
Numerical Bifurcation

Analysis of Large Scale

Systems (Part 2)

Dr.ir. F.W. Wubs

Lecture Notes in Applied Mathematics

Academic year 2009-2010

Numerical Bifurcation

Analysis of Large Scale

Systems (Part 2)

Dr.ir. F.W. Wubs

Institute of Mathematics and Computing Science

P.O. Box 407

9700 AK Groningen

The Netherlands

Contents

1 Classification and well-posedness of PDEs 3

1.1 First order PDEs . 3

1.1.1 First order scalar PDEs . 3

1.1.2 Systems of first order equations 4

1.1.3 Higher space dimensions . 5

1.2 Scalar second order PDEs . 5

1.2.1 Normal form . 6

1.2.2 Self-adjoint operators and problems 7

1.2.3 Variational form for elliptic problems 7

1.2.4 A very general theorem . 9

1.2.5 The wave equation . 9

1.2.6 A second-order PDE expressed as a system of first-order PDEs . 11

2 Discretization of PDEs 13

2.1 An overview of discretization strategies for PDEs 13

2.2 Finite-difference methods for elliptic equations 15

2.2.1 Finite-difference approximations in 1 dimension 15

2.2.2 Finite-difference approximations in 2 dimensions 18

2.2.3 Discretization near the boundary 21

2.2.4 Nonlinearity . 21

2.2.5 An example of a finite volume discretization 22

2.2.6 The global discretization error 24

2.3 Finite element discretization for elliptic equations 25

2.3.1 Some finite elements . 27

2.3.2 Handling constraints . 28

2.3.3 Setup of FE code . 28

2.4 Properties . 29

2.4.1 Some matrix properties . 29

2.4.2 Maximum principles and monotony 33

2.5 Time dependent equations . 35

2.5.1 Method of lines . 35

2.5.2 Stability investigation . 36

2.5.3 Some time integrators . 38

iii

iv CONTENTS

3 Solution of sparse systems 41

3.1 Direct methods for sparse linear systems 41

3.2 Handling nonlinear equations . 44

4 Continuation of steady states 47

4.1 Pseudo-arclength continuation . 49

4.1.1 The Euler-Newton method . 51
4.2 Detection and Switching . 52

4.2.1 Detection of bifurcations . 52

4.2.2 Branch switching . 53

4.2.3 Finding isolated branches . 54

4.3 Linear Stability Problem . 58

4.4 Implicit Time Integration . 58
4.5 A Prototype Problem . 59

4.5.1 Introduction . 59

4.5.2 Model . 61

4.5.3 Motionless solution . 62

4.5.4 Dimensionless equations . 62

4.6 Computation of Steady Solutions . 63
4.6.1 Discretization . 63

4.7 Application to the Prototype Problem 66

5 Iterative solution of LSs and EVPs 73
5.1 Stationary methods for linear systems 73

5.1.1 The classical iterative methods 75

5.1.2 The multigrid method . 76

5.2 The Power Method to compute the dominant eigenvalue 79

5.3 Simultaneous Iteration . 82

5.4 Krylov subspaces . 83
5.4.1 Construction of a basis . 83

5.5 Arnoldi’s Method . 85

5.5.1 The computation of eigenpairs 85

5.5.2 Convergence behavior and exterior and interior eigenvalues . . . 86

5.6 The Lanczos Method . 87
5.7 The Two-sided Lanczos Method . 88

5.8 The Jacobi-Davidson Method . 90

5.8.1 Newton’s method for the eigenvalue problem 91

5.8.2 Acceleration . 91

5.9 Generalized Eigenproblems . 92

5.10 Krylov subspace methods for linear systems 95
5.10.1 The Conjugate Gradient method 95

5.10.2 Galerkin and FOM . 97

5.10.3 Petrov-Galerkin, BiCG and BiCGstab 98

5.10.4 Least squares on the search space and GMRES 98

5.11 Preconditoning . 99

CONTENTS v

5.11.1 Incomplete LU factorizations . 99
5.11.2 Sparse approximate inverse . 100
5.11.3 Algebraic Multigrid . 101
5.11.4 Preconditioner form of stationary methods 101
5.11.5 Vanka preconditioners . 101

vi CONTENTS

Chapter 5

Iterative solution of LSs and

EVPs

In this chapter we will introduce iterative methods to solve linear systems and methods
to solve the eigenvalue problem. They are treated together since there is an strong
relationship between them. It is convenient to introduce two classes of methods: sta-
tionary and non-stationary methods. In the former the iteration is the same in every
step while it changes from step to step in non-stationary methods.

5.1 Stationary methods for linear systems

We consider the problem Ax = b and write A = Q−H, where Q is nonsingular. This
is called a splitting of A. Now rewrite the system to

Qx = Hx + b,

and next to
x = Cx + Q−1b, (5.1)

From this, the general form of a stationary iteration is now given by

x(n+1) = Cx(n) + Q−1b, for n = 0,1,2, ... (5.2)

where x(0) is given and C = Q−1H the iteration matrix. Hence, in a stationary method
the (n + 1)-th iterate depends on the n-th.
If for the iteration (5.2) it holds that ‖x(n) − x‖ → 0, in some norm then the method
is convergent. If we define the iteration error by v(n) = x − x(n), then we find by
subtracting (5.2) from (5.1)

v(n+1) = Cv(n) (5.3)

This is a recursion and it is easily shown that

v(n) = Cnv(0) (5.4)

Exercise 5.1 Show that v̂(n) = x(n) − x(n−1) satisfies the same relations as v(n).

73

74 CHAPTER 5. ITERATIVE SOLUTION OF LSS AND EVPS

For the iterative method to be convergent we must require that the repetitive applica-
tion of C to an arbitrary initial error v(0) tends to zero.

Theorem 5.1 The stationary iterative method is convergent if and only if the spectral
radius of the iteration matrix is less than one (ρ(C) < 1).

Proof. We only sketch the main line of the proof, details can be found in [48, 50].
If ρ(C) ≥ 1, then there is an eigenvalue λ and an eigenvector q with |λ| ≥ 1 and
Cq = λq. Hence, Cnq = λnq, and ‖Cnq‖ = |λ|n‖q‖. So if v(0) = q then the method
will not converge.
Now suppose that ρ(C) < 1. There exists always a non-singular matrix P such that
P−1CP is in Jordan-normal form J given by

J =




J1 0
J2

. . .

0 Jp




in which every Jordan block Ji is of the form

Ji =




λ 1 0 · · · 0
0 λ 1
...

. . .

0 λ 1
0 . . . λ




(5.5)

where λi is an eigenvalue of C. In stead of Cn we can now consider Jn, more specifically
Jn

i . A further study of the power of the Jordan block shows that it tends to zero for
n to infinity, from which it follows that ‖Cn‖ → 0. Now from

‖Cnv(0)‖ ≤ ‖Cn‖‖v(0)‖
the convergence of the iterative method follows.

Theorem 5.2 If Ji is a Jordan block of order p, as defined in (5.5), then it holds for
n → ∞

‖Jn
i ‖ ≈ cnp−1|λi|n (5.6)

where c is a constant that depends on the choice of the norm.

From this theorem we observe that for sufficient big n the behavior of ‖Jn
i ‖ is deter-

mined by |λi|. Hence the behavior of ‖Cn‖ is also of the form (5.6) with |λi| replaced
by ρ(C) and for p the biggest occurring order Jordan block with |λi |= ρ(C). For big
values of p initially the behavior can be much different from the asymptotic behavior,
i.e. the behavior for n tending to infinity.
¿From the above we conclude the best convergence occurs if ρ(Q−1H) is as small as
possible, but in any case we must have that

ρ(Q−1H) < 1 (5.7)

5.1. STATIONARY METHODS FOR LINEAR SYSTEMS 75

5.1.1 The classical iterative methods

For this we split A as

A = D − L − R (5.8)

where D = diag(A), L the strict lower triangular part of A and R the upper triangular
part. With this splitting we can describe the classical methods. We will also consider
them for thee five-point stencil following from the discretization of the Laplace equation
where a lexicographical ordering is used where both i and j increase (i the fastest).

The method of Jacobi

In this case Q = D and H = L + R. Hence the iteration matrix assumes the form

B = D−1(L + R) (5.9)

and is called Jacobi iteration matrix.
This results in the following iteration for the five-point stencil

CP U
(n+1)
i,j = CW U

(n)
i−1,j + CSU

(n)
i,j−1 + CEU

(n)
i+1,j + CNU

(n)
i,j+1 + fP (5.10)

In this case the ordering of the unknowns does not influence the result. This makes
this method very fit for parallelization.

The Gauss-Seidel method

This is an improvement of Jacobi’s method in that a result computed is used imme-
diately to compute its neighbor. In this case Q = D − L, hence a lower triangular
matrix, and H = R. Hence, the iteration matrix is

(D − L)−1R (5.11)

It can be shown that the convergence of the Gauss-Seidel method and the Jacobi
method are related for an important class of matrices. For that class it holds that if
Jacobi’s method is converging then the method of Gauss-Seidel is converging faster.
For the Gauss-Seidel method the application to the five point stencil is as follows:

CP U
(n+1)
i,j = CW U

(n+1)
i−1,j + CSU

(n+1)
i,j−1 + CEU

(n)
i+1,j + CNU

(n)
i,j+1 + fP (5.12)

In contrast to the Jacobi method we can do with one array for U now, because once a
value is updated the old value is not used anymore.
For large problems the convergence may still be too slow, then in some cases one can
speed up the method by over-relaxation, which we will treat next.

The successive over-relaxation method (SOR)

The idea of relaxation in general is to compute the correction one wants to add to the
old value and premultiply it by a factor. Let us consider it for the the problem on the

76 CHAPTER 5. ITERATIVE SOLUTION OF LSS AND EVPS

five point stencil first. At a certain point (i, j) the new value proposed by Gauss-Seidel
is

Ûi,j = [CW U
(n+1)
i−1,j + CSU

(n+1)
i,j−1 + CEU

(n)
i+1,j + CNU

(n)
i,j+1 + fP]/CP

The correction is now Ûi,j − U
(n)
i,j and therefore

U
(n+1)
i,j = U

(n)
i,j + ω(Ûi,j − U

(n)
i,j) = (1 − ω)U

(n)
i,j + ωÛi,j

In matrix form it is

(D − ωL)x(n+1) = [(1 − ω)D + ωR]x(n) + ωb

Also this stationary iteration results from a splitting of A. In this case

Q = D/ω − L en H = (1/ω − 1)D + R

and the iteration matrix is

Cω = (D − ωL)−1[(1 − ω)D + ωR] (5.13)

Observe that the method is equal to the Gauss-Seidel method for ω = 1. However,
in many cases, among which the five-point discretization for the Poisson-equation, the
convergence is faster than the Gauss-Seidel method for 1 < ω < 2, from which the
prefix over in relaxation originates. Also in some cases where Gauss-Seidel does not
converge the SOR method may converge for some ω < 1, though in this case it would
be better to speak of under relaxation.

Block variants

In all the above methods the point can be generalized to a line, a plane, or a group
of unknowns. Doing this we get block variants, in which in every step the unknowns
associated to a certain diagonal block are solved together. For example we have SLOR
where the L stands for line.

== External Links ==

* http://en.wikipedia.org/wiki/Jacobi_method

* http://en.wikipedia.org/wiki/Gauss_seidel

* http://en.wikipedia.org/wiki/Successive_over_relaxation

5.1.2 The multigrid method

Consider the Poisson equation −∆u = f defined on a rectangular domain (−Lx, Lx)×
(−Ly, Ly). On this we define a uniform grid with mesh widths h = Lx/m and k = Ly/n
in x and y direction respectively. The grid points are given by

{(ih, jk) | i = −m,−m + 1, . . . ,m; j = −n,−n + 1, . . . , n} (5.14)

5.1. STATIONARY METHODS FOR LINEAR SYSTEMS 77

After finite difference discretization in the standard way we obtain the difference equa-
tion

Ui,j =
1

2(h2 + k2)

{
k2(Ui−1,j + Ui+1,j) + h2(Ui,j−1 + Ui,j+1) + h2k2fi,j

}
(5.15)

If we apply the Gauss-Seidel method to this equation then the error v(n) satisfies
v(n+1) = Cv(n), with C the Gauss-Seidel iteration matrix. Fig. 5.1 show how this
errors look like after a specified amount of iterations starting from a random initial
error. The grid size is 40×40. These plots show something interesting. It shows that

0

0.5

1 0

0.5

1

-0.5

0.0

0.5

1.0

X

Y
0

0.5

1 0

0.5

1

-0.5

0.0

0.5

1.0

X

Y

0

0.5

1 0

0.5

1

-0.5

0.0

0.5

1.0

X

Y
0

0.5

1 0

0.5

1

-0.5

0.0

0.5

1.0

X

Y

error after 1 iteration error after 3 iterations

error after 10 iterations error after 400 iterations

Figure 5.1: Field view of the error after 1,3,10 and 400 Gauss-Seidel iterations

the error is quite smooth after a few iterations (here after 3 to 10 iterations), but
after 400 iterations it still has a hard time with a smooth component in the error.
It can also be shown analytically that the Gauss-Seidel iteration is good at removing
high frequency components from the error and less good in handling low frequency
components. Here high frequencies are the highest frequencies that can be represented
on the grid. Now for something smooth we could do with less grid points to represent
it. The crux of the multigrid method is to get rid of this error on a coarser grid. And
the interesting thing is that on a coarser grid the error contains frequencies that are
closer to the highest frequency that can be represented on the coarse grid. Hence,
on this coarse grid the Gauss-Seidel iteration will do a good job to get rid of these

78 CHAPTER 5. ITERATIVE SOLUTION OF LSS AND EVPS

function x =solve(A, b)
if(coarsest grid is not reached yet) then
x = 0
smooth r(≡ b − Ax)
restrict r → rc

dxc= solve(Ac, rc)
dx= prolongate(dxc)
x = x + dx
smooth r

else
solve exactly Ax = b

end
return x

end

Figure 5.2: One multigrid cycle, written as a recursive function

frequencies. The argument can be repeated leading to a nested series of iterations which
is displayed in the algorithm in Fig. 5.2. Here smooth is a smoothing iteration like
the Gauss-Seidel iteration which updates x, prolongate is an interpolating function
to add function values at the grid points not present on the coarser grid, Ac is the
approximation of A on a coarser grid and rc is the restriction of r on a coarser grid.
In order to demonstrate the typical behavior of the multigrid method we show a com-
parison between multigrid and SLOR applied to a Poisson problem, increasing the
number of grid points. The latter method is a variant of SOR where the L stands for
line, hence instead of progressing point by point we progress line by line, which means
that per line a system for the unknowns on a line has to be solved. In Table 5.1 the
number of iterations needed to bring down the residual to a value indicated in the first
column for a 16×16, 32×32 and 64×64 grid. In Table 5.2 the amount of time needed
to solve the problem is given.
With SLOR we see that if N becomes 4× as big, the needed number of iterations
becomes twice as big, whereas for the multigrid method this remains constant. Hence
the convergence of the multigrid method is independent of the grid size or grid inde-
pendent. Both behaviors can be proved for the Poisson equation. With respect to the
time we see that that of multigrid increases with the number of grid points, which is
due to the fact that the amount of work is just the number of iterations times the
work per step. Since the former is nearly constant and the latter depends linearly on
the number of unknowns the product is also linear in the number of unknowns. This
behavior is optimal, since for an update we have to visit all unknowns. This behavior
is very attractive for large problems. Using a similar reasoning for SLOR we find that
upon refinement with a factor 2 in both directions the time increases by a factor 8
instead of the optimal value 4. In vertical direction we observe in the columns always
a more or less fixed increase. This is typical for stationary methods. One such an

5.2. THE POWER METHOD TO COMPUTE THE DOMINANT EIGENVALUE79

MGRD SLOR

‖r‖2 16×16 32×32 64×64 16×16 32×32 64×64

10−3 6 5 6 10 21 41

10−6 10 9 11 17 40 81

10−9 14 13 17 24 58 121

Table 5.1: Number of iterations

MGRD SLOR

‖r‖2 16×16 32×32 64×64 16×16 32×32 64×64

10−3 0.3 1.1 4.7 0.3 2.4 18.0

10−6 0.6 1.9 8.6 0.5 4.6 35.5

10−9 0.8 2.8 13.2 0.7 6.7 53.0

Table 5.2: Needed CPU-time

increment (say m) shows the number of iterations needed to gain 3 digits. From this,
one could also estimate the spectral radius of the iteration matrix of the methods since
we have the relation ρm ≈ 0.001. For m = 4 this is about 0.17.

5.2 The Power Method to compute the dominant eigen-

value

Unlike the situation for linear systems solving, there are no truly direct methods for
the solution of the eigenproblem, in the sense that in general one cannot compute the
eigenvalues (or eigenvectors) exactly in a finite number of floating point operations.
We will consider iterative methods that detect an invariant subspace. This second
class of methods is explicitly based on the Power Method. The QR method is the most
prominent member of this class; it converges so fast that the complete eigensystem of
a dense matrix can be computed in a modest (but matrix dependent) factor times n3

floating point operations. Note that this order of operations is equal to that of direct
methods for solving dense linear systems. The QR method is in general to expensive
and an overkill if we only want to find a few eigenvalues, e.g. only the ones closest to

80 CHAPTER 5. ITERATIVE SOLUTION OF LSS AND EVPS

the origin or the imaginary axis. In this case one uses iterative subspace projection
techniques. In these methods the QR method is used to find eigenvalues of the small
projected matrices which arise. The iterative subspace projection techniques attempt
to detect partial eigeninformation in much less than O(n3) work.
Because the Power Method is important as a driving mechanism in the subspace projec-
tion methods, we will discuss it in some more detail. The reader should keep in mind,
however, that the Power Method is seldom competitive as a stand-alone method; we
need it here for a better understanding of the more superior techniques to come.
The Power Method is based on the observation that if we multiply a given vector v by
the matrix A, then each eigenvector component in v is multiplied by the corresponding
eigenvalue of A.
Assume that A is real symmetric, then it has real eigenvalues and a complete set of
orthonormal eigenvectors

Axk = λkxk , ‖xk‖2 = 1 (k = 1, 2, · · · , n).

We further assume that the largest eigenvalue in modulus is single and that

|λ1| > |λ2| ≥ · · · .

Now suppose we are given a vector v1, which can be expressed in terms of the eigen-
vectors as v1 =

∑
i γixi, and we assume that γ1 6= 0 (that means that v1 has a nonzero

component in the direction of the eigenvector corresponding λ1).

Given this v1, we compute Av1, A(Av1), ..., and it follows for the Rayleigh quotient of
these vectors that

lim
j→∞

wT
j Awj

wT
j wj

= λ1,

where wj ≡ Aj−1v1. Note that this expression is equal to (5.4), the expression we
found for the iteration error when solving a linear system but then A is the iteration
matrix.
The Power Method can be represented by the template given in Fig. 5.3. The sequence
θ(i) converges, under the above assumptions, to the dominant (in absolute value) eigen-
value A. The scaling of the iteration vectors is necessary in order to prevent over- or
underflow. This scaling can be done a little bit cheaper by taking the maximum el-
ement of the vector instead of the norm. In that case the maximum element of vi

converges to the largest (in absolute value) eigenvalue of A.
It is not hard to see why the Rayleigh quotients converge to the dominant eigenvalue.
We first write wj in terms of the eigenvectors of A:

wj =
∑

i≥1

γiλ
j−1
i xi

= λj−1
1



γ1x1 +

∑

i≥2

γi

(
λi

λ1

)j−1

xi



 .

5.2. THE POWER METHOD TO COMPUTE THE DOMINANT EIGENVALUE81

v = v1/||v1||2
for i = 1, 2, until convergence

vi+1 = Av

θ(i) = vT vi+1

v = vi+1/||vi+1||2
end

Figure 5.3: The Power Method for symmetric A

Hence

wT
j Awj

wT
j wj

= λ1

γ2
1 +

∑
i≥2 γ2

i

(
λi

λ1

)2j−1

γ2
1 +

∑
i≥2 γ2

i

(
λi

λ1

)2j−2

For non-symmetric matrices the situation is slightly more complicated, since A does
not necessarily have an orthonormal set of eigenvectors. Let A = XJX−1 denote the
reduction to Jordan form, then Ajv = XJ jX−1v. If the largest eigenvalue, in modulus,
is real and simple, then we see that this value will dominate and by similar arguments
as above, we see convergence in the direction of the corresponding column of X. If
the largest eigenvalue is complex, and if A is real, then there is a conjugate eigenpair.
If there is only one eigenpair of the same maximal modulus, then the vector Ajv will
ultimately have an oscillatory behavior and it can be shown, see Wilkinson [49, p.
579], that a combination of two successive vectors in the sequence Ajv will converge
to a subspace spanned by the two conjugate eigenvectors. The two eigenvectors can
then be recovered by a least squares solution approach. For matrices with a dominant
Jordan block one can also show that the Power Method will converge, although very
slowly, to the eigenvector associated with the Jordan block. The behavior is essential
given by (5.6).

Exercise 5.2 Suppose we replace the matrix A in the power method by a shifted vari-
ant A − σI. Assume that A is real. If you would already know the eigenvalues of
A, how would you choose σ in order to let the power method converge fastest to the
eigenvector associated to the largest eigenvalue of A? And how would you choose it for
the eigenvector corresponding to the eigenvalue which is smallest?

Inverse power method If systems with the shifted matrix, like

(A − σI)x = b

can be solved efficiently, then it is very profitable to use the inverse power Method with
shift. If one has a good guess σ for the eigenvalue that one is interested in, then one can

82 CHAPTER 5. ITERATIVE SOLUTION OF LSS AND EVPS

apply the Power Method with (A−σI)−1. Note that it is not necessary to compute this
inverted matrix explicitly. In the computation of the next vector vj+1 = (A− σI)−1vj

the vector vj+1 can be solved from

(A − σI)vj+1 = vj .

Assume that the largest eigenvalue (in absolute value) is λ1, and the second largest is
λ2, and that σ is close to λ1. The speed of convergence now depends on the ratio

|λ1 − σ|
|λ2 − σ| ,

and this ratio may be a good deal smaller than |λ2|/|λ1|. Even when the solution of a
shifted linear system is significantly more expensive than a matrix vector multiplication
with A, the much faster convergence may easily pay off for these additional costs.

Rayleigh quotient iteration In the inverse power method we may update the
shift as better approximations become available during the iteration process. That
is, when we apply the Algorithm in Fig.5.3 with (A − σI)−1 at step i, then θ(i) is
an approximation for 1/(λ1 − σ). This means that the approximation for λ1 becomes
σ + 1/θ(i) and we can use this value as the shift for iteration i + 1. This technique is
known as Rayleigh Quotient iteration. Its convergence is ultimately cubic for symmetric
matrices and quadratic for non-symmetric systems.

5.3 Simultaneous Iteration

We have already seen that for complex conjugate pairs it is necessary to work with
three successive vectors in the Power iteration. This suggests that it may be a good
idea to start with a block of vectors right from the start. So let us assume that we

start with a set of independent vectors U
(0)
k = [u1, u2, . . . , uk], and that we carry out

the Power Method with U
(0)
k , which leads to the computation of

U
(i)
k = AU

(i−1)
k

per iteration. If we do this in a straightforward manner, then this will lead to unsat-

isfactory results because each of the columns of U
(0)
k is effectively used as a starting

vector for a single vector Power Method, and all these single vector processes will tend

to converge towards the dominant eigenvector(s). This will make the columns of U
(i)
k

highly dependent in the course of the iteration. It is therefore a better idea to try to
maintain better numerical independence between these columns and the most common
technique for this is to make them orthonormal after each multiplication with A. This
leads to the Orthogonal Iteration Method, as represented in Fig. 5.4.

The columns of U
(i)
k converge to a basis of an invariant subspace of dimension k, under

the assumption that the largest k (in absolute value) eigenvalues (counted according
to multiplicity) are separated from the remainder of the spectrum. This can easily be

5.4. KRYLOV SUBSPACES 83

start with orthonormal U
(1)
k

for i = 1, .., until convergence

Vk = AU
(i)
k

orthonormalize the columns of Vk:
Vk = QkRk

U
(i+1)
k = Qk

end

Figure 5.4: The Orthogonal Iteration Method

seen from the same arguments as for the Power Method. If the eigenvalues are real,
and the matrix is real, then the eigenvalues appear along the diagonal of R. For a real
matrix the complex eigenvalues are the eigenvalues of 2x2 blocks that appear on the
diagonal.
So far we treated stationary methods for linear systems and the eigenvalue problem. In
the next part we will consider the Krylov subspace methods which are of non-stationary
type.

5.4 Krylov subspaces

5.4.1 Construction of a basis

With the Power method (see 5.2), we have generated the spanning vectors of a Krylov
Subspace

Km(A; v1) ≡ span{v1, Av1, . . . , A
m−1v1}.

However, note that the Power method exploits only the two most recently computed
vectors for the computation of an approximating eigenvalue. The result is that the
speed of convergence depends on the ratio λ2/λ1. Here we have assumed that the
eigenvalues have been ordered as |λ1| ≥ |λ2| ≥ . . . ≥ |λn|. Of course, one may try
to influence the convergence of the Power Method by working with shifts, either to
separate the wanted eigenvalue more from the remaining spectrum, or to suppress
eigenvector components of nearby eigenvalues. For this one needs, in fact, good guesses
for these nearby eigenvalues, and, as we will see, the methods of Lanczos and Arnoldi
do this automatically. From the definition of a Krylov subspace, it is clear that

Km(αA + βI; v1) = Km(A; v1) for α 6= 0. (5.16)

This says that the Krylov subspace is spanned by the same basis if A is scaled and/or
shifted. The implication is that Krylov subspace methods for the spectrum of the
matrix A are invariant under translations for A.

84 CHAPTER 5. ITERATIVE SOLUTION OF LSS AND EVPS

Krylov subspaces play a central role in iterative methods for eigenvalue computations.
In order to identify better solutions in the Krylov subspace we need a suitable basis
for this subspace, one that can be extended inductively for subspaces of increasing
dimension. The obvious basis v1, Av1, . . ., Am−1v1 for Km(A; v1) is not very attractive
from a numerical point of view, since the vectors Ajv1 point more and more in the
direction of the dominant eigenvector for increasing j (the power method!), and hence
the basis vectors become dependent in finite precision arithmetic.
Lanczos [24] proposes to generate an orthogonal basis for the Krylov subspace, and
shows that this could be done in a very economic way for symmetric A. Arnoldi [1]
describes a procedure for the computation of an orthonormal basis for non-symmetric
matrices and for ease of presentation, we start with this one. We will see that Lanczos’
algorithm follows as a special case.
If we have already an orthonormal basis v1, . . ., vj for Kj(A; v1), then this basis is
expanded by computing ṽ = Avj , and by orthonormalizing this vector ṽ with respect
to v1, . . ., vj . In principle the orthonormalization process can be carried out in different
ways, but the most commonly used approach is to do this by a modified Gram-Schmidt
procedure (Golub and Van Loan [16]).
This leads to the algorithm for the creation of an orthonormal basis for Km(A; v), as
given in Fig. 5.5.

v is a convenient starting vector
v1 = v/‖v‖2

for j = 1, ..,m − 1
t = Avj

for i = 1, ..., j
hi,j = v∗i t
t = t − hi,jvi

end
hj+1,j = ‖t‖2

vj+1 = t/hj+1,j

end

Figure 5.5: The Arnoldi algorithm with modified Gram-Schmidt to construct the
reduced matrix H of A

The orthogonalization leads to relations between the vj , that can be formulated in a
compact algebraic form. Let Vj denote the matrix with columns v1 up to vj, Vj ≡
[v1 | v2 | · · · | vj], then it follows that

AVm−1 = VmHm,m−1. (5.17)

The m by m− 1 matrix Hm,m−1 is upper Hessenberg, and its elements hi,j are defined

5.5. ARNOLDI’S METHOD 85

by the Arnoldi orthogonalization algorithm. We will refer to this matrix Hm,m−1 as
the reduced matrix A, or more precisely, the matrix A reduced (or projected) to the
current Krylov subspace. From a computational point of view, this construction is
composed from three basic elements: a matrix vector product with A, inner products,
and updates. We see that this orthogonalization becomes increasingly expensive for
increasing dimension of the subspace, since the computation of each hi,j requires an
inner product and a vector update.

Finite termination In exact arithmetic, this process must terminate after at most
n steps, since then the n orthonormal vectors for the Krylov subspace span the whole
space. In fact, the process terminates after k steps, if the starting vector has compo-
nents only in the directions of eigenvectors corresponding to k different eigenvalues.

Exercise 5.3 Write v =
∑k

l=1 αkxk and show that t = 0 after at most k steps.

5.5 Arnoldi’s Method

5.5.1 The computation of eigenpairs

As we have seen in Section 5.4, the construction of a basis with Arnoldi’s algorithm
for the Krylov subspace Km(A; v1) leads to an upper Hessenberg matrix that describes
the relation between the basis vectors. If we increase the indices in (5.17) by one we
obtain

AVm = Vm+1Hm+1,m, (5.18)

which we do here for convenience. If we premultiply this expression by V T
m then because

of orthogonality we have that

V T
mAVm = Hm,m. (5.19)

The matrix Hm,m is the projection of A onto Km(A; v1).
Now, if (θ, s) is an eigenpair of Hm,m then

Hm,ms = θs

V T
m AVms − θV T

mVms = 0

V T
m (AVms − θVms) = 0

V T
m (Ay − θy) = 0,

where y = Vms.
Hence, the residual for the approximate eigenpair (θ, y) is orthogonal to the current
Krylov subspace. Since the search space, i.e. the space containing the approximate
eigenvalue, is equal to the test space, i.e. the space we need to make the problem
solvable, this is the Galerkin approach to find the approximate eigenpairs. In the
symmetric case it would have been called the Ritz approach. However, in both cases the
value θ is called a Ritz value of A with respect to Km(A; v1), and y is the corresponding
Ritz vector.

86 CHAPTER 5. ITERATIVE SOLUTION OF LSS AND EVPS

The main problem with Arnoldi’s method is that it becomes increasingly expensive
per iteration step. In order to restrict memory storage, as well as computational work,
restarts are necessary. However, at a restart we do not want to throw away useful
information. By choosing a smart basis vector for the restart, one can keep important
information.

5.5.2 Convergence behavior and exterior and interior eigenvalues

Due to the presence of powers of A in the Krylov subspace, it is obvious that we can
use our knowledge of the convergence of the power method to say something about the
convergence of the Ritz values. Firstly we consider a property of the Ritz values for a
real symmetric matrix. In that case, it holds that

max
x

(x,Ax)

(x, x)
= max

λ∈σ(A)
λ

and likewise for the minimum. This is just a special case of the Courant-Fisher min-
max theorem [18]. Now we have that

max
θ∈σ(H)

θ = max
s

(s,Hs)

(s, s)
= max

s

(s, V T AV s)

(s, V T V s)
= max

x∈V

(x,Ax)

(x, x)
≤ max

x

(x,Ax)

(x, x)
= max

λ∈σ(A)
λ

So if V is a Krylov subspace, then we know that the eigenvector related to the max-
imum eigenvalue is one of the first to become strongly present in the subspace. The
above learns us that then also the largest Ritz value will converge faster to the largest
eigenvalue of A than the Rayleigh quotient in the Power Method. But this is not all,
due to the invariance of the Krylov subspace for scaling of A and shifting of A also the
eigenvalues which can be made extreme by scaling and shifting can be found faster than
by applying the power method to the corresponding scaled and shifted matrix. So in
the real symmetric case also the minimum Ritz value will converge among the first to
the mimimum eigenvalue. The above can be extended to normal matrices and to some
extend it also holds for nonnormal matrices, depending on the so-called departure of
normality.
This implies that for the Krylov subspace method the notion of largest (in absolute)
value eigenvalue looses its special meaning as opposed to the Power Method. Since the
Krylov methods are shift invariant, the position of the origin in the spectrum is not
relevant and we rather make the distinction between exterior and interior eigenvalues.

Exercise 5.4 What does Exercise 5.2 learn us about the convergence of the eigenvec-
tors corresponding to the exterior eigenvalues in the Krylov subspace?

The Krylov methods have no special preference for eigenvalues that are at about the
same distance of the center of the spectrum, provided that these eigenvalues are about
equally well separated from the others. In particular, when the real spectrum of a
symmetric real matrix is symmetrically distributed with respect to (λ1+λn)/2, λ1 being
the largest eigenvalue of A and λn the smallest one, then for a starting vector that has
also a symmetric weight distribution with respect to the corresponding eigenvectors,

5.6. THE LANCZOS METHOD 87

the convergence of the smallest Ritz value towards λn will be equally fast (or slow) as
the convergence of the largest Ritz value to λ1.
For complex spectra, one has to consider the smallest circle that encloses all eigen-
values. With proper assumptions about the starting vector, one may expect that the
eigenvalues close to this circle will be approximated fastest and that the more interior
eigenvalues will be approximated later in the Krylov process (that is, for larger values
of m). For more general starting vectors this describes more or less the generic case,
but with special starting vectors one can force convergence towards favored parts of
the spectrum. This forms the basis for restart strategies.
For an excellent overview of subspace methods, see Saad [35] or [37].

5.6 The Lanczos Method

Note that if A is symmetric and real, then so is

Hm−1,m−1 = V T
m−1AVm−1,

so that in this situation Hm−1,m−1 is tridiagonal:

AVm−1 = VmTm,m−1. (5.20)

The matrix Tm,m−1 is an m by m − 1 tridiagonal matrix, its leading m − 1 by m − 1
part is symmetric.
This means that in the orthogonalization process, each new vector has to be orthog-
onalized with respect to the previous two vectors only, since all other inner products
vanish. The resulting three term recurrence relation for the basis vectors of K(A; v1)
is the kernel of the Lanczos method and some very elegant methods are derived from
it. A template for the Lanczos algorithm to find the coefficients αj and βj that build
T is given in Algorithm 5.6.

v is a convenient starting vector
v1 = v/||v||2, v0 = 0, β0 = 0,
for j = 1, 2, ...,m − 1

t = Avj − βj−1vj−1

αj = vT
j t

t = t − αjvj

βj = ‖t‖2

vj+1 = t/βj

end

Figure 5.6: The Lanczos algorithm for the construction of the reduced matrix

88 CHAPTER 5. ITERATIVE SOLUTION OF LSS AND EVPS

N.B. The result of the Lanczos algorithm is that βjvj+1 = Avj − βj−1vj−1 − αjvj or

Avj = [vj−1, vj , vj+1]




βj−1

αj

βj




which is just another way of writing (5.20).
In the symmetric case the orthogonalization process involves constant arithmetical
costs per iteration step: one matrix vector product, two inner products, and two
vector updates.

5.7 The Two-sided Lanczos Method

In this section we will discuss a generalization of the Lanczos method for non-symmetric
matrices in order to avoid the storage and computational work needed in Arnoldi’s
method. This method is known as the Two-sided Lanczos method, or Bi-Lanczos
method. As we will see this is in fact a Petrov-Galerkin approach to determine ap-
proximate eigenpairs.
For ease of notation, we will restrict ourselves to the real case. For an non-symmetric
matrix A ∈ R

n×n we will try to obtain a suitable non-orthogonal basis with a 3-term
recurrence, by requiring that this basis is orthogonal with respect to some other basis.
This leads to the Bi-Lanczos Method (Lanczos [24]).
We derive the two-sided Lanczos algorithm, following Wilkinson [49, Chapter 6.36]
. We start from two Arnoldi like recursions for the basis vectors of Km(A; v1) and
Km(AT ;w1):

hj+1,jvj+1 = Avj −
j∑

i=1

hi,jvi,

gj+1,jwj+1 = AT wj −
j∑

i=1

gi,jwi,

and require that vj+1 is orthogonal to all previous wi and that wj+1 is orthogonal to
all previous vi. Clearly, this defines, apart from the constants hj+1,j and gj+1,j, the
vectors vj+1 and wj+1, once the previous vectors are given. Then we have that

AVj = Vj+1Hj+1,j and AT Wj = Wj+1Gj+1,j.

Since each new vj+1 is only orthogonal with respect to the wi, for i < j, and likewise
for wj+1 with respect to the vi, it follows that

W T
j Vj = Lj,j and V T

j Wj = Kj,j,

where Lj,j and Kj,j are lower triangular. Clearly

KT
j,j = Lj,j,

5.7. THE TWO-SIDED LANCZOS METHOD 89

so that both matrices are diagonal. Let us denote this matrix by D. Then, we have
that

W T
j AVj = DjHj,j

and also

V T
j AT Wj = DjGj,j.

Hence, DjHj,j = GT
j,jDj . This shows that Hj,j and Gj,j must be tridiagonal and we

write H as T from now on. So this means that only the last few columns of V and W
needs to be retained to construct T .
There is still a freedom here which can be exploited: the entries of D. Here we choose
it such that DjTj,j is symmetric. This means that also GT

j,jDj is symmetric hence

DjHj,j = GT
j,jDj = DjGj,j and thus G = H = T .

Exercise 5.5 Show that any tridiagonal matrix can be made symmetric by premulti-
plication by an appropriate diagonal matrix.

So in the non-symmetric Lanczos method (Lanczos [24]), we generate a dual bases
{vj} and {wj} for the Krylov subspace Ki(A; v1) and its adjoint Ki(AT ;w1). The vj

are generated with a three term recurrence relation, with A:

γjvj+1 = Avj − αjvj − βj−1vj−1,

and the wj with a similar recurrence for AT :

γjwj+1 = AT wj − αjwj − βj−1wj−1.

In Figure 5.7, we show schematically an algorithm for the two-sided Lanczos, suitable
for execution with an non-symmetric matrix A.
In this algorithm, we choose γi such that ‖vi‖2 = 1, and use the same γi as a scaling
for wi.

For the computation of approximate eigenpairs, we may proceed in a similar way as
in the symmetric case:

AVj = Vj+1Tj+1,j, (5.21)

but here we use the matrix Wj = [w1, w2, ..., wj] for orthogonality conditions on an
approximate vector. Let Vjs be the wanted eigenvector approximation in Vj, with cor-
responding eigenvalue approximation, then we impose the Petrov-Galerkin condition

W T
j (AVjs − θVjs) = 0,

or

W T
j AVjs − θW T

j Vjs = 0.

This shows that s and θ form an eigenpair of the generalized symmetric eigenproblem

DjTj,js = θDjs,

90 CHAPTER 5. ITERATIVE SOLUTION OF LSS AND EVPS

Select a normalized pair v1, w1 (for instance, w1 = v1)
such that wT

1 v1 = δ1 6= 0
β0 = 0, w0 = v0 = 0
for i = 1, 2,

p = Avi − βi−1vi−1

αi = wT
i p/δi

p = p − αivi

γi+1 = ‖p‖2

vi+1 = p/γi+1

wi+1 = (AT wi − βi−1wi−1 − αiwi)/γi+1

δi+1 = wT
i+1vi+1

βi = γi+1δi+1/δi

end;

Figure 5.7: The Two-sided Lanczos algorithm

or of the standard non-symmetric eigenproblem

Tj,js = θs.

An interesting aspect of the two-sided Lanczos approach is that it also admits possibil-
ities for the approximation of left eigenvectors. Let p∗W T

j denote an approximation for
a left eigenvector corresponding to an approximate eigenvalue θ. Note that the eigen-
vectors of A and Tj,j may be complex; this explains the ∗. Then the Petrov-Galerkin
condition with respect to Vj leads to

p∗W T
j AVj − θp∗W T

j Vj = 0, (5.22)

which shows that the pair p, θ is a left eigenpair of the symmetric generalized eigen-
problem

p∗DjTj,j = θp∗Dj .

Since DjTj,j is real symmetric, the vector p is a right eigenvector of Tj,j. It is, because
of the Petrov-Galerkin condition, natural to associate Petrov-Galerkin approximations
for eigenvectors of A with the eigenpair s, θ of Tj,j. We will use the terminology of
Petrov value for θ, right Petrov vector for Vjs, and left Petrov vector for Wjs.

5.8 The Jacobi-Davidson Method

As a sideline we treat in this section the Jacobi-Davidson method as proposed by Van
der Vorst et al. [13] will be discussed. This method is not a Krylov-subspace method.
It uses however a subspace to accelerate the convergence. The exposition in this section
starts from the familiar Newton method.

5.8. THE JACOBI-DAVIDSON METHOD 91

5.8.1 Newton’s method for the eigenvalue problem

Assume we solve the ordinary eigenvalue problem (A−λI)x = 0. Say we have already
computed the partial Schur form

AQ = QR,

where R is an upper-triangular matrix and the eigenvalues are on its diagonal. Fur-
thermore Q∗Q = I. Now we want to compute the next q such that

A[Q q] = [Q q]

[
R s
0 λ

]
.

Working out this equation, we find that the new part is Aq = Qs + λq. We add two
equations to normalize q and the ensure that q is perpendicular to the current Q. We
obtain the following set of equations

(A − λI)q − Qs = 0,

−(q∗q)/2 + 1/2 = 0,

−Q∗q = 0.

Define u ≡ (q, λ, s) and assume we have some good initial guess u0 = (q0, λ0, s0) for
u. Now we use Newton’s method to solve these equations. First we solve ∆u =
(∆qi,∆λi,∆si) from the following equation




A − λiI −qi −Q
−q∗i 0 0
−Q∗ 0 0







∆qi

∆λi

∆si


 =




Qsi − (A − λiI)qi

(q∗i qi)/2 − 1/2
Q∗qi




and then compute ui+1 = ui + ∆ui.
In principle this algorithm will converge to one of the eigenpairs of A. In the following
we will try to speed-up the method by using a subspace.
Exploiting the problem we adapt the recursion a bit. First we assume that qi has
length one and is perpendicular to Q. Hence the last two entries of the right-hand side
become zero. Of course we have to make sure that qi+1 also has these properties which
can be done by applying the Gram-Schmidt process. Moreover, observe that we could
take si = 0 by computing immediately si+1 instead of ∆si.

5.8.2 Acceleration

Instead of using ∆qi in the update of ui one can also add it to the subspace spanned
by the hitherto found corrections ∆qj, j = 1, ..., i − 1, and compute the Ritz values of
A with respect to this subspace. For example to compute the k smallest eigenvalues
of A one can apply the following algorithm.
We start off with some initial guess for the eigenvector t, and void spaces Q and V ,
the latter being the space spanned by the corrections.

1. Orthonormalize t with respect to current Q and V and extend V with it.

92 CHAPTER 5. ITERATIVE SOLUTION OF LSS AND EVPS

2. Construct the reduced matrix on the space spanned by V : M = V ∗AV .

3. Compute the smallest eigenvalue of M , say θ, and the corresponding eigenvector
s.

4. Compute the eigenpair residual: r = Aq − θq, where q = V s.

5. If the residual is small enough extend Q by q. If, on top of that, the dimension
of Q is still less than k generate a new initial t and return to 1, else STOP.

6. Solve the correction equation for a new t and return to 1.

In practice also a restart strategy is added in order to control the dimension of the
subspace V . Moreover variants for the reduced eigenvalue problem are also considered
in order to avoid difficulties in computing interior eigenvalues.
Finally, the correction equation can also be solved approximately. For example by
applying an iterative method to solve the system. Only a few steps may suffice to get
a useful correction to extend the space V .
The above method is an instance of the so-called Jacobi-Davidson method, reflecting
that it is a combination of ideas of a method of Jacobi and one of Davidson. This
combination was devised and analyzed by Van der Vorst and his co-workers and is
treated extensively in his book on this subject.

5.9 Generalized Eigenproblems

In this section we will pay more attention to the possibilities for the iterative compu-
tation of (right) eigenpairs of the generalized non-Hermitian eigenvalue problem

Ax = λBx. (5.23)

where A and B are general n by n matrices.
the QZ algorithm For the dense generalized eigenvalue problem the QZ algorithm has
been devised, a generalization of the QR method. This is currently the most powerful
method for dense problems, but it is only suitable for small to moderate size problems
because the QZ method requires O(n3) flops and O(n2) memory locations.
A common approach for a large scale generalized eigenvalue problem is to reduce
the problem (5.23) to a standard eigenvalue problem, and then apply an appropriate
iterative method, for instance, Arnoldi’s method, two-sided Lanczos, or the Jacobi-
Davidson method. This reduction to standard form requires, for each iteration, the
solution of a linear system with A, or B, or a combination of A and B.
Here we will discuss three approaches for the reduction to a standard eigenproblem.

1. Inverse B: If the matrix B is nonsingular and well conditioned, then we can do
operations with the inverse of B. The problem (5.23) is equivalent to

(B−1A)x = λx. (5.24)

5.9. GENERALIZED EIGENPROBLEMS 93

For an iterative method, such as we have described in previous chapters, for the
reduced standard eigenvalue problem (5.24) it is not necessary to evaluate the
product B−1A. This is important, since A and B are in most applications sparse,
and forming the matrix B−1A (most likely a dense matrix) would have been very
very unattractive. The computation of a vector v = B−1y is done via a (sparse)
LU factorization of B and then solving v from Bv = y.

The error introduced by this reduction to the standard form can be proportional
to ‖A‖2‖B−1‖2. If B is ill-conditioned, then the approach is potentially suspect.
In that situation, one may consider the usage of the shift-and-invert transfor-
mation for the reduction (see (5.26)), the Cayley Transform (see (5.27)), or the
usage of the Jacobi-Davidson method.

It may be tempting to consider iterative solution methods for the approximate
solution of systems like Bz = u, instead of the possibly expensive LU factor-
ization. However, if one does so then one should realize that the approximate
solution satisfies some nearby system, say with a matrix B̃. This nearby matrix
may differ significantly from iteration to iteration in forming the (Krylov) sub-
space for the eigenvalue method. This will most likely destroy the structure of
the Krylov subspace. Therefore, an iterative solution technique is only recom-
mended if it leads efficiently to high accuracy, comparable with a stable direct
solution method. Likewise, if the direct solution method has made a compromise
between stability and sparsity (to the advantage of the latter), for instance, by
working with threshold pivoting (Duff, Erisman and Reid [11]), it is advisable
to use iterative refinement in order to get more accurate solutions (Golub and
Van Loan [16]).

2. Symmetrized inverse B: In some applications, B is Hermitian positive definite
and well-conditioned. In this case, it is recommended to compute first a sparse
Cholesky decomposition

B = LL∗,

with L a lower triangular matrix. The equivalent standard eigenvalue problem
is

(L−1AL∗−1)y = λy, (5.25)

where y = L∗x. As in the ‘Invert B’ approach, matrices like L−1AL∗−1 should
never be evaluated explicitly, since they will in general not be sparse. For the
application of an iterative method for the standard eigenvalue problem, we only
need to provide the efficient evaluation of matrix-vector products, like

p = (L−1AL∗−1)q.

where q is a given vector.

Since L is a triangular matrix, the solutions of linear systems with L or L∗ can
be obtained by forward and backward substitutions. Sparsity can be exploited
in a straightforward manner in all these steps.

94 CHAPTER 5. ITERATIVE SOLUTION OF LSS AND EVPS

3. Shift-and-Invert: The reductions to standard form (5.24) or (5.25) cannot be
used when B is singular or ill-conditioned. An attractive and popular technique
is to apply first the shift to the original problem and then carry out the reduction.
This is the so-called shift and invert spectral transformation. Specifically, let σ
be a user-selected shift such that the matrix A − σB is nonsingular, then the
original problem (5.23) can be transformed to

Cx = µx, (5.26)

where

C = (A − σB)−1B and µ =
1

λ − σ
,

We see that the eigenvalues λ of the problem (5.23) closest to the shift σ are
mapped as the exterior eigenvalues of the reduced standard eigenvalue prob-
lem (5.26), that is to the eigenvalues of largest magnitude, and these are the
eigenvalues that are first well approximated by most iterative methods.

In practice, an effective shift selection depends on the user’s preferences and on
knowledge of the underlying generalized eigenproblem. A good shift not only
amplifies the desired eigenvalues, but it also leads to a well-conditioned matrix
A − σB. This makes the task of selecting good shifts often a challenging one.

For the application of an iterative method for the reduced standard eigenvalue
problem (5.26), one needs to evaluate matrix-vector products p = (A−σB)−1Bq,
for a given vector q. For an efficient evaluation, we make an LU factorization of
(A − σB). Since A − σB is assumed to be nonsingular, the factors L and U are
also nonsingular. The factorization should be chosen so that the corresponding
linear systems of equations with L, L∗ and/or U , U∗ can be solved efficiently,
and typically, sparse LU factorizations are used.

4. Cayley Transform: With Shift-and-Invert it is possible to emphasize the con-
verge towards eigenvalues close to the shift σ. The Cayley Transform goes one
step further. It is defined by the operator

(A − σB)−1(A − τB).

To be more specific, let σ and τ be a user-selected shifts such that the matrix
A − σB is nonsingular, then the original problem (5.23) can be transformed to

Cx = µx, (5.27)

where

C = (A − σB)−1(A − τB) and µ =
λ − τ

λ − σ
.

The efficient implementation of the Cayley Transform can be done along similar
lines as the Shift-and-Invert transformation. With the Cayley Transform we
can emphasize the convergence towards eigenvalues close to σ while suppressing
the influence of eigenvalues close to τ . It is a special form of the more general
polynomial preconditioners by which we can accelerate the convergence towards
wanted parts of the spectrum. For more details and references, see Saad [35].

5.10. KRYLOV SUBSPACE METHODS FOR LINEAR SYSTEMS 95

The shift and invert spectral transformation technique is a powerful tool in the treat-
ment of the generalized eigenvalue problem (5.23). The major problem, which often
becomes a bottleneck, is to find a convenient LU factorization of A − σB so that the
associated linear systems of equations can be solved efficiently. If accurate solution of
the linear systems with A − σB becomes too expensive, then one may consider the
usage of the Jacobi-Davidson method, or the application of inexact Cayley transforms
(Lehoucq and Meerbergen [25], Meerbergen [27], Bai et al [26]).

5.10 Krylov subspace methods for linear systems

In this section we will shortly introduce how the Arnoldi, Lanczos and Bi-Lanczos
algorithm lead to Krylov subspace methods for linear systems.

5.10.1 The Conjugate Gradient method

First we make some general remarks on minimization and projection and then see how
the conjugate gradient (CG) method can be derived.

Minimization and projection

Suppose we have found in one or the other way an orthonormal basis for a linear
subspace of dimension m, denoted by the columns of the matrix P , for which it holds
that the reduction of the SPD matrix A of order n van be written as a tridiagonal
matrix: Tm = P T AP . Then for any x ∈ Rn it holds that

min
y∈P

(x − y,A(x − y))

gives that y∗ ∈ P for which ((x − y∗), Ay) = 0 for all y ∈ P . Here y∗ is the projection
of x on the space spanned by the columns of p under the innerproduct (u,Av).
We can write any y in P as y = P ŷ. With that the condition to find the minimum turns
into (P T Ax − P T APŷ∗, ŷ) = 0 for all ŷ ∈ Rm, or equivalently (P T Ax − Tmŷ∗, ŷ) = 0
for all ŷ ∈ Rm. From this it follows that

Tmŷ∗ = P T Ax (5.28)

The above basis can be made in a variety of ways, among which the Lanczos algorithm.

Ritz and the CG method

Suppose we want to solve Ax = b, wit A SPD. Then (5.28) turns into Tmŷ∗ = P T b.
Clearly, Tm is also SPD and for this kind of matrices it is known that we can solve the
system without pivoting. Now, suppose Tm = LU , then the system to be solved turns
into LUŷ∗ = P T b. When we define xm = P ŷ∗ we can also write this as

xm = PU−1L−1P T b = P̂ b̂

96 CHAPTER 5. ITERATIVE SOLUTION OF LSS AND EVPS

where P̂ = PU−1 and b̂ = L−1P T b. Note that P̂ follows from the system P̂U = P
and b̂ from Lb̂ = P T b. Since U is behind the unknown, the columns of P̂ are solved
from left to right. The elements of b̂ are solved from top to bottom.
Now, note that if P is extended by one column, then as a result Tm, the LU-
factorization, P̂ , and b̂ are extended. Only the product of the new column of P̂ and b̂
need to be added to xm in order to get xm+1. So this defines an iterative procedure.
Looking back we may say that the approximate solution xm is found by

min
y∈P

(x − y,A(x − y))

where x is the exact solution of Ax = b. Or equivalently by miny∈P (x, b) + (y,Ay) −
2(y, b) and since x and b are constants this is equivalent to

min
y∈P

(y,Ay) − 2(y, b)

The last expression is just the Ritz approach to solve the problem Ax = b as best as
possible on the search space P . If P is a Krylov space associated to A and b then this
Ritz approach can be build into the conjugate gradients method along the lines given
above.
There are a few important properties which this method has.

1. The method is a direct method since after N steps, N being the order of the
matrix, P is RN which contains the solution.

2. As soon as the solution is in the Krylov subspace it is found.

3. The number of steps is at maximum equal to the number of different eigenvalues.

4. The iteration applied to the system Ãx̃ = b̃, with Ã = QT AQ, x̃ = QT x, b̃ = QT b
and Q some orthogonal matrix converges in exactly the same way as on Ax = b.
So even if we would diagonalize A the convergence will be the same.

For the CG method it can be shown that the following estimation of the error holds

‖x − xm‖A ≤ 2

(√
κ − 1√
κ + 1

)m

‖x‖A (5.29)

where ‖x‖A =
√

(x,Ax). Here κ is the condition number in the two norm

κ = ||A||2||A−1||2

which is due to the symmetry and positive definiteness equal to the ratio of the largest
and smallest eigenvalue of A

Exercise 5.6 Show that the above κ is also equal to the ratio of the largest and smallest
eigenvalue of A

5.10. KRYLOV SUBSPACE METHODS FOR LINEAR SYSTEMS 97

Next to the condition number κ also the relative position of the eigenvalues of A are
important. This derives immediately from the convergence of the Krylov subspace
discussed earlier. The exterior eigenvalues are converging first and the speed of that
convergence is at least that of the ratio of the second largest divided by a largest
eigenvalue after an optimal shift. If these eigenvalues are converged to some extend
the observed convergence is that based on the remaining eigenvalues. Repeating this
argument we see that the CG method will converge faster and faster during the it-
eration. So in contrast with the stationary methods which converge linearly, the CG
method converges super linearly (see [43] for more details).
The eigenvalue distribution can be influenced by preconditioning. Say K is a precon-
ditioner then in fact the system

K−1Ax = K−1b

is solved. So if K is equal to A then we would have convergence in one step. However,
then we need in fact a factorization of A, which we wanted to avoid. So the goal is to
find a preconditioner that is relatively cheaply to apply. This appears to be possible
and made the conjugate gradient method very popular for systems with SPD matrices.
The conjugate gradients method was proposed by Hestenes and Stiefel in 1952 [17],
but for a long time it was seen as a direct method, which had no advantages over fac-
torization. Later one recognized its strength as iterative methods when preconditioned
is applied.
The CG algorithm with preconditioning is shown in Fig.5.8. Of course application of

- Choose x(0) and compute r(0) = b − Ax(0) and z(0) = K−1r(0)

- For n = 0, 1, 2, ...

(i) x(n+1) = x(n) + αnz
(n) with αn =

(r(n),K−1r(n))

(z(n),Az(n))
(ii) r(n+1) = r(n) − αnAz(n)

(iii) z(n+1) = K−1r(n+1) + βnz
(n) with βn =

(r(n+1),K−1r(n+1))

(r(n),K−1r(n))

Figure 5.8: CG algorithm with preconditioning

K−1 means solving a system with K.

5.10.2 Galerkin and FOM

If A is not symmetric but still positive definite, so xT Ax/xT x > 0 for all x 6= 0, then
we cannot look for a minimum but we can still satisfy the same condition which yields
the minimum in the symmetric case. So we look for y∗ in P such that (b−Ay∗, y) = 0
for all y ∈ P . We require now that P is such that H = P T AP is a Hessenberg matrix.
Such a P can be constructed by Arnoldi’s algorithm. Also this could be worked out
in an iterative method, but the L matrix will be dense now and therefore we have

98 CHAPTER 5. ITERATIVE SOLUTION OF LSS AND EVPS

to store the whole Krylov space. This method is not common used because there
are alternatives which also work for general non-singular matrices. This approach is
implemented in the Full Orthogonalization Method (FOM).

Exercise 5.7 Given the 2 × 2 diagonal matrix with a 1 and -1 on the diagonal. De-
termine the one-dimensional subspace for which the Galerkin approximation of this
matrix, i.e. the matrix reduced to this subspace, is singular.

In general it is possible to construct a subspace such that the Galerkin approximation
of a non-positive definite matrix A on the subspace is singular.

5.10.3 Petrov-Galerkin, BiCG and BiCGstab

Suppose we have now constructed bases P and Q such that QT AP is tridiagonal. This
can for example be obtained by the Bi-Lanczos algorithm.
We now want to find y∗ ∈ P (search space) such that (b−Ay∗, z) = 0 for all z ∈ Q (test
space). This leads to the solution of the reduced system T ŷ∗ = QT b. This can be put
into an iterative method in very much the same way as the CG method, which leads
to the BiCG method if we choose as start vector b. The convergence of this method
can be quite irregular and therefore the BiCGstab method was developed by Van der
Vorst [44]. Still however the method may break down because the matrix T from the
Bi-Lanczos process becomes singular. Furthermore a generalization was made called
BiCGstab(l) in which more vectors from the past are used leading to a more robust
method [40].

5.10.4 Least squares on the search space and GMRES

Suppose we have a basis P . We minimize now the residual over the space spanned by
P , hence we are looking for the minimum of ||b − APŷ||2. This means that we want
to solve a least squares solution on P . The standard way to solve such a system is by
making a QR factorization, in this case of AP . Hence ||b − APŷ||2 = ||QT b − Rŷ||2,
where Q is an orthogonal square matrix and R trapezoidal. From this one easily solves
ŷ∗.
Now suppose P is generated by the Arnoldi algorithm, hence it holds that APk =
Pk+1H̃ where H̃ is a (k + 1) × k Hessenberg matrix. Using this we can write ||b −
APkŷ||2 = ||b − Pk+1H̃ŷ|| =

√
||P T

k+1b − H̃ŷ||22 + C2, where C is the length of the

part of b that is in the orthogonal complement of Pk+1. Finally, we transform H̃
to upper triangular form using a QR factorization. Hence if H̃ = QR (NB Q is a
square Hessenberg matrix and R has the same size as H̃) then ||P T

k+1b − H̃ŷ||2 =

||QT P T
k+1b − Rŷ||2. Since in our case x0 = 0, it holds that the first vector in P is the

normalized vector b and therefore QT P T
k+1b = ||b||QT e1. Furthermore, by this C = 0.

The minimizing solution is now found by solving the first k equations. As error remains
the last element of ||b||QT e1, which is precisely the norm of the residual. Note that the
actual computation of ŷ∗ can be postponed till this last element is small enough. This

5.11. PRECONDITONING 99

algorithm is the famous Generalized Minimal Residual method (GMRES) developed
by Saad and Schulz [38].
This method can be applied to any non-singular matrix. The disadvantage is that
the whole Krylov space needs to be retained. One has overcome this by performing a
restart after a fixed number of iterations.
An alternative would be to solve instead of Ax = b the normal equations AT Ax = AT b.
By construction the matrix AT A is SPD and we can apply the CG method. However,
the condition number of this matrix is usually much worse than that of A. In the
worst case it can even be the square of that of A. This slows down the convergence
drastically and therefore this approach is not used in practice.

Recent developments

An overview of methods and some more can be found in [3] and in [37]. It also contains
information how to get the associated Fortran, Matlab and C++ codes.
Recently, again some progress is made. A method called Induced Dimension Reduction
method which was already introduced in 1980 is put into block form and appears to
be an attractive alternative for GMRES and BiCGstab [41].
There exist also variants which allow a preconditioning that varies from step to step,
e.g. FGMRES [36] and GMRESR [45].

5.11 Preconditoning

In the foregoing we have seen that the convergence of Krylov subspace methods de-
pends largely on the condition number of the matrix or more specifically on the dis-
tribution of the eigenvalues. This can be influenced by preconditioning. So if we have
a system Ax = b then we like to find a matrix K for which K−1A has a better eigen-
value distribution and for which the system Kx = b is much easier to solve than the
original system. With this K we replace the system to solve by K−1Ax = K−1b,
or by (K−1/2AK−1/2)(K1/2x) = K−1/2b (for SPD A and K) and apply to this the
Krylov subspace method. In the following we mention briefly a few preconditioning
approaches. More information can be found in text books on the iterative solution of
linear systems, e.g. [37]

5.11.1 Incomplete LU factorizations

If one makes an LU factorization of the matrix then the factors L and U contain usually
a large amount of small entries (with respect to the biggest element occurring in it).
It is attractive to drop these small elements. In general one can write

A = LU + R

where R is the rest or residual matrix. The standard approach is to just drop the
elements, this is usually called incomplete LU (ILU) factorization. For M matrices it
was shown by Meijerink and Van der Vorst [28], that this always brings the condition
number down. However, one can also require that the factorization is exact for certain

100 CHAPTER 5. ITERATIVE SOLUTION OF LSS AND EVPS

test or probe vectors. So if v is a test vector then Av = LUv or Rv = 0. For
that we have to compensate the dropped element on the remaining elements. This is
usually called Modified Incomplete LU (MILU) factorization. Of course for symmetric
matrices we can make incomplete Cholesky factorizations. We mention a few well
known methods in this class.

(M)ILU(0)

In ILU(0) no fill is allowed outside the pattern of the original matrix. So this is a very
cheap factorization. The downside of this is that the speed up it brings is already not
spectacular for an M-matrix. Changing it to a modified ILU by requiring that the
factorization is exact for the constant vector gives a significant improvement for the
M-matrix case, but may worsen the situation for others.
There also exists (M)ILU(k), which allows more fill and gives in general better results
than (M)ILU(0).

ILUTP

ILUTP contains a drop parameter ǫ, the threshold (explaining the T in the name).
Here a multiplier is not added to the L-factor if it less than ǫ times the norm of the
current row in the original matrix. Similarly an element is not added to the U-factor
if it satisfies the same criterion. This parameter adds a certain robustness since for ǫ
is zero we have simply an exact factorization. So for ǫ small enough the factorization
will improve the convergence.
Usually also pivoting is included in this method (explaining the P in the name). As
with the direct methods one likes to preclude pivoting, because it may destroy the
structure which is in the matrix. So here a value, say γ is given which allows pivoting
if γ times the biggest element below the diagonal is bigger than the diagonal element.
For γ = 1 we have standard partial pivoting and for smaller γ we are tempering the
pivoting. Usually a value of γ = 0.1 is chosen.

MRILU

In this method also the freedom of ordering is exploited (hence the name Matrix
Renumbering ILU). The aim is to order the matrix in a fill reducing way during the
process such that the amount of dropped elements is decreased. These factorizations
show near grid independent convergence for M-matrices. For more details see [6].
Another method in this class is ILUpack [5]

5.11.2 Sparse approximate inverse

Another idea is to not approximate the matrix but the inverse immediately. In general
the inverse of an irreducible matrix is full. The game is to get a sparse approximation
which is also a good approximation. It appears that one can quite easily construct
approximate inverses using the Frobenius norm of a matrix which is just the square

5.11. PRECONDITONING 101

root of the sum of all squares of the elements of the matrix. It holds that

||I − AM ||2F =

n∑

j=1

||ej − Amj ||22

where ej the elementary basis vector with a one at position j and zeros elsewhere
and mj is the j-th column of the matrix M . So if we want to find an M such that
the Frobenius norm is less than a certain tolerance and moreover M is as sparse as
possible, we can try to minimize the norms for the respective columns of M . One way
to do this is by solving such a system by a few steps of the GMRES method.

5.11.3 Algebraic Multigrid

This is a big container of multilevel methods which build a multigrid like method
using only the matrix. Hence, without information about the type of problem or the
geometry. From a user stand point this is very attractive, but these methods are not
easy to construct.

5.11.4 Preconditioner form of stationary methods

All the stationary methods mentioned in the beginning of this chapter can also be used
as preconditioner. The recursion (5.2) can also be written as

x(n+1) = (I − Q−1A)x(n) + Q−1b = x(n) + r(n)

where r(n) = Q−1(b−Ax(n)). Hence, an alternative formulation of the iteration, given
x(0), is

r(n) = Q−1(b − Ax(n))

x(n+1) = x(n) + r(n)

It is clear that when Q = A that x(1) will be the sought solution, hence the Q from
(5.1) is the preconditioner here. In fact we can show that we iterate in the space
Km(Q−1A, r(0)) as long as m is less equal to the order of A and after that (we have
reached the full space then) it will just continue to iterate in that space. In the case of
Gauss-Seidel and SOR the associated preconditioners will give a non-symmetric matrix
even if the original matrix is symmetric. This precludes the use of the CG method.
However there exists a symmetrized variant of SOR (and hence of GS) called the SSOR
where both upper and lower part of the matrix are used one after another such that
the preconditioner becomes symmetric.

5.11.5 Vanka preconditioners

In some cases the matrix assumes the form
[

A B
BT 0

]

102 CHAPTER 5. ITERATIVE SOLUTION OF LSS AND EVPS

where A is positive definite but not necessarily symmetric and B a rectangular matrix
with more rows than columns. Such a matrix is clearly not positive definite. One can
even show that it has negative eigenvalues. Therefore it is said to be indefinite. It
is also often called a saddle-point matrix. One could see this matrix as arising from
a problem Ax = b where a constraint is added BT x = 0. From Section 2.3.2 we see
that we arrive at the system matrix above. The idea of the Vanka preconditioner
is to locally satisfy this constraint. For instance in the incompressible Navier-Stokes
equation in the Finite Volume approach we find that the constraint means just that the
numerical divergence on every mass control volume is zero. The Vanka preconditoner
runs over all these control volumes and adapts the velocities on the boundaries such
that divergence freedom is still satisfied in the control volume (in surrounding volumes
it may be disturbed now). For details see [47].
Recently also a review paper on solution methods for Saddle Point problems has been
published [4], which is an important starting point for anyone who wants to solve
systems of equations in computational fluid dynamics.

== External links ==

* http://en.wikipedia.org/wiki/Preconditioning

Bibliography

[1] W. E. Arnoldi. The principle of minimized iteration in the solution of the matrix
eigenproblem. Quart. Appl. Math., 9:17–29, 1951.

[2] K. E. Atkinson. An Introduction to Numerical Analysis. John Wiley and Sons,
1976.

[3] R. Barret, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R.Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, PA, 1994.

[4] M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems.
Acta Numerica, 14:1–137, 2005.

[5] M. Bollhöfer. A robust ILU with pivoting based on monitoring the growth of the
inverse factors. Lin. Alg. Appl, 338:515–526, 2001.

[6] E.F.F. Botta and F.W. Wubs. MRILU: An effective algebraic multi-level ilu-
preconditioner for sparse matrices. SIAM J. on Matrix Anal. and Appl., pages
1007–1026, 1999.

[7] R.L. Burden and J.D. Faires. Numerical Analysis. Brooks/Cole, 2001.

[8] S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability. Clarendon Press,
Oxford, U.K., 1961.

[9] H. A. Dijkstra. On the structure of cellular solutions in rayleigh-bénard-marangoni
flows in small-aspect-ratio containers. J. Fluid Mech., 243:73–102, 1992.

[10] H. A. Dijkstra, M. J. Molemaker, A van der Ploeg, and E. F. F. Botta. An efficient
code to compute nonparallel flows and their linear stability. Comp. Fluids, 24:415–
434, 1995.

[11] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct methods for sparse matrices.
Oxford University Press, London, 1986.

[12] I.S. Duff, A.M. Erisman, and J.K. Reid. Direct methods for sparse matrices.
Monographs on numerical analysis. Oxford science publications, 1986.

103

104 BIBLIOGRAPHY

[13] D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der Vorst. Jacobi-Davidson
style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci.
Comput., 20:94–125, 1998.

[14] A. Yu. Gelfgat. Different modes of Rayleigh-Benard instability in two- and three
dimensional rectangular enclosures. J. Comp. Physics, 156:300–324, 1999.

[15] A. George. Nested dissection of a regular finite-element mesh. SIAM J. Numer.
Anal., 10:345–363, 1973.

[16] G.H. Golub and C.F. van Loan. Matrix Computations. Johns Hopkins, 3 edition,
1996.

[17] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. J. Res. Natl. Bur. Stand., 49:409–436, 1954.

[18] R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge Universiy Press, 1985.

[19] C. A. Katsman, M. J. Schmeits, and H. A. Dijkstra. Application of continua-
tion methods in physical oceanography. In D. Henry and A. Bergeon, editors,
Continuation methods in Fluid Dynamics, pages 155–166. Vieweg, 2000.

[20] H. B. Keller. Numerical solution of bifurcation and nonlinear eigenvalue problems.
In P. H. Rabinowitz, editor, Applications of Bifurcation Theory. Academic Press,
New York, U.S.A., 1977.

[21] E. L. Koschmieder. Bénard Cells and Taylor Vortices. Cambridge University
Press, Cambridge, UK, 1993.

[22] E. L. Koschmieder and D. W. Switzer. The wavenumbers of supercritical surface-
tension-driven Bénard convection. J. Fluid Mech., 240:533–548, 1992.

[23] Y. A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer Verlag, New
York, U.S.A., 1995.

[24] C. Lanczos. An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. J. Res. Natl. Bur. Stand, 45:225–280,
1950.

[25] R. B. Lehoucq and K. Meerbergen. Using generalized Cayley transformations
within an inexact rational Krylov sequence method. SIAM J. Matrix Anal. Ap-
plic., 20:131–148, 1998.

[26] R. Lippert and A. Edelman. Nonlinear eigenvalue problems with orthogonality
constraints. In Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst,
editors, Templates for the Solution of Algebraic Eigenvalue Problems: a Practical
Guide. SIAM, Philadelphia, 2000. in press.

BIBLIOGRAPHY 105

[27] K. Meerbergen. Robust methods for the calculation of rightmost eigenvalues of
nonsymmetric eigenvalue problems. PhD thesis, Katholieke Universiteit Leuven,
Leuven, Belgium, 1996.

[28] J.A. Meijerink and H.A. van der Vorst. An iterative solution method for linear
systems of which the coefficient matrix is a symmetric M-matrix. Math. Comput.,
31:148–162, 1977.

[29] A. H. Nayfeh and B. Balachandran. Applied Nonlinear Dynamics. John Wiley,
New York, U.S.A., 1995.

[30] D. A. Nield. Surface tension and buoyancy effects in cellular convection. J. Fluid
Mech., 19:341–352, 1964.

[31] R. Peyret and T.D. Taylor. Computational methods for fluid flow. Springer-Verlag,
1983.

[32] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. Springer, 2007.

[33] R.D. Richtmyer and K.W. Morton. Difference methods for initial value problems.
Interscience, 1967.

[34] P. Roache. Computational Fluid Dynamics. Hermosa Publishing, Albequerque,
NM, U.S.A., 1976.

[35] Y. Saad. Numerical methods for large eigenvalue problems. Manchester University
Press, Manchester, UK, 1992.

[36] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci.
Statist. Comput., 14:461–469, 1993.

[37] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2 edition, 2003.

[38] Y. Saad and M.H. Schultz. A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7:856–869, 1986.

[39] R. Seydel. Practical Bifurcation and Stability Analysis: From Equilibrium to
Chaos. Springer-Verlag, New York, U.S.A., 1994.

[40] G.L.G. Sleijpen and D.R. Fokkema. Bicgstab(l) for linear equations involving
unsymmetric matrices with complex spectrum. Electron. Trans. Numer. Anal.,
pages 11–32, 1993.

[41] P. Sonneveld and M. van Gijzen. IDR(s): a family of simple and fast algorithms
for solving large nonsymmetric systems of linear equations. SIAM J. Sci. Comput.
to appear.

[42] W.F. Tinney and J.W. Walker. Direct solutions of sparse network equations by
optimally ordered triangular factorization. In Proc. IEEE 55, pages 1801–1809,
1967. Proceedings, Reading.

106 BIBLIOGRAPHY

[43] A. van der Sluis and H.A. van der Vorst. The rate of convergence of conjugate
gradients. Numer. Math., 48:543–560, 1986.

[44] H.A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of
Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist.
Comput., 13(2):631–644, 1992.

[45] H.A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods,
1992. to appear.

[46] J. J. Van Dorsselaer. Computing eigenvalues occurring in continuation methods
with the Jacobi-Davidson QZ method. J. Comp. Physics, 138:714–733, 1997.

[47] S. Vanka. Block-implicit multigrid calculation of two-dimensional recirculating
flows. Comp. Meth. Appl. Mech. Eng., 59(1):29–48, 1986.

[48] R.S. Varga. Matrix iterative analysis. Prentice Hall, 1962.

[49] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford,
1965.

[50] D.M. Young. Iterative solution of large linear systems. Academic Press, 1971.

