UNIVERSITY OF TWENTE.

Exploring Borders of Chaos

Prof. dr. Yuri Kuznetsov

Yuri A. Kuznetsov or Iourii A. Kouznetsov ???

University of Twente Phone Book						12/2/12 11:5
Name	Dept.	Sect.	Building	Room	Phone	Phone2
Kouznetsov, prof.dr. I.A. 1 result found.	EWI	AAMP	Citadel	H317	3408	3372

UNIVERSITY OF TWENTE.

Yuri A. Kuznetsov or Iourii A. Kouznetsov ???

University of Twente Phone Book

12/2/12 11:51 PM

Name	Dept.	Sect.	Building	Room	Phone	Phone2
Kouznetsov, prof.dr. I.A.	EWI	AAMP	Citadel	H317	$\mathbf{3 4 0 8}$	3372
1 result found.						

UNIVERSITY OF TWENTE.

Yuri A. Kuznetsov or Iourii A. Kouznetsov ???

University of Twente Phone Book

Name	Dept.	Sect.	Building	Room	Phone	Phone2
Kouznetsov, prof.dr. I.A.	EWI	AAMP	Citadel	H317	$\mathbf{3 4 0 8}$	
1 result found.				3372		

UNIVERSITY OF TWENTE.

Overview

Introduction

Numerical bifurcation analysis

Acknowledgements

Connected research fields

Mathematical modelling

Numerical analysis and software tools

P.S. de Laplace (1749-1827)

We may regard the present state of the universe as the effect of its past and the cause of its future. An jhtellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect were also vast enough to submit these data to analysis, it would embrace in a single formula the movements of the greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would be uncertain and the future

- just like the past would be present before its eyes.

de Laplace, A Philosophical Essay on Probabilities

Dynamical systems

Differential equations and dynamical systems

$$
\left\{\begin{aligned}
\frac{d x_{1}(t)}{d t} & =f_{1}\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t), \alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right) \\
\frac{d x_{2}(t)}{d t} & =f_{2}\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t), \alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right) \\
\vdots & \\
\frac{d x_{n}(t)}{d t} & =f_{n}\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t), \alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right)
\end{aligned}\right.
$$

or

$$
\begin{gathered}
\dot{x}=f(x, \alpha), \quad x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n}, \alpha=\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{p}
\end{array}\right) \in \mathbb{R}^{p} \\
\phi^{t}(x(0)):=x(t)
\end{gathered}
$$

Bernoulli system

Bernoulli system

UNIVERSITY OF TWENTE.

J.H. Poincaré (1854-1912)

Limit cycle

Andronov-Hopf bifurcation in Brusselator

$$
\left\{\begin{array}{l}
\dot{x}_{1}=a-(b+1) x_{1}+x_{1}^{2} x_{2}
\end{array}\right.
$$

Andronov-Hopf bifurcation in Brusselator

$$
\left\{\begin{array}{l}
\dot{x}_{1}=a-(b+1) x_{1}+x_{1}^{2} x_{2} \\
\dot{x}_{2}=b x_{1}-x_{1}^{2} x_{2}
\end{array}\right.
$$

$b<b_{0}$

$b>b_{0}$

A strange attractor in the Rössler system

A strange attractor in the Rössler system

Complexity of dynamical systems

Most differential equations admit neither exact analytic solution nor a reasonably complete qualitative analysis.
V.I. Arnold, Geometrical Methods in the Theory of Ordinary

Differential Equations

Bifurcation set of the food chain model

Kuznetsov, De Feo \& Rinaldi [2001]
UNIVERSITY OF TWENTE.

Overview

Numerical bifurcation analysis

Acknowledgements

Normal forms for oscillatory instability

- Andronov-Hopf bifurcation:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\alpha x_{1}-x_{2}+l_{1} x_{1}\left(x_{1}^{2}+x_{2}^{2}\right) \\
\dot{x}_{2}=x_{1}+\alpha x_{2}+l_{1} x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\dot{\rho}=\rho\left(\alpha+l_{1} \rho^{2}\right) \\
\dot{\theta}=1
\end{array}\right.
$$

Normal forms for oscillatory instability

- Andronov-Hopf bifurcation:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\alpha x_{1}-x_{2}+l_{1} x_{1}\left(x_{1}^{2}+x_{2}^{2}\right) \\
\dot{x}_{2}=x_{1}+\alpha x_{2}+l_{1} x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\dot{\rho}=\rho\left(\alpha+l_{1} \rho^{2}\right) \\
\dot{\theta}=1
\end{array}\right.
$$

- Bautin bifurcation:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\alpha_{1} x_{1}-x_{2}+\alpha_{2} x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)+l_{2} x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)^{2} \\
\dot{x}_{2}=x_{1}+\alpha_{1} x_{2}+\alpha_{2} x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)+l_{2} x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)^{2}
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\dot{\rho}=\rho\left(\alpha_{1}+\alpha_{2} \rho^{2}+l_{2} \rho^{4}\right) \\
\dot{\theta}=1
\end{array}\right.
$$

Bautin bifurcation diagram $\left(l_{1}<0\right)$

UNIVERSITY OF TWENTE.

Continuation of equilibria in $\dot{x}=f(x, \alpha)$

$$
F(U)=0, F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}
$$

where

Continuation of folds

$$
\left.\left\{\begin{array}{r}
\left\{\begin{array}{r}
f(x, \alpha)=0 \\
f_{x}(x, \alpha) v \\
\langle w, v\rangle-1
\end{array}=0\right.
\end{array}\right\} \begin{array}{r}
f(x, \alpha)=0 \\
\operatorname{det}\left(f_{x}(x, \alpha)\right)=0
\end{array}\right\} \begin{array}{r}
\left\{\begin{array}{r}
f(x, \alpha)=0 \\
g(x, \alpha)=0
\end{array}\right. \\
\left\{\begin{array}{l}
\text { where }
\end{array}\right. \\
\left\{\begin{array}{l}
v \\
g
\end{array}\right)=\binom{0}{1}
\end{array}
$$

Generation I: LOCBIF (1991-1993)

UNIVERSITY OF TWENTE.

Generation II: CONTENT (1993-1998)

Generation III: MATCONT (2000-)

Overview

\bigwedge Introduction

Numerical bifurcation analysis

Bifurcations in Neuroscience

Acknowledgements

Double impulses in FitzHugh-Nagumo model

$$
\left.\begin{array}{rl}
\left\{\begin{array} { r l }
{ \frac { \partial V } { \partial t } } & { = \frac { \partial ^ { 2 } V } { \partial x ^ { 2 } } - f (V) - W } \\
{ \frac { \partial W } { \partial t } } & { = b (V - \gamma W) }
\end{array} \Rightarrow \left\{\begin{array}{l}
\frac{d v}{d \xi}
\end{array}=u\right.\right. \\
\frac{d u}{d \xi} & =c u+f(v)+w \\
\frac{d w}{d \xi} & =\frac{b}{c} u(v-\gamma w)
\end{array}\right] \begin{aligned}
& V(t, x)=v(\xi), W(t, x)=w(\xi), \xi=x+c t
\end{aligned}
$$

Double impulses in FitzHugh-Nagumo model

Bifurcations of neural field models

$$
\frac{\partial V(t, x)}{\partial t}=-\alpha V(t, x)+\int_{\Omega} w\left(x, x^{\prime}\right) f\left(V\left(t-\tau_{0}-\frac{\left|x-x^{\prime}\right|}{c}, x^{\prime}\right)\right) d x^{\prime}
$$

Bifurcations of neural field models

$\frac{\partial V(t, x)}{\partial t}=-\alpha V(t, x)+\int_{\Omega} w\left(x, x^{\prime}\right) f\left(V\left(t-\tau_{0}-\frac{\left|x-x^{\prime}\right|}{c}, x^{\prime}\right)\right) d x^{\prime}$
 Andronov-Hopf bifurcation:

Overview

Introduction

Numerical bifurcation analysis

Acknowledgements

My teachers at the RCC (Pushchino)

A.D. Bazykin (1940-1994)

E.E. Shnol (1928-)

V.I. Arnold (1937-2010)

Supervised PhD Thesis

