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Mathematical modeling with delay differential equations (DDEs) is widely
used in various application areas of science and engineering (e.g., in semi-
conductor lasers with delayed feedback, high-speed machining, communication
networks, and control systems) and in the life sciences (e.g., in population dy-
namics, epidemiology, immunology, and physiology). Delay equations have an
infinite-dimensional state space because their solution is unique only when an
initial function is specified on a time interval of length equal to the largest
delay. Consequently, analytical calculations are more difficult than for ordin-
ary differential equations andnumerical methods are generally the only way
to achieve a complete analysis, prediction and control of systems with time
delays.

Delay differential equations are a special type of functional differential
equation (FDE). In FDEs the time evolution of the state variable can depend
on the past in an arbitrary way as long as the dependence is a bounded
function of the past. However, DDEs impose a constraint on this dependence,
namely that the evolution depends only on certain past values of the state at
discrete times. (We do not consider here the case of distributed delay.) The
delays can be constant or state dependent. The equations can also involve
delayed values of the derivative of the state, which leads to equations of neutral
type.

In this chapter we mainly discuss the simplest case, namely a finite number
of constant delays. Specifically, we consider a nonlinear system of DDEs with
constant delays τj > 0, j = 1, . . . ,m, of the form

x′(t) = f(x(t), x(t− τ1), x(t− τ2), . . . , x(t− τm), η), (1)

where x(t) ∈ Rn, and f : R(m+1)n+p → Rn is a nonlinear smooth function
depending on a number of (time-independent) parameters η ∈ Rp. We assume
that the delays are in increasing order and denote the maximal delay by

τ = τm = max
i=1,...,m

τi.
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A solution segment is denoted by xt = xt(θ) = x(t + θ) ∈ C, θ ∈ [−τ, 0].
Here C = C([−τ, 0];Rn) is the space of continuous functions mapping the
delay interval into Rn. For a fixed value of the parameter η, a solution x(t)
of (1) on t ∈ [0,∞) is uniquely defined by specifying a function segment x0

as an initial condition. A discontinuity in the first derivative of x(t) generally
appears at t = 0 and is propagated in time, even if f and φ are infinitely
smooth. However, the solution operator of (1) smooths the solution, meaning
that discontinuities appear in higher and higher derivatives as time increases.

A DDE can be approximated by a system of ordinary differential equations
(ODEs) and so standard numerical methods for ODEs could be used. However,
to obtain an accurate approximation a high-dimensional system of ODEs is
needed, and this leads to expensive numerical procedures. During the last dec-
ade, more efficient and more reliable numerical methods have been developed
specifically for DDEs. In this chapter we survey those numerical methods for
the continuation and bifurcation analysis of DDEs that are implemented in
the software packages DDE-Biftool [25, 26] and PDDE-Cont [73]. Where
appropriate, we also briefly describe alternative numerical methods. Note that
we do not discuss time integration of DDEs; for this topic see, e.g., [2] and
[6].

The structure of this chapter is as follows. In Sec. 1 we discuss numer-
ical methods to compute the right-most characteristic roots of steady-state
solutions. In Sec. 2 we describe collocation methods for computing periodic
solutions and their dominant Floquet multipliers. Section 3 presents defin-
ing systems for codimension-one bifurcations of periodic solutions that allow
one to compute the location of bifurcation points accurately. Computation
of connecting orbits is discussed in Sec. 4 and of quasiperiodic solutions is
discussed in Sec. 5. In Sec. 6 we briefly discuss how to deal with special
types of DDEs, specifically, equations of neutral type and DDEs with state-
dependent delays. In Sec. 7 we discuss specific details of the software packages
DDE-Biftool and PDDE-Cont. Their functionality is illustrated in Sec. 8,
where we present the bifurcation analysis of several DDE models of practical
relevance. Finally, conclusions and an outlook can be found in Sec. 9.

1 Stability of steady-state solutions

In this and the next section we assume that the parameter η is fixed and we
omit it from the equations. A steady-state solution x(t) ≡ x? of (1) satisfies
the nonlinear system

f(x?, x?, x?, . . . , x?) = 0. (2)

The (local) stability of x? is determined by the stability of (the zero solu-
tion of) the linearized equation

y′(t) = A0y(t) +
∑m
j=1Ajy(t− τj), (3)
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where Aj ∈ Rn×n denotes the partial derivative of f with respect to its
(j+1)-th argument, evaluated at the steady-state solution x?. The linearized
equation (3) is asymptotically stable if all its roots λ of the characteristic
equation

det(λI −A0 −
m∑

j=1

Aje−λτj ) = 0 (4)

lie in the open left half-plane (i.e., Re(e(λ)) < 0); see, e.g., [38, 58, 70]. Equa-
tion (4) has an infinite number of roots λ, known as the characteristic roots.
However, the number of characteristic roots with real part larger than a given
threshold is finite. Hence, to analyse the stability of a steady-state solution,
one must determine reliably all roots satisfying Re(e(λ)) > r, for a given r < 0
close to zero.

Analytical conditions for stability can be found in Stépán [70] and Hassard
[42]. These conditions are deduced by using the argument principle of complex
analysis, and they give a practical method for determining stability. In recent
years, numerical methods have been developed to compute approximations to
the right-most (stability-determining) characteristic roots of (4), by using a
discretization either of the solution operator of (3) or of the infinitesimal gen-
erator of the semi-group of the solution operator of (3). The solution operator
S(t) of the linearized equation (3) maps an initial function segment onto the
solution segment at time t, i.e.,

S(t)y(·)(θ) = y(t+ θ), − τ ≤ θ ≤ 0, t ≥ 0. (5)

This operator has eigenvalues µ, which are related to the characteristic roots
via the equation µ = eλt [63]. To determine the stability, we are interested
in the dominant eigenvalues that, if t is large, are well separated. This can
be an advantage for the eigenvalue computation, but the time integration
itself may be costly. In Sec. 1.1 we describe a reliable way to compute the
dominant eigenvalues of S(h) where h is the time step of a linear multistep
(LMS) method.

Since S(t) is a strongly continuous semi-group [36, 38], one can define the
corresponding infinitesimal generator A by

Ay = lim
t→0+

S(t)y − y

t
. (6)

For (3) the infinitesimal generator becomes

Ay(θ) = y′(θ), y ∈ D(A)
D(A) = {y ∈ C : y′ ∈ C and y′(0) =

∑m
j=0Ajy(−τj)}.

(7)

Both operators can be discretised by spectral discretizations or time in-
tegration methods; this always leads to a representation by some matrix.
Eigenvalues of this matrix yields approximations to the right-most character-
istic roots. Hence, for computational efficiency it is important that the size of
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the resulting matrix eigenvalue problem is small, or at least that the stability
determining eigenvalues can be computed efficiently. iterative method, such
as subspace iteration. Accurate characteristic roots can be found by using
Newton iterations on the characteristic equation

(λI −A0 −
∑m
j=1Aje

−λτj )v = 0,
v0
T v = 1

(8)

where v ∈ Rn and v0 ∈ Rn, to obtain accurate characteristic roots λ (and the
corresponding eigenfunctions veλt). The difference between the approximate
and the corrected roots gives an indication of the accuracy of the approxim-
ations.

Below we describe how the characteristic roots can be computed via an ap-
proximation of the solution operator by time integration, which is the method
that is implemented in DDE-Biftool. We also briefly comment on other ap-
proaches.

1.1 Approximation of the solution operator by a time integrator

A natural way to approximate the solution operator is to write the numerical
time integration of the linearized equation as a matrix equation. Engelborghs
et al. [27] have proposed and analysed the use of a linear multistep method
with constant steplength h to approximate the solution operator S(h). The
delay interval [−τ, 0] (slightly extended to the left and the right; see below) is
discretized by using an equidistant mesh with mesh spacing h, and a solution
is represented by a discrete set of points yi := y(ti) with ti = ih. A k-step
LMS method with steplength h to compute yk can be written as

k∑
i=0

αiyi = h
k∑
i=0

βi

(
A0yi +

m∑
j=1

Aj ỹ(ti − τj)
)
, (9)

where αi and βi are parameters and where (in case ti − τj does not coincide
with a mesh point) the approximations ỹ(ti − τj) are obtained by polynomial
interpolation with s− and s+ points to the left and the right, respectively.

The discretization of the solution operator is the (linear) map between
[yLmin , . . . , yk−1]T and [yLmin+1, . . . , yk]T where Lmin = −s− − dτ/he and
where the mapping is defined by (9) for yk and by a shift for all variables
other than yk. This map is represented by an N ×N matrix, where

N = n(−Lmin + k) ≈ nτ/h. (10)

Since the time step h is small, the eigenvalues µ of this matrix are not well
separated (most eigenvalues lie close to the unit circle). They can be computed
by e.g. the QR method, with a computational cost of the orderN3 ≈ n3(τ/h)3,
and so approximations to the characteristic roots can be derived.
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To guarantee the reliability of the stability computation, the steplength h
in the LMS method (9) should be chosen such that all characteristic roots λ
with Re(e(λ)) > r (r < 0) are approximated accurately. Procedures for such a
safe choice of h are described in [27, 79] and implemented in DDE-Biftool.
They are based on theoretical properties of

(a) the relation between the stability properties of the solution of the linearized
equation (3) and the stability of the discretized equation (9);

(b) an a-priori estimate of the region in the complex plane that includes all
characteristic roots λ with Re(e(λ)) > r.

Note that the solution operator can also be discretized by using a Runge-
Kutta time integrator [10].

1.2 Other approaches

Breda et al. [11] have developed numerical methods to determine the stabil-
ity of solutions based on a discretization of the infinitesimal generator. By
discretizing the derivative in (7) with a Runge-Kutta or a LMS method, a
matrix approximation of A is obtained. The resulting eigenvalue problem is
large and sparse, as in the case when the solution operator is discretized by a
time integration method. Breda et al. [12] also proposed a pseudo-spectral dis-
cretization of the infinitesimal generator. In this approach, an eigenfunction of
the infinitesimal generator veλt, t ∈ [−τ, 0], is approximated by a polynomial
P (t) of degree p. Collocation for the eigenvalue problem for the infinitisimal
generator leads to an equation of the form

P ′(ti) = λP (ti), (11)

where the collocation points ti, i = 1...p are chosen as the shifted and scaled
roots of an (orthogonal) polynomial of degree p. These equations are augmen-
ted with

A0P (0) +
∑m
j=1AjP (τj) = λP (0), (12)

which introduces the system-dependent information. The resulting matrix ei-
genvalue problem has size n(p+1). The first np rows are the Kronecker product
of a dense p× (p+1) matrix and the identity matrix. The last block row con-
sists of a linear combination of the matrices Aj , j = 0, ...,m and the identity.
The matrix is full but can be of much smaller size than in the previous case,
due to the ‘spectral accuracy’ convergence, as is shown in the detailed analysis
presented in [12].

A pseudo-spectral discretization of the solution operator is proposed in
[81, 10]. Here a polynomial approximation P (t) of an eigenfunction, defined
on the interval [−τ, h] has to satisfy p collocation conditions of the form

P (ti + h) = µP (ti),
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where µ = eλh. These equations are augmented with a condition obtained from
integrating the linearized equations over an time interval h. When high accur-
acy is required, a pseudo-spectral discretization will lead to a more efficient
procedure than when a time integration discretization is used, but numerical
experiments indicate that for low accuracy requirements both approaches are
competitive [81].

However, for the pseudo-spectral approaches no strategy is known that
guarantees a priori that all characteristic roots with real part larger than r
are computed accurately, as is the case with the discretization of the solution
operator with a LMS method.

2 Periodic solutions

A periodic solution x?(t) of an autonomous system of the form (1) satisfies

x?(t+ T ) = x?(t), ∀t,
where T is the period. An extensive literature exists on the existence, stability
and parameter dependence of periodic solutions; see, e.g., [38, §XI.1-2]. These
results are essentially analytical in nature and the corresponding methods
have different rigorous restrictions and cannot be applied to general nonlinear
systems with several delays.

Because of the dependence on the past, periodicity of x(t) at one moment
in time, x(t) = x(t+ T ) for some t, does not imply periodicity for the whole
solution. Instead, a complete function segment of length τ has to be repeated.
Consequently, a periodic solution to (1) can be found as the solution of the
following two-point boundary value problem (BVP),




x′(t) = f(x(t), x(t− τ1), . . . , x(t− τm), η), t ∈ [0, T ]
x0 = xT ,
p(x, T ) = 0,

(13)

where x0 and xT are function segments on [−τ, 0] and [−τ+T, T ], respectively,
the period T is an unknown parameter. Furthermore, p represents a phase
condition that is needed to remove translational invariance. A well-known
example is the classical integral phase condition [20]

∫ 1

0

u̇(0)(s)(u(0)(s)− u(s))ds = 0, (14)

where u(0) is a reference solution; see also Chapter 1.
Stable periodic solutions of a DDE can be found by numerical time integra-

tion; the convergence of the integration depends on the stability properties of
the periodic solution [44]. However, both stable and unstable solutions can be
computed by solving the above boundary value problem by either collocation
or by approach. Here we only consider collocation methods.
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2.1 Collocation

In collocation a periodic solution is computed by using a discrete represent-
ation that satisfies the differential equation at a set of collocation points on
[0, T ]. Doedel and Leung [21] have computed periodic solutions of DDEs us-
ing collocation based on a truncated Fourier series; see also [13] for a similar
approach. This Fourier approach has the advantage that periodicity is auto-
matically fulfilled. However, steep gradients in a solution pose problems and
it is not possible to determine the solution stability.

Collocation based on piecewise polynomial representations is used in Auto
[17] and Content [50] to compute periodic solutions for systems of ordinary
differential equations; see also Chapters 1and 2. We now discuss how piecewise-
polynomial collocation can be used for DDEs. We first rescale time by a factor
1/T such that the period is one in the transformed system




x′(t) = Tf (x(t), x(t− τ1/T ), . . . , x(t− τm/T ), η) , for t ∈ [0, 1],
x(θ + 1)− x(θ) = 0, for θ ∈ [−τ/T, 0],
p(x, T ) = 0.

(15)

A mesh with L+ 1 mesh points {0 = t0 < t1 < . . . < tL = 1} is specified.
This mesh is periodically extended to the left with ` points to obtain a mesh
on [−τ/T, 1] with `+L intervals. In each interval an approximating polynomial
of degree d is described in terms of the function values at the representation
points (using Lagrange polynomials as basis). These function values are de-
termined by requiring that the approximating collocation solution fulfills the
(time-scaled) differential equations exactly at the collocation points. In each
interval, the collocation points are typically chosen as the (scaled and shifted)
roots of a d-th degree orthogonal polynomial.

The approximating polynomial of degree d on each interval [ti, ti+1], i =
−`, . . . , L− 1, can be written as

u(t) =
d∑

j=0

u(ti+ j
d
)Pi,j(t), t ∈ [ti, ti+1], (16)

where Pi,j(t) are the Lagrange polynomials through the representation points

ti+ j
d

= ti +
j

d
(ti+1 − ti), j = 0, . . . , d.

Because polynomials on adjacent intervals share the value at the common
mesh point, this representation is automatically continuous (however, it is
not continuously differentiable at the mesh points).

The approximation u(t) is completely determined by the coefficients

ui+ j
d

:= u(ti+ j
d
), i = −`, . . . , L− 1, j = 0, . . . , d− 1 and uL := u(tL). (17)

We define the starting vector us and the final vector uf , both of length N =
n(`d+ 1), as
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us := [u−`, . . . , ui+ j
d
, . . . , u0]T , uf := [uL−`, . . . , ui+ j

d
, . . . , uL]T . (18)

The collocation points are obtained as

ci,j = ti + cj(ti+1 − ti), i = 0, . . . , L− 1, j = 1, . . . , d,

from a set of collocation parameters cj , j = 1, . . . , d, e.g., the shifted and
scaled roots of the d-th degree Gauss-Legendre polynomial.

A periodic solution for a fixed value of the parameters η is found as the
solution of the following (n((`+L)d+1)+1)×(n(`+L)d+1)+1)-dimensional
(nonlinear) system in terms of the unknowns (17) and T ,





u̇(ci,j) = Tf(u(ci,j), u(ci,j − τ1
T ), . . . , u(ci,j − τm

T )), η) = 0,
i = 0, . . . , L− 1, j = 1, . . . , d

uf = us,
p(u) = 0.

(19)

Here, p again represents a phase condition such as (14).
The collocation solution fulfils the time-scaled differential equation exactly

at the collocation points. If ci,j coincides with ti then the right derivative is
taken in (19), if it coincides with ti+1 then the left derivative is taken. Taking
into account the periodicity conditions, one can reduce system (19) to the
following nonlinear system in the unknowns u = [u0, . . . , uL]T and T ,




u̇(ci,j) = Tf(u(ci,j), u((ci,j − τ1
T )mod 1), . . . , u((ci,j − τm

T ) mod 1), η) = 0,
i = 0, . . . , L− 1, j = 1, . . . , d

u0 = uL,
p(u) = 0.

(20)
Hence, the dimension of the system and the number of unknowns is reduced
to (n(Ld+ 1) + 1).

When using Newton’s method to solve (20), the matrix of the linear system
to be solved in each iteration is sparse and has a particular structure, as is
shown in Fig. 1. The matrix consists of a (large) nLd×n(Ld+1) matrix filled
with two (circular) bands, bordered by one column and n+1 rows. The extra
column contains derivatives with respect to the period; n extra rows contain
the periodicity condition, and one extra row is due to the phase condition
(14). The diagonal band is itself a concatenation of nd×n(d+ 1) blocks. The
off-diagonal bands are a consequence of the delay terms. When the mesh is
equispaced then the off-diagonal band lies at a fixed distance from the diagonal
band as is illustrated in Fig. 1(a). This is no longer the case when the mesh
is non-equispaced; see Fig. 1(b).

In the case of collocation for ODEs, the matrix of the linear system has a
band structure with a band size proportional to n and d but independent of
the number of mesh intervals L; see also Chapter 1. Hence the system can be
solved efficiently by a direct band solver. For delay differential equations this
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Fig. 1. Structure of the matrix arising in the Newton iteration to solve (20) for one
delay that is smaller than the period T ; shown is the case L = 7 and collocation
polynomials of degree d = 3. Panel (a) is for an equispaced mesh and panel (b) for
a non-equispaced mesh; each black box represents an n× n block.

is not possible. Indeed, the structure of the matrix, described above, cannot
easily be exploited when using a direct solver, especially in case of several
delays and/or a non-equispaced mesh. However, for moderate values of d, n
and L the linear system (20) can still be solved with a direct method. The
efficiency can be increased by using a chord-Newton method, in which case
the Jacobian is not recomputed (and factored) in every iteration but remains
fixed during a number of iterations. In Sec. 2.3 we describe an efficient iterative
procedure to solve (20).

Furthermore, an adaptive (non-equispaced) mesh can be used to decrease
the required number of intervals L for difficult solutions (with steep gradients).
For the latter, the interval size hi = ti+1−ti is adapted to an approximation of
the (d+1)-th derivative of the solution (obtained from the computed solution;
see [1, 24]).

Engelborghs and Doedel [23] have proven that the convergence rate of the
maximal continuous error E = maxt∈[0,1] ‖u(t) − u?(t)‖ is O(hd) in general
and O(hd+1) for Gauss-Legendre collocation points on equispaced and non-
equispaced meshes with h = maxi hi. Special convergence rates at the mesh
points (so-called superconvergence) that feature for ordinary differential equa-
tions, are, in general, lost for DDEs.

Note that, in the case of a non-autonomous (or forced) system, the colloca-
tion method is essentially the same as in (20), except that the phase condition
is not needed, since the phase of the solution is determined by the phase of
the forcing.
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2.2 Monodromy operator and Floquet multipliers

The stability of a periodic solution is determined by the Floquet multipliers,
which are the eigenvalues of the monodromy operator. In the case of autonom-
ous equations there is always a trivial multiplier +1, which stems from the
fact that the associated linearized equation is always solved by the time de-
rivative of the solution itself. According to Floquet theory, a periodic solution
is asymptotically stable if all the multipliers — not counting the trivial one —
lie strictly inside the complex unit disk. The main focus of this subsection is
the computation of the monodromy operator using the previously described
collocation method.

Benote by x?(t) a T -periodic solution of (1). As in the previous sections
we rescale time by 1/T . The linearized equation about this periodic solution
in rescaled time is

d

dt
y(t) = T (A0(t)y(t) +

m∑

j=1

Aj(t)y(t− τ)), (21)

where Aj(t) denotes the partial derivative of f with respect to its (j + 1)-th
argument, evaluated at x?(Tt). Also let U(t, s) be the fundamental solution
operator of (21), which is defined as

(U(t, s)φs)(θ) = y(t+ θ), θ ∈ [−τ/T, 0],

where φs is an initial function and y is the corresponding solution of (21).
The monodromy operator is defined as

M = U(1, 0),

that is

M : C([−τ/T, 0];Rn) → C([−τ/T, 0];Rn),
φ 7→ y1,

where φ is the initial function and y1 is the solution segment y1(θ) = y(1+θ).
The discretized version of M is Md : us → uf and its matrix representation
can be obtained by solving (21) with a collocation method similar to (19).
This method is used in DDE-Biftool [26].

However, when the maximal delay is larger than the period, us and uf
overlap; computation of Md can be improved by exploiting this property. For
the sake of generality we use the Riesz representation theorem and write (21)
in the form

dy(t)
dt

= T

∫ τ/T

0

dθζ(Tθ, t)y(t− θ), (22)

where ζ is a matrix valued function of bounded variation that, with (21), can
be written as
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ζ(Tθ, t) =





0 if θ ≤ 0
A0(t) if 0 < θ < τ1

...
...

A0(t) +
∑m
j=1Aj(t) if τ ≤ θ

.

Notice that (22) implicitly depends on the initial function. It can be written
explicitly as

dy(t)
dt

− T

∫ t

0

dθζ(Tθ, t)y(t− θ)− T

∫ τ/T

t

dθζ(Tθ, t)φ(t− θ) = 0. (23)

We introduce K = dτ/T e solution segments of y(t) and φ as

y1(t) = y(2−K + t), y2(t) = y(3−K + t), . . . , yK(t) = y(1 + t)
φ1(t) = φ(1−K + t), φ2(t) = φ(2−K + t), . . . , φK(t) = φ(t) , t ∈ [−1, 0],

such that φi, yi ∈ X := C([−1, 0];Rn), and we also define operators on X as
obtained from from (23) as

(Aφ)(θ) =
dφ(θ)

dt
− T

∫ 1+θ

0

dγζ(Tγ, θ)φ(θ − γ), D(A) = C1([−1, 0],Rn),

(Biφ)(θ) = T

∫ i+1+θ

i+θ

dγζ(Tγ, θ)φ(i+ θ − γ), 1 6 i 6 N.

It is clear that yK is the only unknown, because all the other yi can be found
from the initial conditions as yi = φi+1. Hence, the only equation that has to
be solved is

AyK −
K∑

i=1

Biφi = 0, yK(−1) = φK(0).

In order to eliminate the explicit boundary condition we introduce extended
operators on X̂ = {(ϕ, c) ∈ X × Rn : c = ϕ(0)} in the form of

Â =
(A 0
L 0

)
, B̂i =

(Bi 0
0 0

)
for i < N and B̂N =

(BN 0
0 I

)
,

where Lϕ = ϕ(−1). The extended monodromy operator is defined on X =
C([−N, 0];Rn); this space is isomorphic to the further extended

X̃ =
{

((φ1, c1), . . . , (φN , cN )) ∈ X̂N
: φk(0) = ck = φk+1(−1), 1 6 k < N

}
.

In order to obtain stability results it is sufficient to construct the monodromy
operator on X̃, which becomes
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M̃ =




0 Î · · · 0

0 0
. . . 0

...
...

...
0 0 Î

Â−1B̂1 Â−1B̂2 · · · Â−1B̂N



. (24)

Because of the identity matrices above the diagonal, the operator M̃ is not
compact, but its powers M̃k, k > K are compact.

The operator M̃ can be computed by collocation and by inverting the
resulting discretized Â operator. In PDDE-Cont the spectrum of M̃ is com-
puted with the iterative Arnoldi-Lanczos method [64], which is implemented
in the ARPACK software package. Note that in this iterative process, when
the discretized operator is multiplied by a vector, only one solution step with
Â is necessary.

Despite the differences, using either M or M̃ gives the same accuracy of
the multiplier calculation [53]. In particular, it was shown in [53] that the
computations of the multipliers and of the periodic solution itself have the
same accuracy. The exception is the computations of the trivial multiplier +1,
which was found to be more accurate. Hence, inferring the accuracy of the
periodic solution from the accuracy of the trivial multiplier can be deceiving.

2.3 Collocation-Newton-Picard

Verheyden and Lust [78] have developed an iterative procedure to solve the
linear system arising in Newton’s method applied to system (19). Consider
the unknowns ui+j/d := u(ti+j/d) defined in (17). Recall the definition of the
starting vector us and the final vector uf given in (18)

us := [u−`, . . . , ui+ j
d
, . . . , u0]T , uf := [uL−`, . . . , ui+ j

d
, . . . , uL]T , (25)

and define the trajectory vector as

ut := [u 1
d
, . . . , ui+ j

d
. . . , uL]T , (26)

where us and uf are of length N = n(`d+ 1) and ut is of length N̂ = nLd (`
and L denote the number of mesh points in [−τ/T, 0] and (0, 1], respectively).
Note that uf consists of the last n(`d+ 1) components of ut.

The linearization of (19) has the following form

−B∆us +A∆ut + r1,T∆T = −r1
∆− us +∆uf = −r2

αs∆us + αt∆− ut + αT∆T = −α
(27)

where r1, r2 and α denote the residuals of system (19) and −B, A and r1,T
denote the partial derivatives of the collocation conditions with respect to us,
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Fig. 2. Typical structure of the linearized collocation system for one delay that is
smaller than the period T ; shown is the case of ` + L = 3 + 7 mesh intervals and
collocation polynomials of degree d = 3 (the bordering row and column are omitted).
Panel (a) is for an equispaced mesh and panel (b) for a non-equispaced mesh; each
black box represents an n× n block.

ut and T . A typical structure for the matrix of the linearized system in the
case of one time delay that is smaller than the period T is shown in Fig. 2.
Panel (a) is for an equispaced mesh, while panel (b) a non-equispaced mesh is
used with L = 7 mesh intervals; the extended mesh contains ` = 3 additional
mesh intervals and the piecewise polynomials have degree d = 3.

The linear system can be manipulated and condensed to the form
[
M − I bc
βs βT

] [
∆us
∆T

]
= −

[ −rc
−αc

]
. (28)

Here M is the discretization of the monodromy operator, which can be
derived from Mt = A−1B. Afterwards, ∆ut can be computed from (27). This
manipulation is based on the correspondence between the linearization of the
collocation scheme and the discretization of the linearized boundary value
problem. The condensation is similar to the condensation used in Auto; see
Chapter 1. The monodromy matrix (28) is well suited for the Newton-Picard
method [52], which leads to a substantial reduction in the computational cost,
especially when only a few Floquet multipliers are larger in modulus than a
certain threshold ρ, e.g., ρ = 0.5 [78].

3 Defining systems for codimension-one bifurcations of
periodic solutions

Periodic solutions of autonomous DDEs can undergo three generic codimension-
one bifurcations. First,the monodromy operator may have an algebraically
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double +1 eigenvalue, which corresponds to a limit point (or fold, or saddle-
node) bifurcations where the solution ceases to exist. Secondl, there may be a
single −1 multiplier, which gives a period-doubling bifurcation. Third, if two
critical complex conjugate multipliers lie on the unit circle of the complex
plane, then there is a Neimark-Sacker or torus bifurcation. In this case an
invariant torus bifurcates from the periodic solution.

Continuing the bifurcations of periodic solutions in DDEs does not differ
substantially from the case of ODEs. In order to compute bifurcations one has
to include additional equations to (20), which are satisfied by a periodic solu-
tion if and only if the monodromy operator has a certain kind of singularity.
In the period-doubling and the Neimark-Sacker cases, the simplest procedure
to construct such a determining system is to require that the monodromy op-
erator has a singular vector. Short algebraic transformations of (24) reveals
that these bifurcations occur if


Â −

N∑

j=1

σjB̂j


 v = 0,

v?v = 1, (29)

has a unique solution v with the inverse characteristic multiplier σ = µ−1 6= 1
on the unit circle. Because of the appearance of higher powers of σ, this equa-
tion is different from the ODE case if the delay is larger than the period.
Adding (29) to the defining system of the periodic solution (20) doubles the
size of the problem. The size of (29) can be reduced to n+1 by using charac-
teristic matrices that are equivalent to the operator in (29) [75]. However, the
smallest possible addition would consist of only one additional scalar equation
to (20) without introducing new variables. This can be achieved by using the
bordering theorem [8], which states that the bordered operator

(
D β
α? δ

)
=

(
A b
c? 0

)−1

,

exists if both A and A∗ have one-dimensional kernels and b /∈ kerA∗, c /∈ kerA
or A is bijective and c?A−1b 6= 0. Moreover, δ can be used as a test functional
of the singularity, because it is zero if and only if A is singular. In order to
obtain δ it is sufficient to solve the equation

(
A b
c? 0

)(
β
δ

)
=

(
0
1

)
. (30)

Hence, using a discretized version of Â−∑N
j=1 σ

jB̂j for the operator A in
(30) with appropriate choices of b and c? in the period-doubling and Neimark-
Sacker case, the equation δ(x∗, η) = 0 determines the bifurcation point. In a
continuation context the resulting β can be re-used as the value of c in the
next continuation step. Similarly, by solving the adjoint equation
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(
A? c
b? 0

)(
α
δ

)
=

(
0
1

)
,

the resulting α can be the new value of b in the next continuation step.
In the case of the fold bifurcation in an autonomous system (1), because

of the algebraically double +1 multiplier, the operator A has to be

ALP =
( Â −∑N

j=1 σ
jB̂j φ0

Intψ0 0

)
,

where

ψ0 = f(x(t), x(t− τ1), x(t− τ2), . . . , x(t− τm), η),

φ0 = −
N∑

j=1

jB̂jψ0

and

Intψ0 φ =
∫ 0

−1

ψ0(θ)φ(θ)dθ.

Note that ALP is different from what one would expect by analogy with ODEs;
see [19]. Here, φ0 is obtained by computing the Jordan chain of Â−∑N

j=1 σ
jB̂j ;

see, e.g., [46]. The regularity of δ obtained from ALP at the bifurcation point
can be proven either by using the equivalence with characteristic matrices [75]
or by standard techniques [19].

4 Connecting orbits

A solution x?(t) of (1) at some fixed value of the parameter η is called a
connecting orbit if the limits

lim
t→−∞

x?(t) = x− and lim
t→+∞

x?(t) = x+ (31)

exist, where x− and x+ are steady states of (1). We call the orbit homoclinic
when x− = x+, and heteroclinic otherwise. Orbits of this type exist, for in-
stance, in lasers models with optical feedback, which are discussed in Sec. 8.1;
see also [34]. They also appear naturally when looking for traveling waves in
delay partial differential equations [66].

A defining condition for a connecting orbit is that it is contained in both
the stable manifold of x+ and the unstable manifold of x−. A classical ap-
proach in the ODE case is to approximate this condition by truncating the
time domain to an interval of length Tc and to apply (so-called) projection
boundary conditions [7]: one end point of the connecting orbit is required to
lie in the unstable eigenspace of x− and the other end point in the stable
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eigenspace of x+. The projection boundary conditions, therefore, replace the
stable and unstable manifolds by their linear approximations near the steady
states.

Here, the boundary conditions need to be written in terms of solution
segments. Furthermore, x+ has infinitely many eigenvalues with negative real
parts (see Sec. 1) and so it is impossible to write the final function segment
as a linear combination of all stable eigenfunctions. Instead, it is required
that the end function segment is in the orthogonal complement of all unstable
left eigenfunctions. We will assume for notational convenience that (1) only
contains one delay τ ; however, the method is implemented in DDE-Biftool
for the general case of m fixed delays.

The condition for the initial function segment x0(θ) can be written as

x0(θ) = x− + ε

s−∑

k=1

αkv
−
k e

λ−k θ
(∑

|αk|2 = 1
)
,

where s− is the number of unstable eigenvalues λ−, with corresponding ei-
genvectors v−. The αk are unknown coefficients, and ε is a measure for the
desired accuracy. An extra condition is added to ensure continuity at θ = 0.
Since we cannot write the end conditions for the final function segment in a
similar way, a special bilinear form [36] is used to express the fact that the
final function segment is in the complement of the unstable eigenspace of x+.
This leads to the s+ extra conditions of the form

w+
k

∗
(x(Tc)− x+) +

∫ 0

−τ
w+
k

∗
e−λ

+
k (θ+τ)A1(x+, η)

(
x(Tc + θ)− x+

)
dθ = 0 ,

where k = 1, . . . , s+. Here s+ is the number of unstable eigenvalues of x+, w+
k

are the left eigenvectors corresponding to the eigenvalues λ+
k , and the matrix

A1 is defined as in (3). While this integral condition works well in practice,
one slight drawback is that it does not control the distance of the end function
segment to the steady state.

As for periodic solutions, connecting orbits arise in one-parameter families
and any time-translate is also a connecting orbit. Therefore, a phase condition
such as (14) needs to be added to select one of these orbits.

For the case of a one-parameter family of connecting orbits a number of
free parameters are required to obtain a generically isolated solution. One
has to solve (1) together with the steady-state equations (2) for x− and x+

and characteristic equations of the form (8) for λ−k and v−k and λ+
k and w+

k ,
i.e., a system of n differential equations, supplemented with (s− + s+)(n +
1) + 2n+ s+ + 2 extra equations, resulting in the need for sη = s+ − s− + 1
free parameters. This leads to a boundary value problem, which is coupled to
a number of algebraic constraints for the equilibria and their stability. The
boundary value problem can be solved by a collocation method as in Sec. 2.1.

Good starting conditions for Newton’s method can be obtained as fol-
lows. For a homoclinic orbit, one can start from a nearby periodic solution
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with a sufficiently large period. Heteroclinic orbits can be approximated by
using time integration or by using an extension of the method of successive
continuation [18]. Details of the method, including a numerical study of the
convergence, are presented in [65].

5 Quasiperiodic tori

In dynamical systems quasiperiodic solutions reside on invariant tori. In this
section we describe a method to compute two-dimensional tori as periodic
functions on the unit square. In particular we adapt the method of Schilder
et al. [67], which uses a finite difference method to discretize the defining
equation. Here we use a spectral collocation method that is well suited to
delay equations.

A quasiperiodic solution x(t) of (1) has two rationally independent fre-
quencies ω1, ω2. Hence, there exists a function y : R2 → Rn, which is 2π-
periodic in both variables, such that x can be written as x(t) = y(ω1t1, ω2t2).
Putting y into (1) yields a first order delayed partial differential equation

∂

∂t1
y(t1, t2) +

ω2

ω1

∂

∂t2
y(t1, t2) =

1
ω1
f(y(t1, t2), y(t1 − ω1τ1, t2 − ω2τ1), . . .

. . . , y(t1 − ω1τm, t2 − ω2τm), η), (32)

where ω1, ω2 are unknown frequencies. Because there are translational sym-
metries in both variables of y, two phase conditions have to be imposed on
y in order to fix a unique solution and determine the unknown frequencies.
Assuming that we have a reference solution u(0) of (32) at η0, we formulate a
condition that minimizes the distance of u at η from u(0), i.e.,

κ(θ1, θ2) =
1

(2π)2

∫ 2π

0

∫ 2π

0

‖u(t1 + θ1, t2 + θ2)− u(0)(t1, t2)‖22dt1dt2.

Taking the first derivative of κ with respect to θ1 and θ2, the phase conditions
become

1
(2π)2

∫ 2π

0

∫ 2π

0

∂

∂t1
u(0)(t1, t2)u(t1, t2)dt1dt2 = 0,

1
(2π)2

∫ 2π

0

∫ 2π

0

∂

∂t2
u(0)(t1, t2)u(t1, t2)dt1dt2 = 0.

In the case of time periodic systems only the second phase condition is ne-
cessary, since the phase in t1 is fixed by the phase of the forcing. In addition
to the phase conditions, we also need boundary conditions that guarantee the
periodicity of u, that is,

u(0, t2) = y(2π, t2) and
u(t1, 0) = y(t1, 2π), ∀ t1, t2 ∈ [0, 2π].
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5.1 Spectral collocation

To obtain an approximation of the quasiperiodic solution the defining sets of
equations can be solved with an appropriate numerical scheme and Newton’s
method. There are several different spectral collocation methods for partial
differential equations that could be used to solve (32); for an introduction see
Trefethen [76]. Here we use a method that was developed for computation-
ally challenging hyperbolic equations such as the Navier-Stokes equation. The
method is a multi-domain spectral collocation method called the staggered
grid Chebyshev method, developed by Kopriva and Kolias [48].

The method is similar to the collocation of periodic solutions. It uses
piecewise polynomials that are represented by their values at discrete points
of a mesh, which is different from the mesh on which the equation is solved.
We use a very simple domain subdivision of the area [0, 2π]× [0, 2π] that splits
it into the rectangles

Di,j = [ti1, t
i+1
1 ]× [tj2, t

j+1
2 ],

where {0 = t0l < t1l < · · · < tLl

l = 2π} with l ∈ {1, 2}. On each rectangle Di,j

we use the Lobatto points (ti,p1 , tj,q2 ) = (ti1+bp1(t
i+1
1 −ti+1

1 ), ti2+bq2(t
j+1
2 −tj+1

2 ))
to represent the solution

u(t1, t2) =
d1∑
p=0

d2∑
q=0

u(ti,p1 , tj,q1 )P i,j,p,q(t1, t2), (33)

where P i,j,p,q are the Lagrange polynomials through the points (ti,p1 , tj,q2 ). The
function u is now completely determined by the values

ui,j,p,q := u(ti,p1 , tj,q1 ),

which we consider identical if they represent the same point in [0, 2π]× [0, 2π].
We also need to impose the boundary conditions, which are

u0,j,0,q = uL1−1,j,d1,q, 0 6 q < d2, 0 6 j < L2 − 1
ui,0,p,0 = ui,L2−1,p,d2 , 0 6 p < d1, 0 6 i < L1 − 1 and (34)
u0,0,0,0 = uL1−1,L2−1,d1,d2 .

It is also possible to think of the piecewise polynomials as discontinuous in the
interfaces and define mortar equations as in spectral penalty methods (see,
e.g., Hesthaven [43]) instead of (34).

Equation (32) is solved on the grid

(t̂i,p1 , t̂j,q2 ) = (ti1 + cq1(t
j+1
1 − tj+1

1 ), ti2 + cq2(t
j+1
2 − tj+1

2 )),
0 6 i < L1, 0 6 j < L2, 0 6 p < d1, 0 6 q < d2,
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Fig. 3. Sparsity structure of the Jacobian of the discretized (32). The seemingly
irregular pattern is due to the patching of the rectangles defined by (34); parameters
are L1 = L2 = 4, d1 = d2 = 3 and n = 1.

where cp1, c
q
2 are the Gauss points. Using the polynomial representation (33) of

u in (32) and evaluating at (t̂i,p1 , t̂j,q2 ) yields a large algebraic system that can be
solved by Newton’s method. The typical sparsity structure of the Jacobian of
this discretized system is shown in Fig. 3, but without the borders accounting
for the phase conditions.

6 Further classes of delay equations

We now briefly review continuation methods for systems that have non-
constant or derivative delay terms.

6.1 State dependent equations

We briefly describe how a DDE with state-dependent delay (sd-DDE) can be
handled; we assume for simplicity that only one delay is present. An sd-DDE
can be of the form

{
d
dtx(t) = f1(x(t), x(t− τ(x(t)), η)
τ(x(t)) = g1(x(t)),

(35)
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where g1 : Rn → R is a given (explicit) function of the solution x(t), or it can
be of the form {

d
dtx(t) = f2(x(t), x(t− τ(t)), τ(t))
d
dtτ(t) = g2(x(t), x(t− τ(t)), τ(t)),

(36)

where g2 : Rn × Rn × R → R, and the delay is determined by a differential
equation. We assume that all functions in (35) and (36) are sufficiently smooth
and that theq delay is bounded, i.e., 0 ≤ τ(t) ≤ r, ∀t. Note that, using x1 ≡ x
and x2 ≡ τ , equation (36) can be considered as a particular case of (35) with
the extended state x ≡ (x1, x2).

A steady-state solution of a sd-DDE is determined by the state x and
the delay τ , i.e., the delay should be considered as a part of the solution. A
steady-state solution (x∗, τ∗) of (35) or (36) can be computed by solving a
(nonlinear) algebraic system. The local stability of steady-state solutions of
sd-DDEs was studied in [14, 39]. It was shown, under natural assumptions
on the right-hand side of the equation and on the delay function τ , that
generically the behaviour of the state-dependent delay τ , except for its value
τ∗, has no effect on the stability, and that in the local linearization τ can be
treated as a constant. Hence, to study the local stability of a steady state
of (35) or (36), we linearize these equations at x∗ by setting τ ≡ τ∗. The
resulting linearized equation is a DDE with constant delay, and the numerical
procedures discussed in Sec. 1 can be used without changes.

The existence of periodic solutions for particular cases of sd-DDEs has been
studied by several authors, in particular the existence of ‘slowly oscillating
periodic solutions’. The theory suggests that a Hopf bifurcation theorem holds;
see, e.g., [57]. The stability of periodic solutions has only recently been studied;
see, e.g., [40] for non-autonomous sd-DDEs. It was proven that the Fréchet
derivative of the solution operator of the nonlinear sd-DDE with respect to
initial data equals the solution operator of the linearized equation. Based
on these results we linearize (35) and (36) around a (nonconstant) solution
(x∗(t), τ∗(t)) as follows. Let Djfi denote the derivative of f1 with respect to
its j-th argument, then

d
dty(t) = D1f1(s)y(t)−D2f1(s) d

dtx
∗(t− τ(x∗(t))) ∂∂xτ(x

∗(t))y(t)
+D2f1(s)y(t− τ(x∗(t)))) (37)

with s = (x∗(t), x∗(t− τ(x∗(t)))), respectively, and




d
dty1(t) = D1f2(s)y1(t) +D2f2(s)y1(t− τ∗(t))−D2f2(s) d

dtx
∗(t− τ∗(t))y2(t)

+D3f2(s)y2(t)
d
dty2(t) = D1g2(s)y1(t) +D2g2(s)y1(t− τ∗(t))−D2g2(s) d

dtx
∗(t− τ∗(t))y2(t)

+D3g2(s)y2(t)

with s = (x∗(t), x∗(t−τ∗(t)), τ∗(t)). These linearized equations contain a time-
dependent (no longer state-dependent) delay. If the coefficients in the linear
equation are smooth and periodic (with period T ) and the delay function is
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smooth, then the solution operator over the period T (over an interval mT if
τm > T and mT ≥ τm, τm = maxt∈[0,T ] τ(t)) is compact [36].

A periodic solution can be computed by solving a two-point boundary
value problem in time, similar to (13), but in case of (36) the additional
equation τ(0) = τ(T ) must be imposed. The solution of these boundary value
problems by collocation and the computation of the Floquet multipliers is
conceptually equal to the procedure outlined in Sec. 2.

6.2 Collocation schemes for equations of neutral type

We summarise basic results on two collocation schemes that were proposed in
Barton et. al. [5]. Here we consider the simple equation of neutral type

ẋ(t) = f(x(t), x(t− τ), ẋ(t− τ), η). (38)

The collocation scheme of Sec. 2.1 discretizes (38) by substituting the colloc-
ation polynomials and evaluating at the collocation points. In the Jacobian
matrix of this discretized system the second derivatives of the polynomials
appear. This reduces the accuracy by an order, which is only O(hm). This
drop in the order of convergence is apparent in the examples of [5]. To rem-
edy the situation (38) can be transformed into an ODE coupled to a difference
equation

ẋ(t) = y(t) (39)
y(t) = f(x(t), x(t− τ), y(t− τ); (40)

see [5]. Applying the collocation scheme of Sec. 2.1 to this system does not
introduce second order derivatives in the Jacobian matrix and, hence, a better
convergence can be expected. The numerical experiments in [5] show a con-
vergence rate of O(hm+1). In [5] the Gauss-Legendre points were used in the
collocation scheme, together with a periodic boundary condition on the al-
gebraic part, but other approaches are possible for delay differential algebraic
equations.

7 Software packages

Several software packages exist for simulation (time integration) of delay dif-
ferential equations, including ARCHI [62], DKLAG6 [15], RADARS [?] and
XPPAUT [28]. Probably the earliest computer program specifically designed
for DDEs has been published by Hassard [41], namely BIFDD which allows
a normal form analysis of Hopf bifurcation points. XPPAUT by Ermentrout
[28] allows a limited stability analysis of steady-state solutions of DDEs using
the approach described in [54].

By contrast, the software packages DDE-Biftool and PDDE-Contimplement
numerical continuation DDEs as introduced in the previous sections. In this
section we describe the functionality of these numerical tools.
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7.1 DDE-Biftool

The package DDE-Biftool consists of a collection of Matlab-routines for
the numerical continuation and bifurcation analysis of systems of DDEs with
multiple discrete delays, which may be fixed or state-dependent; for detailed
instructions we refer to the user manual [26]. This software allows one to
compute branches of steady-state solutions and steady-state fold and Hopf
bifurcations with continuation. Given an equilibrium, it allows to approxim-
ate the right-most, stability-determining roots of the characteristic equation,
which can be further corrected with Newton’s method. Periodic solutions and
their Floquet multipliers can also be computed by collocation with adapt-
ive mesh selection. Branches of periodic solutions can be continued starting
from a previously computed Hopf point or from an initial guess of a peri-
odic solution profile. For DDEs with constant delays, also connecting orbits
(both homoclinic and heteroclinic solutions) can be computed. The numerical
methods that are used in the software are as detailed in the previous sections.

DDE-Biftool has no graphical user interface, but a number of routines
are provided to plot solution, branch and stability information. Furthermore,
automatic detection of bifurcations is not supported. Instead, the evolution
of the characteristic roots or the Floquet multipliers can be computed along
solution branches, which allows the user to detect and identify bifurcations
using an appropriate visualisation. Starting points for branch switching at
bifurcations on branches of steady-state and periodic solutions can be gener-
ated, as well as starting solutions for homoclinic solutions close to periodic
solutions.

Several extensions or ‘add-ons’ have been developed. We mention here
a Mathematica program written by Pieroux that allows the automatic gen-
eration of the system definition files with symbolically obtained derivatives,
software written by Green for the computation of 1D unstable manifolds in
DDEs [33], and the extension by Barton for equations of neutral type [5].

7.2 PDDE-Cont

PDDE-Cont implements the numerical methods described in Sec. 2. It
is written in C++ with the use of linear algebraic packages UMFPACK
[16],LAPACK [?] and ARPACK [?]. The software has a command line in-
terface and a graphical user interface together with a basic plotting facility.

PDDE-Cont can continue periodic solutions of delay equations that are
in the form

y′(t) = f(t, y(t), y(t− τ1(t)), y(t− τ2(t)), . . . , y(t− τm(t)), η).

The right-hand side f and the delays τj can be either T -periodic or time
independent. The software does not have any algorithms to continue equi-
libria apart from the obvious fact that an equilibrium can be considered as
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a constant periodic solution. Bifurcations of periodic solutions can be con-
tinued in two parameters by using test functions as described in Sec. 3, but
PDDE-Cont cannot switch branches automatically. For detailed instructions
see the user manual [73]. Note that PDDE-Cont can be used together with
DDE-Biftool by converting the results between the two packages.

Due to the low level programming approach, the performance of PDDE-
Cont is significantly better than that of DDE-Biftool (which runs under
Matlab). Furthermore, PDDE-Cont uses sparse-matrix alogorithms that
require less memory, so that problems of relatively high dimension can be
tackled. The resulting large bordered linear systems (see Sec. 2.1) are solved
by using bordering techniques from [30, 31]. The large sparse matrix without
borders is factorized by UMFPACK and the whole system is solved using the
BEMW method [31].

8 Examples of numerical bifurcation analysis of DDEs

In this section we illustrate the performance of the numerical techniques de-
scribed in the previous sections with examples of DDE models of a number
of physical and biological phenomena.

8.1 DDE-PDE model of a laser with optical feedback

A longitudinally single-mode semiconductor laser subject to conventional op-
tical feedback and lateral carrier diffusion can be modeled by the hybrid DDE-
PDE system

dA(t)
dt

= (1− iα)A(t)ζ(t) + ηA(t− τ)e−iφ − ibA(t), (41)

T
∂Z(x, t)
∂t

= d
∂2Z(x, t)
∂x2

− Z(x, t) + P (x)

−F (x)(1 + 2Z(x, t))|A(t)|2. (42)

Here the complex scalar variable A(t), represents the amplitude of the elec-
trical field E(t) = A(t)eibt, and real Z(x, t),x ∈ [−0.5, 0.5], represents the
carrier density [77], The functions ζ(t), P (x) and F (x) are specified in [77].
Continuous-wave solutions, called ‘external cavity modes’ (ECMs) can be
computed as steady-state solutions of (41)–(42), augmented with a scalar
condition for the unknown b and an extra scalar constraint to remove the
S1-symmetry. Zero Neumann boundary conditions for Z(x, t) are imposed at
x = ±0.5. In the computations the time variable is rescaled so that one time
unit represents 1/1000 of a second. NOTE: this must be checked !!! The
symmetry about x = 0 is exploited by considering only the interval [0, 0.5].
Splitting (41) into real and imaginary part and discretizing (42) in space with
a second order central difference formula with constant stepsize∆x = 0.5/128.
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Fig. 4. Bifurcation diagram in the plane of intensity |A|2 vs. feedback strength η of
steady-state solutions of (41)–(42) for α = 3, φ = 0, T = 1000, d = 1.68× 10−2 and
τ = 1000. Stable solutions are drawn as solid curves and unstable solutions as dashed
curves; also shown are saddle-node bifurcations (×) and Hopf bifurcations(*). Re-
produced from K. Verheyden, K. Green, and D. Roose, Numerical stability analysis
of a large-scale delay system modeling a lateral semiconductor laser subject to op-
tical feedback, Phys. Rev. Lett. 69(3) (2004) 036702 c© 2004, with permission from
the American Physical Society.

Figure 4 shows the bifurcation diagram of steady-state solutions of (41)–
(42) with α = 3, φ = 0, T = 1000, d = 1.68× 10−2 and τ = 1000, obtained by
continuation with DDE-Biftool, with the feedback strength η as the para-
meter. The diagram shows several branches of steady-state solutions arising
from saddle-node bifurcations. During continuation the right-most character-
istic roots are computed and monitored, allowing for the detection of Hopf
bifurcation points along these branches.

Figure 5 shows the characteristic roots at the moment of the first Hopf
bifurcation of middle branch at η ≈ 2.5717× 10−3. Since the imaginary part
of the right-most pair of characteristic roots is large, the system presents a
challenging test case for characteristic root calculation with DDE-Biftool.

Approximations to the characteristic roots were obtained by computing
the eigenvalues of the matrix approximation to the solution operator as de-
scribed in [80] with a 6th order LMS method, optimized to retain the sta-
bility properties of the linearized equation. The steplength h in the LMS
method is automatically determined to ensure that all characteristic roots
with real part larger than r = −1 (threshold specified by the user) are ap-
proximated accurately. This leads to the discretization of the delay interval
with an equidistant mesh of 27 points. The resulting eigenvalue problem has
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Fig. 5. Characteristic roots at the Hopf point of (41)–(42) η ≈ 2.5717× 10−3 from
Fig. 4. Shown are approximations of characteristic roots with real part larger than
r = −1 derived from the eigenvalues of the discretization of the solution operator by
the 6th order special-purpose LMS method (+), and their corrections by Newton’s
method (◦). Reproduced from K. Verheyden, T. Luzyanina, and D. Roose, Efficient
and reliable stability analysis of solutions of delay differential equations, Proceedings
of 2006 International Conference on Nonlinear Science and Complexity, 109–120 c©
2007, with permission from World Scientific Publishing.

Table 1. The computational cost of four algorithms based on a pseudo-spectral
discretization using polynomials of degree p = 32 to find the right-most characteristic
roots shown in Fig. 5.

A S(h)
Right-most Shift-Invert Forward Backward

CPU time (seconds) 106.2 94.1 103.4 55.5
# matrix-vector products 6528 4951 6254 3146

dimension 131 × 27 = 3537, which is large but can still be solved by using
the QR-method. These approximations are subsequently corrected by New-
ton’s method applied to (8). The approximate characteristic roots shown in
Fig. 5 were derived from the eigenvalues of the discretization of the solution
operator, and their corrections by Newton’s method.

For this example a comparison of the computation of the characteristic
roots using the pseudo-spectral discretizations of the infinitesimal generator
A and of the solution operator is presented in [81]. In both cases, a polynomial
of degree p = 32 is used, so that the linear eigenvalue problems have size
n(p+1) = 131× 33 = 4323. Table 1 shows the computational cost of the four
methods.

To solve the linear eigenvalue problem resulting from the pseudo-spectral
discretization of the infinitesimal generator, the Matlab function eigs func-
tion is used to compute the right-most 30 eigenvalues with a requested tol-
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erance of 10−8 (results indicated with ‘Right-most’). Note that eigs uses
Arnoldi’s method with implicit restart, and this method does not require
the explicit construction of the matrix. For the results indicated with ‘Shift-
Invert’, eigs is used in conjunction with the shift-invert technique and returns
the eigenvalues λ closest to the shift ‖A0‖+‖A1‖ ≈ 4528.5, as proposed in [9].
The pseudo-spectral discretization of the solution operator S(h) leads to two
algorithms, called forward and backward variants in [81]. The steplength h is
chosen to be 10−4 for the forward and 10−3 for the backward variant, respect-
ively.

The accuracy of the computed characteristic roots is similar for the four
methods. For example, the roots −0.285 ± i11.8 are computed by the four
algorithms with a relative error between 6.5 10−12 and 2.4 10−14. The accuracy
is lower for the eigenvalues with large imaginary part (the relative error on
the pure imaginary eigenvalues ±i47.7 is ≈ 10−4 for the backward variant,
and ≈ 7 10−6 for the three other algorithms. The exponential convergence
with respect to the degree p has been confirmed by numerical experiments.

8.2 The Mackey-Glass equation

The equation

ẋ(t) = ax(t) + b
x(t− τ)

1 + x10(t− τ)
. (43)

models the regeneration of white blood cells [55], and it is today widely known
as the Mackey-Glass equation. Although it is a simple equation, not much is
known about its solution structure.

The three equilibria of (43), i.e., x1 = 0 and x2,3 = 10
√
−(a+ b)/a are

connected to each other at a = −b by a supercritical pitchfork bifurcation.
The nonzero solutions can lose their stability in a Hopf bifurcation along the
curves in parameter space given by

a = − arccos(−d−1)
1

τ
√
d2 − 1

,

b =
10a
d− 9

,

where |d| ≥ 1. Hopf bifurcations for d > 1 are supercritical, so they give rise to
stable periodic solutions. These periodic solutions bifurcate further of several
period doublings, which then leads to chaotic motion. It was demonstrated in
[37] that chaos arises due to the transverse intersection of the two-dimensional
unstable and infinite dimensional stable manifold of this periodic solution. We
remark that some square shaped solutions of large period can be obtained by
singularly perturing a map to give

εẋ(t) = ax(t) + b
x(t− 1)

1 + xc(t− 1)
,

where ε→ 0 and ετ = 1; see [56] for details.
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Fig. 6. Bifurcation diagram showing period-two solutions of (43) for fixed a =
−1.2158. Fold bifurcations are denoted by dots while period doublings are denoted
by +; the numbers of unstable characteristic multipliers are indicated along the
different branches.

Fig. 7. The structure of the period-two solutions of (43) over the (a, b)-plane; shown
are solution branches (black curves), their fold bifurcations (green dots), period-
doubling bifurcations of the period-one solution (blue curves) and fold bifurcations
of period-two solutions (red curves).



28 Dirk Roose and Robert Szalai

Here we analyze the period-two solutions bifurcating from the period-one
solutions that in turn can be related to the supercritical Hopf bifurcation of
the equilibrium. These solutions form a complicated branch structure that is
challenging to compute. In Fig. 6 the bifurcation diagram for a = −1.2158
and τ = 2 is shown. As b varies the solution undergoes several fold and
period-doubling bifurcations. These solutions are almost all unstable, and so
they cannot be found by simulation; the number of unstable characteristic
multipliers is shown along the branches in Fig. 6. Furthermore, the period-
one solution branch is included, but with twice period so that it matches up
with the branch of period-two solutions.

By investigating the fold bifurcations and computing several branches of
solutions we can obtain a fairly complete picture of the structure of periodic
solutions. Figure 7 shows this structure for the fixed at delay τ = 2, where we
plot the period T of the solutions as a function of the parameters a and b.

8.3 Traffic model with driver reaction time

The traffic model in Orosz et al. [61, 60] describes the dynamics of N cars
on a circular track. Each car has a velocity vi and an associated headway hi
defined as the distance to the car in front. The headways hi are calculated
from the velocities as

ḣi(t) = vi+1(t)− vi(t). (44)

Because of the circular track, we assume that vN+1 = v1 and hN = L −∑N−1
i=1 hi. Each car tries to reach its optimal velocity, which is a function of

the headway that can be expressed as

v̇i(t) = β(V (hi(t− 1)− vi(t)), (45)

where β is the sensitivity to velocity differences. Due to the reaction time
of driver, a delayed value of the headway is used in the model. The optimal
velocity is a function of the headway, and it is modelled by the optimal velocity
function

V (h) =

{
0 0 ≤ h ≤ 1,

v0 (h−1)3

1+(h−1)3 h > 1.

By making use of the algebraic condition for hN one can reduce the dimension
of system (44)–(45) by one to 2N − 1.

In this section we consider N = 17 cars, which is the largest number of
cars that was considered and (partially) analyzed in [60]. Our starting point is
the steady-state solution of the model, which corresponds to equal headways
and equal car velocities and so is given by

h∗i = L/N, v∗i = V (h∗i ).
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Fig. 8. Periodic solution branches of (44), (45). Unstable solutions are denoted by
dashed lines, continous lines refer to stable solutions and boxes denote fold bifurca-
tions.

The steady-state undergos several Hopf bifurcations from which branches of
periodic solutions arise; they are shown in Fig. 8 as computed with PDDE-
Cont for typical parameter values of β = 1 and τ = 2 as a function of the av-
erage headway L/N . Note how all branches of periodic solutions feature folds
and connect pairs of subcritical Hopf bifurcations. The outer-most branch is
stable between the folds, which shows that there is bistability between stable
periodic solutions (a traffic jam) and the stable steady-state (uniform flow
of cars). The other branches of periodic solutions remain unstable through-
out, but the outer-most of them has all its unstable Floquet multipliers very
close to one (for l/N around 2), which means that the corresponding periodic
solution can be observed as long transients. Physically, these transients are
traffic jams; they move towards each other and eventually either merge with
the stable traffic jam or disperse [60].

Figure 9 shows the curves of fold bifurcations for N = 17 cars in the
(L/N, β)-plane. The plot also shows some Hopf bifurcation curves (dash-
dotted lines) and points of degenerate Hopf bifurcations (+); the regions of
bistability are highlighted in gray. In [60] a similar image was computed for
N = 9 cars with DDE-Biftool by performing one-parameter continuations
in L/N for many values of fixed β to find the fold bifurcations. (The locus
of Hopf bifurcations is actually known analytically.) As this approach is very
time consuming, we used PDDE-Cont instead, which is able to follow the
fold bifurcation curves directly in two parameters.
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Fig. 9. Hopf and fold bifurcation curves of (44)–(45). The gray regions are bistable,
where a stable equilibrium coexists with a stable periodic solution. Between the gray
regions the equilibrium is unstable, while outside the gray regions the equilibrium
is globally stable.

8.4 Chatter motion in milling

Cutting processes are often subject to the so-called regenerative effect [72],
which comes from the fact that a cutting tool always cuts a surface that was
produced by the same tool some time ago. The cutting forces nonlinearly
depend on the chip geometry, which in turn depends on the current and a
delayed tool position. The underlying dynamics of the tool can be considered
to be linear and, hence, the nonlinearity comes from the geometry of the chip
forming and the cutting force only. There is a vast literature on the dynamics
of machining that mainly focuses on the stability of steady cutting; see, e.g.,
[45]. However, there are only few papers on the nonlinear dynamics and they
employ either analytical methods [71] or simulation [3].

Machining processes are inherently non-smooth, because there is the pos-
sibility of a loss of cutting force when the tool leaves the work piece. This poses
some challanges, although in some cases one can approximate the equations of
motion with a smooth system. In the case of turning, which is an autonomous
process, DDE-Biftool was used in [22]. Here we summarize the results in
[74], where a milling problem was investigated with PDDE-Cont.

The equation of motion of the non-smooth milling problem reads

ẍ(t) + 2ξẋ(t) + x(t) = g(t)ŵ(cos 2πt/T + 0.3 sin 2πt/T )×
× [H(1 + x(t− 2T )− x(t− T ))Fc((1 + x(t− T )− x(t)) sin 2πt/T )
+H(x(t− T )− x(t− 2T )− 1)Fc((2 + x(t− T )− x(t)) sin 2πt/T )] ,

(46)
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Fig. 10. Stability chart of (46) in the cutting speed and chip-width parameter plane
(a); the relative damping is ζ = 0.0038 and the tool cuts continuously for a time
of 10.82% of every period. Panel (b) shows a bifurcation diagram for fixed cutting
speed; the fold bifurcations of the periodic solutions are due to the non-smooth
dynamics of the system.

where Fc is a nonlinear cutting force function, usually modelled with the
power law Fc(x) = 4ŵ/3x3/4, and H is the Heaviside function. The function
g is a T -periodic windowing function that changes its value once in a period
between 0 and 1 depending on whether the tool is cutting the material. The
two important parameters are the period T , which is inversely proportional
to the spindle speed and the dimensionless chip width ŵ.

In order to conduct a numerical bifurcation analysis of the system with
PDDE-Cont, the Heaviside function H(z) is replaced by the smoothed func-
tion (1 + tanh(Cz))/2 with a sufficienly large value of C. Equation (46) has
a unique T -periodic solution which represents steady cutting and can lose
its stability either at a Neimark-Sacker or at a period-doubling bifurcation.
Figure 10(a) shows the bifurcation diagram where these bifurcation curves
are shown as solid curves. The period doublings may be subcritical or super-
critical; see the bifurcation diagram for a fixed cutting speed in Fig. 10(b).
Fold and Neimark-Sacker bifurcation curves of the period-two solutions have
been continued in two parameters, and they are shown in Fig. 10(a) as dashed
curves. These numerical results were compared to experimental data in [74].

Quasiperiodic solutions arising at a Neimark-Sacker bifurcation can be
computed with the technique described in Sec. 5. A branch of invariant qua-
siperiodic tori was continued with PDDE-Cont until the model loses its
physical validity. During the continuation the rotation number ω2

ω1
was kept

constant and ŵ and T served as free parameters. The resulting curve of qua-
siperiodic solutions is shown in Fig. 11(a). Since T varies only slightly during
the continuation, the dependence on the period is not shown in the bifurcation
diagram. One of the invariant tori along the branch (near where the model
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(a)

(b)

Fig. 11. A branch of quasiperiodic solutions for a cutting speed of 2π/T = 0.4 (a)
and an invariant torus (b) for a point on the branch just before the tool leaves the
work piece and (46) becomes invalid.

loses its validity) is shown in Fig. 11(b). The computation of further qua-
siperiodic solutions reveals that this system has very narrow Arnol′d tongues
in the region above the Neimark-Sacker curve in Fig. 10(a).

8.5 A laser with filtered optical feedback

One main objective for studying laser dynamics is to find regions of parameter
values, where a constant amplitude coherent light is produced. In many laser
systems delay is an important feature. It arises due to the finite travel time
of light between components of the system and may lead to different types
of dynamic behaviour including chaos; see, e.g., [47]. The numerical tools
introduced in this chapter are very well suited for the study of nonlinear
dynamics in lasers with delayed optical feedback; see also [49].
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In this section we summarize some results of Erzgräber et. al. [29], who in-
vestigate a DDE model of a semiconductor laser with filtered optical feedback
of the form

dE
dt

= (1 + iα)N(t) + κF (t), (47)

T
dN
dt

= P −N(t)− (1 + 2N(t))|E(t)|2, (48)

dF
dt

= ΛE(t− τ)e−iCp + (i∆− Λ)F (t), (49)

where the variable E is the complex optical field, N is the (real-valued) pop-
ulation inversion of the laser, and F is the complex optical field of the filter.
The material properties of the laser are given by the linewidth enhancement
factor α, the electron lifetime T and the pump rate P . The coupling of the
laser with the filter is controlled by the parameter κ, while τ is the time that
the light spends in the external feedback loop. The dynamics of the filter is
modelled by (49). The feedback phase Cp is the phase difference between the
laser and the filter fields, and ∆ is the detuning between the filter center fre-
quency ΩF and the solitary frequency Ω0 of the laser. Hence, Cp = Ω0τ and
∆ = ΩF −Ω0.

The laser equations (47)–(49) exhibit a rotational symmetry (rotation of
both E and F over any angle) that is important for the types of solutions that
are supported. It also needs to be dealt with in the continuation to ensure that
solutions are isolated. The idea is to consider solutions of the form

(E(t), N(t), F (t)) = (A(t) eibt, N(t), B(t) eib).

By putting this ansatz into (47)–(49) we obtain the new system

dA
dt

= (1 + iα)N(t)A(t)− ibA(t) + κB(t) (50)

T
dN
dt

= P −N(t)− (1 + 2N(t))|A(t)|2, (51)

dB
dt

= ΛA(t− τ)e−i(Cp+bτ) + (i∆− Λ− ib)B(t). (52)

Note that the stability of this transformed system does not differ from the
the stability of (47)–(49), because the norm of (E(t), N(t), F (t)) is the same
as the norm of (A(t), N(t), B(t)). System (50)–(52) still has the same rota-
tional symmetry, but the equations are now in a form can be dealt with in
continuation.

The primary interest is in the so-called external filtered modes (EFMs),
which are single frequency periodic solutions of (50)–(52) that are character-
ized by fixed A(t) = As, N(t) = Ns and B(t) = Bs. EFMs were extensively
studied analytically [59] and with numerical continuation [29]. In order to
determine an EFM uniquely one needs to fix the phase, which can be done,
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Fig. 12. Panel (a) shows the bifurcation diagram in the (κ, Cp)-plane of (47)–(49)
for ∆ = 0, α = 5.0, T = 100, P = 3.5, τ = 500 and Λ = 0.007. EFMs are stable in
the green region, which is bounded by curves of saddle-node bifurcations (blue) and
Hopf bifurcations (red). Panels (b1)–(b4) show an example of relaxation oscillations,
while panels (c1)–(c4) and panels (d1)–(d4) are examples of frequency oscillations;
plotted are the laser intensity IL, its frequency ωL, the filter intensity IF , and its
frequency ωF . The stability regions of the different oscillations are shown in panel
(a) in orange, purple and light blue, respectively. Reproduced from H. Erzgräber,
B. Krauskopf and D. Lenstra, SIAM J. Appl. Dyn. Sys. 6(1) (2007) ??–?? c© 2007,
with permission from the Society for Industrial and Applied Mathematics.

for example, by setting Re(Es) = 0 and treating b as a variable. Figure 12(a)
shows a bifurcation diagram in the (κ,Cp)-plane that was computed with
DDE-Biftool in this way. EFMs are stable in the green region; they are
born in saddle-node bifurcations (blue curves) and lose their stability in Hopf
bifurcations (red curves).

At Hopf bifurcations periodic solutions arise whose continuation requires
a new phase condition [35]. Let us introduce the symmetry group

G(θ) =




eiθ 0 0
0 1 0
0 0 eiθ


 , G =

dG(θ)
dθ

|θ=0 =



i 0 0
0 0 0
0 0 i


 ,
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which produces a two-parameter family of solutions

u(t; θ1, θ2) = G(θ1)(A(t+ θ2), N(t+ θ2), B(t+ θ2))

from any solution of (50)–(52). In a continuation context, when looking for
the next solution on a branch of solutions, we want to find the one closest
in norm to the previous solution u(0). Hence, the new solution u is chosen to
minimize

D(θ1, θ2) =
∫ 1

0

‖u(t; θ1, θ2)− u(0)(t))‖22dt

in θ1, θ2. Differentiating with respect to both variables and evaluating at θ1 =
θ2 = 0 yields

∫ 1

0

u̇(0)(s)(u(0)(s)− u(s))ds = 0, (53)
∫ 1

0

Gu(0)(s)(u(0)(s)− u(s))ds = 0, (54)

where G = d/dθG(θ)|θ=0 is the infinitesimal generator of the symmetry group.
Note that (53) is actually the phase condition (14), while (54) is a new phase
condition that fixes the group invariance.

With (53) and (54) periodic solutions can be continued as isolated solu-
tions. These phase conditions are implemented in both DDE-Biftool and
PDDE-Cont. In [29] DDE-Biftool was used to compute the periodic solu-
tions of (50)–(52) and PDDE-Cont was used to determine their stability
boundraries by continuing the Neimark-Sacker bifurcation in two parameters.

The resulting stability regions of the two different types of periodic solu-
tions are colored in Fig. 12(a), and examples of typical time series are shown
in panels (b)–(d). First, there are the typical relaxation oscillations (not to
be confused with relaxation oscillations of slow-fast systems as discussed in
Chapter 8), which are a periodic exchange of energy between the electric field
E and the inversion N in a semiconductor lasers. Relaxation oscillations are
fast (on the order of a few GHz) and effectively do not involve the filter; see
Fig. 12(b). The other type of oscillations are the frequency oscillations, which
are slower and oscillate on the time scale given by the external roundtrip time
(that is, the delay τ); see Fig. 12(c) and (d). These oscillations are unusual for
semiconductor lasers because they feature practically constant laser intensity
IL but an oscillating frequency ωL. Notice that the dynamics of the filter
appears to suppress the dynamics of the intensity. Both types of oscillations
lose their stability at Neimark-Sacker bifurcations, which are shown as black
curves in Fig. 12(a).
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9 Conclusions

We discussed numerical continuation methods for the stability and bifurcation
analysis of delay differential equations with constant delays, concentrating on
techniques concerning steady-state solutions and periodic solutions. We also
described how to compute connecting (homoclinic and heteroclinic) orbits
and quasiperiodic solutions. Furthermore, wqe briefly mentioned how to deal
with state dependent delays and with equations of neutral type. Compared
with numerical methods for such tasks in ordinary differential equations the
methods we presented are either similar but with a higher computational
cost (an example is collocation for computing periodic solutions) or much
more complex (as is the case for computing the stability of a steady state or
finding connected orbit). These additional difficulties are due to the infinite-
dimensional nature of DDEs.

Rather than trying to give a complete literature survey, we focused on the
numerical methods implemented in the software packages DDE-Biftool and
PDDE-Cont. Both have about the same functionality as similar packages
for ODEs, but with less flexibility and at a higher computational cost. They
make continuation and bifurcation analysis for DDEs readily available for
scientists dealing with concrete problems arising in applications. We have
included results on the continuation and bifurcation analysis of several realistic
models to illustrate the applicability of the methods.

Numerical developments can also help with the solution of some open
theoretical problems. For example, some numerical results on state-dependent
DDEs are ahead of the theory and suggest that certain conditions imposed
in the theory are rather technical and not fundamental. One of the areas
for future work for both theory and numerical methods is that of piecewise-
smooth delayed systems, which have important applications, for example, in
control theory [4, 68], hybrid testing [51, 69] and machining [22, ?].
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