ d\tau = 0,$$

where φ^* satisfies

 $\begin{aligned} \dot{\varphi}^{*}(\tau) + A^{\mathrm{T}}(\tau)\varphi^{*}(\tau) &= 0, \ \tau \in [0, T_{0}], \\ \varphi^{*}(0) - \varphi^{*}(T_{0}) &= 0, \\ \int_{0}^{T_{0}} \langle \varphi^{*}(\tau), v(\tau) \rangle d\tau - 1 &= 0. \end{aligned}$

LPC: Computation of *b*

• Substitute into

$$\frac{dx}{dt} = \frac{\partial x}{\partial \xi} \frac{d\xi}{dt} + \frac{\partial x}{\partial \tau} \frac{d\tau}{dt}$$

• Collect

$$\begin{aligned} \xi^0 &: \dot{x}_0 &= f(x_0, \alpha_0), \\ \xi^1 &: \dot{v} - A(\tau)v &= \dot{x}_0, \\ \xi^2 &: \dot{h}_2 - A(\tau)h_2 &= B(\tau; v, v) - 2af(x_0, \alpha_0) + 2\dot{v} - 2bv. \end{aligned}$$

• Fredholm solvability condition

$$\boldsymbol{b} = \frac{1}{2} \int_0^{T_0} \langle \varphi^*(\tau), B(\tau; v(\tau), v(\tau)) + 2A(\tau)v(\tau) \rangle \ d\tau.$$

Remarks on numerical periodic normalization

- Only the derivatives of f(x, α₀) are used, not those of the Poincaré map P(y, α₀).
- Detection of codim 2 points is easy.
- After discretization via orthogonal collocation, all linear BVPs involved have the standard sparsity structure.
- One can re-use solutions to linear BVPs appearing in the continuation to compute the normal form coefficients.
- Actually implemented in MatCont for LPC, PD, and NS.

Example: Oscillations in peroxidase-oxidase reaction

• $2YH_2 + O_2 + 2H^+ \to 2YH^+ + 2H_2O$

$$\begin{array}{ll} A+B+X \xrightarrow{k_1} 2X, & Y \xrightarrow{k_5} Q, \\ & 2X \xrightarrow{k_2} 2Y, & X_0 \xrightarrow{k_6} X, \\ A+B+Y \xrightarrow{k_3} 2X, & A_0 \xleftarrow{k_7} A, \\ & X \xrightarrow{k_4} P, & B_0 \xrightarrow{k_8} B \end{array}$$

Example: Oscillations in peroxidase-oxidase reaction

• $2YH_2 + O_2 + 2H^+ \to 2YH^+ + 2H_2O$

$$A + B + X \xrightarrow{k_1} 2X, \qquad Y \xrightarrow{k_5} Q,$$

$$2X \xrightarrow{k_2} 2Y, \qquad X_0 \xrightarrow{k_6} X,$$

$$A + B + Y \xrightarrow{k_3} 2X, \qquad A_0 \xleftarrow{k_7} A,$$

$$X \xrightarrow{k_4} P, \qquad B_0 \xrightarrow{k_8} B$$

• Steinmetz & Larter (1991):

MatCont

Bifurcation curves

ACM Trans. Math. Software **24** (1998), 418-436 SIAM J. Numer. Anal. **38** (2000), 329-346 SIAM J. Sci. Comp. **27** (2005), 231-252

Bifircation curves (zoom)

SIAM J. Numer. Anal. **41** (2003), 401-435 *SIAM J. Numer. Anal.* **43** (2005), 1407-1435 *Physica D* **237** (2008), 3061-3068

4. Bifurcations of homoclinic orbits

• Consider a family of smooth ODEs

$$\dot{x} = f(x, \alpha), \quad x \in \mathbb{R}^n, \ \alpha \in \mathbb{R}^m,$$

having a hyperbolic equilibrium x_0 with eigenvalues

 $\Re(\mu_{n_S}) \le \dots \le \Re(\mu_1) < 0 < \Re(\lambda_1) \le \dots \le \Re(\lambda_{n_U})$

of $A(x_0, \alpha) = f_x(x_0, \alpha)$.

• Homoclinic problem:

$$f(x_0, \alpha) = 0,$$

$$\dot{x}(t) - f(x(t), \alpha) = 0,$$

$$\lim_{t \to \pm \infty} x(t) - x_0 = 0, \ t \in \mathbb{R},$$

$$\int_{-\infty}^{\infty} \dot{\tilde{x}}(t)^{\mathrm{T}}(x(t) - \tilde{x}(t)) dt = 0,$$

Universiteit Utrech

Homoclinic orbits

Homoclinic orbits to hyperbolic equilibria have codim 1.

Defining BVP [Beyn, 1993; Doedel & Friedman 1994]

• Truncate with *projection boundary conditions*:

 $\begin{cases} f(x_0, \alpha) &= 0, \\ \dot{x}(t) - f(x(t), \alpha) &= 0, \ t \in [-T, T] \\ \langle x(-T) - x_0, q_{0,n_U+i} \rangle &= 0, \ i = 1, 2, \dots, n_S \\ \langle x(+T) - x_0, q_{1,n_S+i} \rangle &= 0, \ i = 1, 2, \dots, n_U \\ \int_{-T}^{T} \dot{\tilde{x}}(t)^{\mathrm{T}}(x(t) - \tilde{x}(t)) dt &= 0, \end{cases}$

where the columns of $Q^{U^{\perp}} = [q_{0,n_U+1}, \dots, q_{0,n_U+n_S}]$ and $Q^{U^{\perp}} = [q_{1,n_S+1}, \dots, q_{1,n_S+n_U}]$ span the orthogonal complements to $T_{x_0}W^U(x_0)$ and $T_{x_0}W^S(x_0)$, resp.

Universi

Smooth Schur Block Factorization

$$A(s) = Q(s) \begin{bmatrix} R_{11}(s) & R_{12}(s) \\ 0 & R_{22}(s) \end{bmatrix} Q^{\mathrm{T}}(s) \in \mathbb{R}^{n \times n},$$

where $Q(s) = [Q_1(s) \ Q_2(s)]$ such that

- Q(s) is orthogonal, i.e. $Q^{\mathrm{T}}(s)\overline{Q(s)} = I_n$;
- the columns of $Q_1(s) \in \mathbb{R}^{n \times m}$ span an eigenspace $\mathcal{E}(s)$ of A(s);
- the columns of $Q_2(s) \in \mathbb{R}^{n \times (n-m)}$ span $\mathcal{E}^{\perp}(s)$;
- eigenvalues of R_{11} are the eigenvalues of A(s) corresponding to $\mathcal{E}(s);$
- Q(s) and $R_{ij}(s)$ have the same smoothness as A(s).

Then holds the *invariant subspace relation*:

 $Q_2^{\mathrm{T}}(s)A(s)Q_1(s) = 0.$

CIS-algorithm [Dieci & Friedman, 2001]

• Define

$$\begin{bmatrix} T_{11}(s) & T_{12}(s) \\ T_{21}(s) & T_{22}(s) \end{bmatrix} = Q^{\mathrm{T}}(0)A(s)Q(0)$$

for small |s|, where $T_{11}(s) \in \mathbb{R}^{m \times m}$.

• Compute $Y \in \mathbb{R}^{(n-m) \times m}$ from the *Riccati matrix equation*

 $YT_{11}(s) - T_{22}(s)Y + YT_{12}(s)Y = T_{21}(s).$

• Then Q(s) = Q(0)U(s) where $U(s) = [U_1(s) \ U_2(s)]$ with

$$U_{1}(s) = \begin{pmatrix} I_{m} \\ Y \end{pmatrix} (I_{n-m} + Y^{T}Y)^{-\frac{1}{2}}, \ U_{2}(s) = \begin{pmatrix} -Y^{T} \\ I_{n-m} \end{pmatrix} (I_{n-m} + YY^{T})^{-\frac{1}{2}}$$

• The columns of

 $Q_1(s) = Q(0)U_1(s)$ and $Q_2(s) = Q(0)U_2(s)$

form *orthogonal* bases in $\mathcal{E}(s)$ and $\mathcal{E}^{\perp}(s)$.

• The columns of

$$Q(0) \begin{bmatrix} I_m \\ Y(s) \end{bmatrix} \text{ and } Q(0) \begin{bmatrix} -Y(s)^T \\ I_{n-m} \end{bmatrix}$$

form bases in $\mathcal{E}(s)$ and $\mathcal{E}^{\perp}(s)$, which are in general *non-orthogonal*.

Continuation of homoclinic orbits in MatCont

$$\begin{split} \dot{x}(t) - 2Tf(x(t), \alpha) &= 0, \\ f(x_0, \alpha) &= 0, \\ \int_0^1 \dot{\tilde{x}}(t)^{\mathrm{T}}(x(t) - \tilde{x}(t))dt &= 0, \\ \langle x(0) - x_0, q_{0,n_U+i} \rangle &= 0, \ i = 1, 2, \dots, n_S \\ \langle x(1) - x_0, q_{1,n_S+i} \rangle &= 0, \ i = 1, 2, \dots, n_U \\ T_{22U}Y_U - Y_UT_{11U} + T_{21U} - Y_UT_{12U}Y_U &= 0, \\ T_{22S}Y_S - Y_ST_{11S} + T_{21S} - Y_ST_{12S}Y_S &= 0, \\ \|x(0) - x_0\| - \epsilon_0 &= 0, \\ \|x(1) - x_0\| - \epsilon_1 &= 0, \\ \|x(1) - x_0\| - \epsilon_1 &= 0, \\ [q_{0,n_U+1} q_{0,n_U+2} \cdots q_{0,n_U+n_S}] &= Q_U(0) \begin{bmatrix} -Y_U^{\mathrm{T}} \\ I_{n_S} \end{bmatrix} \\ [q_{1,n_S+1} q_{1,n_S+2} \cdots q_{1,n_S+n_U}] &= Q_S(0) \begin{bmatrix} -Y_S^{\mathrm{T}} \\ I_{n_U} \end{bmatrix}. \end{split}$$

Example: Complex nerve pulses

 The slow subsystem of the Hodgkin-Huxley PDEs is approximated by the FitHugh-Nagumo [1962] system

$$\begin{cases} u_t = u_{xx} - u(u-a)(u-1) - v, \\ v_t = bu, \end{cases}$$

where 0 < a < 1, b > 0.

Example: Complex nerve pulses

• The slow subsystem of the Hodgkin-Huxley PDEs is approximated by the FitHugh-Nagumo [1962] system

$$\begin{cases} u_t = u_{xx} - u(u-a)(u-1) - v, \\ v_t = bu, \end{cases}$$

where 0 < a < 1, b > 0.

• Traveling waves $u(x,t) = U(\xi), v(x,t) = V(\xi)$ with $\xi = x + ct$ satisfy

$$\begin{cases} \dot{U} = W, \\ \dot{W} = cW + U(U-a)(U-1) + V, \\ \dot{V} = \frac{b}{c}U, \end{cases}$$

where c is the propagation speed.

Homoclinic orbits define traveling impulses

Homoclinic bifurcation curves (HomCont/MatCont)

Int. J. Bifurcation & Chaos 4 (1994), 795-822

Double pulses

Selecta Math. Sovetica **13** (1994), 128-142 *SIAM J. Appl. Math.* **62** (2001), 462-487

5. Open problems

- Computation of normal forms for bifurcations of equilibria in ODEs with delays.
- Bifurcation analysis of spatially-distributed systems with delays, e.g. neural fields.
- Computing codim 2 periodic normal forms for limit cycles.
- Location and continuation of homoclinic and heteroclinic orbits to limit cycles.
- Starting homoclinic codim 1 bifurcations from codim 2 points.

Example: Delay-differential equations

• Model of two interacting layers of neurons [Visser et al., 2010]:

 $\begin{cases} \dot{x}_1(t) = -x_1(t) - aG(bx_1(t-\tau_1)) + cG(dx_2(t-\tau_2)), \\ \dot{x}_2(t) = -x_2(t) - aG(bx_2(t-\tau_1)) + cG(dx_1(t-\tau_2)), \end{cases}$

where $G(x) = (\tanh(x-1) + \tanh(1))\cosh^2(1)$ and x_j is the population averaged neural activity in layer j = 1, 2.

• For $b = 2, d = 1.2, \tau_1 = 12.99, \tau_2 = 20.15$ there is a *double* Hopf (HH) bifurcation at

(abG'(0), cdG'(0)) = (0.559667, 0.688876)

that gives rise to a stable quasi-periodic behaviour with two base frequences (2-*torus*).

Example: Neural field model

The two-population neural network model:

 $\frac{1}{\alpha_E} \frac{\partial u_E(x,t)}{\partial t} = -u_E(x,t)$ + $\int_{-\infty}^{\infty} w_{EE}(y) f_E(u_E(x-y,t-\frac{|y|}{v_E})) dy$ - $\int_{-\infty}^{\infty} w_{EI}(y) f_I(u_I(x-y,t-\frac{|y|}{v_I})) dy,$ $\frac{1}{\alpha_I} \frac{\partial u_I(x,t)}{\partial t} = -u_I(x,t)$ + $\int_{-\infty}^{\infty} w_{IE}(y) f_E(u_E(x-y,t-\frac{|y|}{v_E})) dy$ - $\int_{-\infty}^{\infty} w_{II}(y) f_I(u_I(x-y,t-\frac{|y|}{v_I})) dy.$

Turing instabilities and pattern formation, cf. [Blomquist et al., 2005; Venkov & Coombes, 2007; Wyller et al., 2007]. Partial results but no systematic bifurcation analysis.

Cusp bifurcation of limit cycles (codim 2)

• Critical center manifold $W_0^c : \tau \in [0, T_0], \xi \in \mathbb{R}$

 $x = x_0(\tau) + \xi v(\tau) + H(\tau, \xi),$

where $H(T_0, \xi) = H(0, \xi)$,

$$H(\tau,\xi) = \frac{1}{2}h_2(\tau)\xi^2 + O(\xi^3)$$

• Critical periodic normal form on W_0^c :

$$\begin{cases} \frac{d\tau}{dt} = 1 - \xi + a_1 \xi^2 + a_2 \xi^3 + \mathcal{O}(\xi^4), \\ \frac{d\xi}{dt} = e\xi^3 + \mathcal{O}(\xi^4), \end{cases}$$

where $a_{1,2}, e \in \mathbb{R}$, while the $\mathcal{O}(\xi^3)$ -terms are T_0 -periodic in τ .

Example: Swallow-tail bifurcation in Lorenz-84

 $a = 0.25, b \in [2.95, 4.0].$

Computation of cycle-to-cycle connecting orbits in 3D

- ODEs for both cycles, their (adjoint) eigenfunctions, and the connection;
- Projection boundary conditions in orthogonal planes at base points.

Example: Bifurcations and chaos in ecology

• The tri-trophic food chain model [Hogeweg & Hesper, 1978]:

$$\begin{cases} \dot{x}_1 &= rx_1\left(1 - \frac{x_1}{K}\right) - \frac{a_1x_1x_2}{1 + b_1x_1}, \\ \dot{x}_2 &= e_1\frac{a_1x_1x_2}{1 + b_1x_1} - \frac{a_2x_2x_3}{1 + b_2x_2} - d_1x_2, \\ \dot{x}_3 &= e_2\frac{a_2x_2x_3}{1 + b_2x_2} - d_2x_3, \end{cases}$$

where

- x_1 prey biomass
- x_2 predator biomass
- x_3 super-predator biomass

Global bifurcation diagram

SIAM J. Appl. Math. 62 (2001), 462-487

Local bifurcations

Math. Biosciences 134 (1996), 1-33

Local and key global bifurcations

Int. J. Bifurcation & Chaos **18** (2008), 1889-1903 *Int. J. Bifurcation & Chaos* **19** (2009), 159-169

• Larger dimensions and codimensions;

- Larger dimensions and codimensions;
- Semi-local and global phenomena in phase and parameter spaces;

- Larger dimensions and codimensions;
- Semi-local and global phenomena in phase and parameter spaces;
- Non-standard dynamical models (non-smooth, hybrid, constrained, spatially-distributted delays, etc.);

- Larger dimensions and codimensions;
- Semi-local and global phenomena in phase and parameter spaces;
- Non-standard dynamical models (non-smooth, hybrid, constrained, spatially-distributted delays, etc.);
- Implication of connection topology on network dynamics;

6. References

Applied Mathematical Sciences

112 Yuri A. Kuznetsov

Elements of Applied Bifurcation Theory Third Edition

应用分支理论基础

〔俄〕尤里・阿・库兹涅佐夫 著 金成桴 译

Yu.A. Kuznetsov, O. Diekmann, W.-J. Beyn. *Dynamical Systems Essentials*: An application oriented introduction to ideas, concepts, examples, methods, and results. Springer (polishing stage).

- Yu.A. Kuznetsov, O. Diekmann, W.-J. Beyn. *Dynamical Systems Essentials*: An application oriented introduction to ideas, concepts, examples, methods, and results. Springer (polishing stage).
- W. Govaerts and Yu.A. Kuznetsov. *Bifurcation Analysis of Dynamical Systems in MATLAB*. Springer (advanced stage).

- Yu.A. Kuznetsov, O. Diekmann, W.-J. Beyn. *Dynamical Systems Essentials*: An application oriented introduction to ideas, concepts, examples, methods, and results. Springer (polishing stage).
- W. Govaerts and Yu.A. Kuznetsov. *Bifurcation Analysis of Dynamical Systems in MATLAB*. Springer (advanced stage).
- Yu.A. Kuznetsov and H.G.E. Meijer *Codimension Two Bifurcations of Iterated Maps*. Cambridge University Press.

- Yu.A. Kuznetsov, O. Diekmann, W.-J. Beyn. *Dynamical Systems Essentials*: An application oriented introduction to ideas, concepts, examples, methods, and results. Springer (polishing stage).
- W. Govaerts and Yu.A. Kuznetsov. *Bifurcation Analysis of Dynamical Systems in MATLAB*. Springer (advanced stage).
- Yu.A. Kuznetsov and H.G.E. Meijer *Codimension Two Bifurcations of Iterated Maps*. Cambridge University Press.
- A.R. Champneys and Yu.A. Kuznetsov. *Homoclinic Connections*: Localized phenomena in science and engineering. Springer.

