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1. Simplest critical equilibria and their computation

Consider a DDE with m delays for z(t) € R"™ and parameter a € R:

CC(t) — f(a:(t),:r:(t T Tl)ax(t T 7—2)7 < e 7x(t _ Tm),Oé),
where f: RM+TLn « R 5 R” js smooth and 0 =19 <71 < -+ < Tm = h.
Assume that f(0) := f(0,0,0,...,0,0) =0, i.e. £ = 0 is an equilibrium
at a = 0.

o Let \; € C be roots of the characteristic equation det A(\) = 0O,

m
AN) =My~ Y Aje™™i, A;=D,f(0,0),j=0,1,...,m.
j=0

e Codim 1 critical cases for stability: #(\) =0

[ )\1 = ZCU()

? Ao = —iwy




Defining systems

Let ks
AN u, o) ;= N —

A] (’U,, O‘)e_ATja
7=0

where Aj(u, a) = D;f(u,u,u,...,u,a), Aj(0,0) =A;, 7=0,1,...,m.

e Fold: \{ =0

f(u7u7u7"'7u7a) — 07
A(O7u7 a)q — 07
cq = 1,
where (q,u, ) € R2nt1 o e R*,

e Andronov-Hopf: A\ > = $iwp, wg >0
f(u7u7u7"'7u7a) — 07
A(iwg, u,a)q = O,
cq = 1,

where (g, u, a,wg) € C™ x R™ x R?, ¢ € C™*.



2. Center manifold reduction
e Let T'(t) be the semigroup on X = C([—h,0],R") defined by

y(t) = Agy(t) + > Ajy(t — 1j),
j=1

and A its infinitesimal generator: (A4¢)(0) = ¢(0) for ¢ € D(A),

D(A)={peX:9peX and ¢(0)= ) Ajp(—1)}.

7=0

e Suppose that A has n. critical eigenvalues/characteristic roots:




Center Manifold Theorem
e Let Su(t) : X — X be the semigroup generated by a smooth DDE

2(t) = f(x(t),z(t —711),2(t — 1), ..., 2(t — Tm), @).

e Suppose, at a« = 0 the equilibrium = = 0 has critical eigenval-

ues. Denote by Xy the (generalized) critical eigenspace of A with
dim Xg = ne < o0.

e For each sufficiently small |a|, there exists a smooth n.-dimensional
manifold W§ (called center manifold) that is locally invariant and
normally hyperbolic for So(t). Moreover, W§ is tangent at z = 0 to

S
n




3. Local bifurcations in one-parameter DDEs
The restriction of Sy, (t) to W§ is locally generated by a smooth ODE

ézg(gao‘)a 6 S Rnc’a e R.

Fold. _
e ODE on W§: € =1bpt?+..., £€R

e Smooth normal form on WS when bg #= O:

£ = B(a) +b(a)e?+ ..., B(0) =0,b(0) = bo.

§ §
0 5 0 5
b<0 b>0

Equilibria: £172 N :E\/—%



Andronov-Hopf:
e Normalized ODE on W§: 2 = iwgz + c12|2|2 4+ ..., wg > 0,z € C.

e Smooth normal form on W< when [y 1= wioé)%(cl) £ 0:
2 = (B(@)F+iw(@))z+c(a)z[z[+..., B(0) = 0,w(0) = wp,c(0) = c1.

R(z) R(z)

\ m m I
\\\\ U /8 U ///,

(
B
l1 <0 l[h >0
. = p(BERE)P)+ ..., | B
Limit cycle: {gb _ w+$(c)p2+”.7 = po ~ R(C)



4. The fold critical normal form coefficient

e Let G(u, ) := —f(u,u,u,...,u,a), SO that

m
J = DyG(0,0) = —Ag — > A; = A(0),

1=1
where A; = D;f(0),5 =0,1,...,m.

o Let ¢ € R?, p € R™ be such that Jg = 0 and pJ = 0 with pA’(0)q # 0.

e There is a coordinate £ € R on W§ such that the normal form

coefficient

1 -

bo = 5P D;G(0,0)(q,q).

This follows from the approximation of the curve G(u,a) = 0 near
(u, ) = (0,0) € R**t1 which is the finite-dimensional problem.



5. Sun-star calculus

e Consider a nonlinear DDE

z(t) = Lxy + F(xy), =y € X = C([—h,0],R"),

where F : X — R" is smooth and contains only nonlinear terms,
while

Lo = /Oh dC(0)d(—6), ¢ € NBV([0, ], R™*™).

Here NBV([O, k], R"*™) is the space of normalized bounded-variation
matrix-valued functions.

e T he linearized DDE y = Lx; defines the strongly continuous semi-
group T'(t) : X — X with the infinitesimal generator A. Its charac-
teristic matrix can now be written as

AN\ = A, — /O " M4 (6)



Duality:
o Let T*(t) : X* — X™ be the adjoint semigroup, i.e. for ¢t >0

(T*(t)¢*, d) = (¢*, T(t)d), ¢* € X* ¢ € X.

Denote by X©® the maximal subspace of X* on which T*(t) is strongly
continuous, and define

TO) = T*(t)|xo
Denote its infinitesimal generator by A®.

o Let AY* be the generator of the adjoint semigroup TO*(t) : X©* —
X©* Define X©© as the maximal subspace of X©* on which TO*(¢)
IS strongly continuous.

e Introduce the embedding j : X — X* by
(o, x O z), Vze X, vz® e XO.

In general, j(X) C X©9, However, the space X = C([—h,0],R") is
sun-reflexive: j(X) = X0,

Oy 1= (x



Concrete representations:

e Spaces:.
space | representation duality pairing
| ENEv i ) (,0) = Jo' dn(@)6(—0)
Yoo | OSSR o iy | ((e9).6) = co(0) + [1 a(0)o(—6) do
Yo | e S o By | (€0, (e00) = cat i () (—6) o

e Embedding:
jo = (¢(0),¢) € X* ¢ € X.

e Nonlinearity R: X — X9* is defined by

R(¢) := Z Fi(p)rd™, ¢ € X,

where
TZQ* = (e;,0) € X% i=1,...,n

and e; is the -th standard basis vector in R",



6. The first Lyapunov coefficient for Andronov-Hopf bifurcation

e The solution u(t) := z; € W§ C X satisfies a well-defined ODE in
X©x*:
d . O -
ﬁju(t) = A¥ju(t) + R(u(t)),

where R: X — X9* can be expanded as
1 1 4
R(u) = EB(u,u) -+ EC(u,u,u) + O(||ul]|™).

e The parametrization of W§: u = H(z,z) with
_ 1 .
H(z,2) =204+Z6+ Y. ——hpZ"+0(z"), ze€C,

2<jth<3 k!

where A¢ = iwgd, A*¢® = iwgd®, (6°,¢) = 1.

e Poincaré normal form on W§: 2 = iwgz + c12]2|?2 + O(|2|*), z € C.



Homological equation
j (D:H(2,2)z + DzH(2,2)z) = A jH(z,%Z) + R(H(z, 7))
Qudratic terms

22 1 —A%jhog = B(9¢,9),
zZz . (QiWO—AQ*)jhll — B(¢7¢)7

which are uniquely solvable and define hog and hy7.

Resonance cubic term
2°Z  (iwol —A®)jho1 = C(¢,¢,6)+B(d, hag) +2B(¢, h11) —2c1j¢.
This system is singular. Pairing with ¢© gives
1 _ _
c1 = 5<¢@, C(¢, ¢, ¢) + B($, hoo) + 2B(¢, h11))

1
The first Lyapunov coefficient [{ = —R(c¢q1).
wo



Computational formulas:
e Eigenfunctions

$(6) = e,
o0 = <,p /ehewow—ﬂdcm)

where g € C", p € C™* satisfy
A(iwg)g = 0, pA(iwg) = 0, pA’(iwg)g = 1.
e Quadratic coefficients
hoo = e*™0A(2iwg) 1 D*F(0)(4, )

hi1 = A(0) 'D?F(0)(¢,9)
e [ he normal form coefficient

1 = p| D2F(0)(§, 2“0 A(2ig) 1 D2F(0)(6,6))

+ 2D?F(0) (¢, A(0) " ID?F(0)(¢, ) + D3F(0) (¢, ¢, b)

(implemented in DDE-BIFTOOL to compute the first Lyapunov
coefficient 171).



Computation of derivatives: DDE at the critical parameter values:
r(t) = f(x(t),z(t —11),2(t —12),...,2(t — Tm))

e Recall that f: R*(m+1) _s R7 Wwith

X =Y 222, 2™ = (@0, 2,22, 2™), Y eRY,j=0,1,2,...

e The (multi-)linear forms:

For Q, P, R € RMm+1) with components qi,pi,ri define

L 2o 0%f(0)
D?f0(Q,P) = > WP
k1,ko=1j1,jo=0 kalﬁxkz
n m 83f(0) S
D3f2(Q,PR) = > at i

.= J1 9..J2 9.3
k1,k2,k3=1 j1,j2,j3=0 8mk18xk28xk3

, 1.



Computation of derivatives:

F: C([_h7 O]aRn) — Rna F(¢) — f(¢(0), QS(_Tl)v ¢(_7_2)7 R

e 2nd Differentials:

D?F(0)(¢, ¢)
D?F(0)(¢, $)
D?F(0)(, hoo)
D?F(0)(¢,h11)

where

S
1l

e 3rd Differential:

D?f0(d, ®),

= D?f%(®, ),
= D?f%(®, Hyp),

(Qb(O), Qb(—T]_), <.
= (h20(0),hoo(—71),...,hoo(—Tm)) ,
(h11(0),h11(—=71),..., h11(—=™m)) .

D?fO (o, Hyy),

) qb(_Tm)) )

D3F(0)(, ¢, ¢) = D3fO(®, d, P).

) ¢(_Tm))



