Bifurcation Analysis of DDEs

Simplest local bifurcations.

Critical normal forms for codim 1 bifurcations of equilibria.

Yu.A. Kuznetsov (UU/UT, NL)

January 23, 2017

Contents

- 1. Simplest critical equilibria and their computation.
- 2. Center manifold reduction.
- 3. Local bifurcations in one-parameter DDEs: fold and Andronov-Hopf.
- 4. The fold critical normal form coefficient.
- 5. Sun-star calculus.
- 6. The first Lyapunov coefficient for Andronov-Hopf bifurcation.

Literature

- [1] O. Diekmann, S.A. van Gils, S.M. Verduyn Lunel, and H.-O. Walther. Delay equations: Functional, complex, and nonlinear analysis. Applied Mathematical Sciences, 110. Springer-Verlag, New York, 1995.
- [2] S. Janssens. On a normalization technique for codimension two bifurcations of equilibria of delay differential equations. Master Thesis. Department of Mathematics, Utrecht University (2010).
- [3] B. Wage. Normal form computations for delay differential equations in DDE-BIFTOOL. Master Thesis. Department of Mathematics, Utrecht University (2014).
- [4] Yu.A. Kuznetsov. *Elements of Applied Bifurcation Theory* (3rd ed.) Applied Mathematical Sciences, 112. Springer-Verlag, New York, 2004.

1. Simplest critical equilibria and their computation

Consider a **DDE** with m delays for $x(t) \in \mathbb{R}^n$ and parameter $\alpha \in \mathbb{R}$:

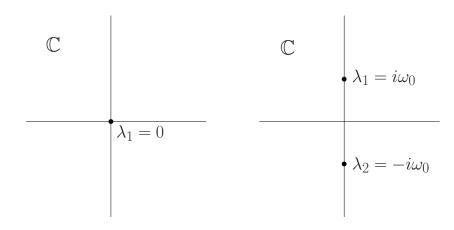
$$\dot{x}(t) = f(x(t), x(t-\tau_1), x(t-\tau_2), \dots, x(t-\tau_m), \alpha),$$

where $f: \mathbb{R}^{(m+1)n} \times \mathbb{R} \to \mathbb{R}^n$ is smooth and $0 = \tau_0 < \tau_1 < \cdots < \tau_m = h$. Assume that $f(0) := f(0,0,0,\ldots,0,0) = 0$, i.e. x = 0 is an **equilibrium** at $\alpha = 0$.

• Let $\lambda_j \in \mathbb{C}$ be roots of the **characteristic equation** det $\Delta(\lambda) = 0$,

$$\Delta(\lambda) = \lambda I_n - \sum_{j=0}^m A_j e^{-\lambda \tau_j}, \quad A_j = D_j f(0,0), j = 0, 1, \dots, m.$$

• Codim 1 **critical cases** for stability: $\Re(\lambda) = 0$



Defining systems

Let

$$\Delta(\lambda, u, \alpha) := \lambda I_n - \sum_{j=0}^m \tilde{A}_j(u, \alpha) e^{-\lambda \tau_j},$$

where $\tilde{A}_{j}(u,\alpha) := D_{j}f(u,u,u,\ldots,u,\alpha), \ \tilde{A}_{j}(0,0) = A_{j}, \ j = 0,1,\ldots,m.$

• **Fold**: $\lambda_1 = 0$

$$\begin{cases} f(u, u, u, \dots, u, \alpha) = 0, \\ \Delta(0, u, \alpha)q = 0, \\ cq = 1, \end{cases}$$

where $(q, u, \alpha) \in \mathbb{R}^{2n+1}, c \in \mathbb{R}^{n*}$.

• Andronov-Hopf: $\lambda_{1,2} = \pm i\omega_0, \ \omega_0 > 0$

$$\begin{cases} f(u, u, u, \dots, u, \alpha) = 0, \\ \Delta(i\omega_0, u, \alpha)q = 0, \\ cq = 1, \end{cases}$$

where $(q, u, \alpha, \omega_0) \in \mathbb{C}^n \times \mathbb{R}^n \times \mathbb{R}^2, c \in \mathbb{C}^{n*}$.

2. Center manifold reduction

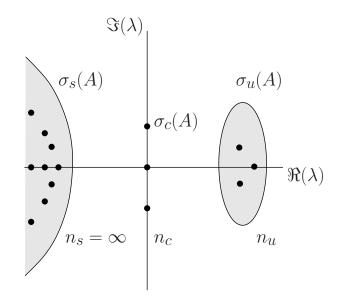
• Let T(t) be the **semigroup** on $X = C([-h, 0], \mathbb{R}^n)$ defined by

$$\dot{y}(t) = A_0 y(t) + \sum_{j=1}^{m} A_j y(t - \tau_j),$$

and A its infinitesimal generator: $(A\phi)(\theta) = \dot{\phi}(\theta)$ for $\phi \in D(A)$,

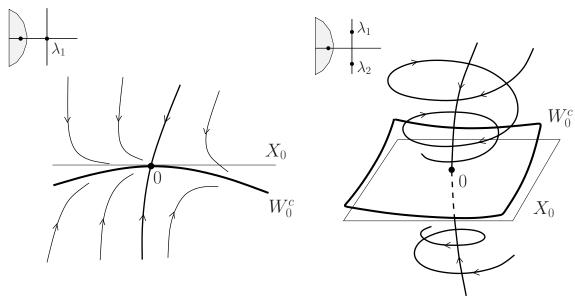
$$D(A) = \{ \phi \in X : \dot{\phi} \in X \text{ and } \dot{\phi}(0) = \sum_{j=0}^{m} A_j \phi(-\tau_j) \}.$$

• Suppose that A has n_c critical eigenvalues/characteristic roots:



Center Manifold Theorem

- Let $S_{\alpha}(t): X \to X$ be the semigroup generated by a smooth DDE $\dot{x}(t) = f(x(t), x(t-\tau_1), x(t-\tau_2), \dots, x(t-\tau_m), \alpha).$
- Suppose, at $\alpha=0$ the equilibrium x=0 has critical eigenvalues. Denote by X_0 the (generalized) critical eigenspace of A with $\dim X_0=n_c<\infty$.
- For each sufficiently small $|\alpha|$, there exists a smooth n_c -dimensional manifold W^c_{α} (called **center manifold**) that is locally invariant and normally hyperbolic for $S_{\alpha}(t)$. Moreover, W^c_0 is tangent at x=0 to X_0 .



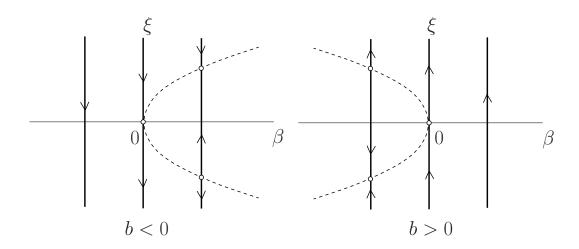
3. Local bifurcations in one-parameter DDEs

The restriction of $S_{\alpha}(t)$ to W_{α}^{c} is locally generated by a smooth ODE $\dot{\xi} = q(\xi, \alpha), \ \xi \in \mathbb{R}^{n_{c}}, \alpha \in \mathbb{R}.$

Fold:

- ODE on W_0^c : $\dot{\xi} = b_0 \xi^2 + \dots$, $\xi \in \mathbb{R}$
- Smooth normal form on W_{α}^{c} when $b_{0} \neq 0$:

$$\dot{\xi} = \beta(\alpha) + b(\alpha)\xi^2 + \dots, \quad \beta(0) = 0, b(0) = b_0.$$

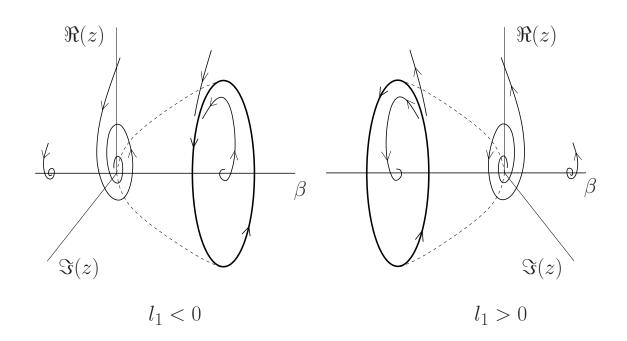


Equilibria:
$$\xi_{1,2} \approx \pm \sqrt{-\frac{\beta}{b}}$$

Andronov-Hopf:

- Normalized ODE on W_0^c : $\dot{z}=i\omega_0z+c_1z|z|^2+\ldots,\ \omega_0>0,z\in\mathbb{C}.$
- Smooth normal form on W_{α}^{c} when $l_{1} := \frac{1}{\omega_{0}}\Re(c_{1}) \neq 0$:

$$\dot{z} = (\beta(\alpha) + i\omega(\alpha))z + c(\alpha)z|z|^2 + \dots, \quad \beta(0) = 0, \omega(0) = \omega_0, c(0) = c_1.$$



Limit cycle:
$$\begin{cases} \dot{\rho} = \rho(\beta + \Re(c)\rho^2) + \dots, \\ \dot{\varphi} = \omega + \Im(c)\rho^2 + \dots, \end{cases} \Rightarrow \rho_0 \approx \sqrt{-\frac{\beta}{\Re(c)}}$$

4. The fold critical normal form coefficient

• Let $G(u,\alpha) := -f(u,u,u,\ldots,u,\alpha)$, so that

$$J = D_u G(0,0) = -A_0 - \sum_{j=1}^m A_j = \Delta(0),$$

where $A_j = D_j f(0), j = 0, 1, ..., m$.

- Let $q \in \mathbb{R}^n$, $p \in \mathbb{R}^{n*}$ be such that Jq = 0 and pJ = 0 with $p\Delta'(0)q \neq 0$.
- ullet There is a coordinate $\xi \in \mathbb{R}$ on W_0^c such that the **normal form** coefficient

$$b_0 = \frac{1}{2} p D_u^2 G(0,0)(q,q).$$

This follows from the approximation of the curve $G(u, \alpha) = 0$ near $(u, \alpha) = (0, 0) \in \mathbb{R}^{n+1}$, which is the **finite-dimensional** problem.

5. Sun-star calculus

Consider a nonlinear DDE

$$\dot{x}(t) = Lx_t + F(x_t), \quad x_t \in X = C([-h, 0], \mathbb{R}^n),$$

where $F:X\to\mathbb{R}^n$ is smooth and contains only nonlinear terms, while

$$L\phi = \int_0^h d\zeta(\theta)\phi(-\theta), \quad \zeta \in \mathsf{NBV}([0,h],\mathbb{R}^{n \times n}).$$

Here $NBV([0,h],\mathbb{R}^{n\times n})$ is the space of normalized bounded-variation matrix-valued functions.

• The **linearized DDE** $\dot{y} = Lx_t$ defines the strongly continuous semi-group $T(t): X \to X$ with the infinitesimal generator A. Its characteristic matrix can now be written as

$$\Delta(\lambda) = \lambda I_n - \int_0^h e^{-\lambda \theta} d\zeta(\theta)$$

Duality:

• Let $T^*(t): X^* \to X^*$ be the **adjoint semigroup**, i.e. for $t \ge 0$

$$\langle T^*(t)\phi^*, \phi \rangle = \langle \phi^*, T(t)\phi \rangle, \quad \phi^* \in X^*, \phi \in X.$$

Denote by X^{\odot} the maximal subspace of X^* on which $T^*(t)$ is strongly continuous, and define

$$T^{\odot}(t) = T^*(t)|_{X^{\odot}}$$

Denote its infinitesimal generator by A^{\odot} .

- Let $A^{\odot \star}$ be the generator of the adjoint semigroup $T^{\odot \star}(t): X^{\odot \star} \to X^{\odot \star}$. Define $X^{\odot \odot}$ as the maximal subspace of $X^{\odot \star}$ on which $T^{\odot \star}(t)$ is strongly continuous.
- Introduce the **embedding** $j: X \to X^{\odot \star}$ by

$$\langle jx, x^{\odot} \rangle := \langle x^{\odot}, x \rangle, \quad \forall x \in X, \forall x^{\odot} \in X^{\odot}.$$

In general, $j(X) \subset X^{\odot \odot}$. However, the space $X = C([-h, 0], \mathbb{R}^n)$ is sun-reflexive: $j(X) = X^{\odot \odot}$.

Concrete representations:

• Spaces:

space	representation	duality pairing
X	$\phi \in C([-h, 0], \mathbb{R}^n)$	$\langle \eta, \phi \rangle = \int_0^h d\eta(\theta) \phi(-\theta)$
X^*	$\eta \in NBV([0,h],\mathbb{R}^{n*})$	$\langle \eta, \varphi \rangle = \int_0^\infty a \eta(\sigma) \varphi(-\sigma)$
X	$\phi \in C([-h,0],\mathbb{R}^n)$	$\langle (c,g), \phi \rangle = c\phi(0) + \int_0^h g(\theta)\phi(-\theta) d\theta$
X^{\odot}	$(c,g) \in \mathbb{R}^{n*} imes L^1([0,h],\mathbb{R}^{n*})$	$\langle (c,g), \phi \rangle = c\phi(0) + \int_0^{\infty} g(v)\phi(-v) dv$
X^{\odot}	$(c,g) \in \mathbb{R}^{n*} imes L^1([0,h],\mathbb{R}^{n*})$	$\langle (\alpha, \psi), (c, g) \rangle = c\alpha + \int_0^h g(\theta) \psi(-\theta) d\theta$
$X^{\odot\star}$	$(lpha,\psi)\in\mathbb{R}^n imes L^\infty([-h,\mathtt{0}],\mathbb{R}^n)$	$(\alpha, \psi), (c, g) = c\alpha + \int_0^{\infty} g(\theta)\psi(-\theta) d\theta$

• Embedding:

$$j\phi = (\phi(0), \phi) \in X^{\odot \star}, \phi \in X.$$

• Nonlinearity $R: X \to X^{\odot \star}$ is defined by

$$R(\phi) := \sum_{i=1}^{n} F_i(\phi) r_i^{\odot \star}, \quad \phi \in X,$$

where

$$r_i^{\odot \star} := (e_i, 0) \in X^{\odot \star}, \quad i = 1, \dots, n,$$

and e_i is the *i*-th standard basis vector in \mathbb{R}^n .

6. The first Lyapunov coefficient for Andronov-Hopf bifurcation

• The solution $u(t) := x_t \in W_0^c \subset X$ satisfies a well-defined **ODE** in $X^{\odot \star}$:

$$\frac{d}{dt}ju(t) = A^{\odot \star}ju(t) + R(u(t)),$$

where $R: X \to X^{\odot \star}$ can be expanded as

$$R(u) = \frac{1}{2}B(u, u) + \frac{1}{6}C(u, u, u) + O(\|u\|^4).$$

• The parametrization of W_0^c : $u = \mathcal{H}(z, \overline{z})$ with

$$\mathcal{H}(z,\overline{z}) = z\phi + \overline{z}\overline{\phi} + \sum_{2 \le j+k \le 3} \frac{1}{j!k!} h_{jk} z^j \overline{z}^k + O(|z|^4), \quad z \in \mathbb{C},$$

where $A\phi = i\omega_0\phi$, $A^*\phi^{\odot} = i\omega_0\phi^{\odot}$, $\langle \phi^{\odot}, \phi \rangle = 1$.

• Poincaré normal form on W_0^c : $\dot{z} = i\omega_0 z + c_1 z |z|^2 + O(|z|^4), z \in \mathbb{C}$.

Homological equation

$$j\left(D_z\mathcal{H}(z,\overline{z})\dot{z} + D_{\overline{z}}\mathcal{H}(z,\overline{z})\dot{\overline{z}}\right) = A^{\odot \star}j\mathcal{H}(z,\overline{z}) + R(\mathcal{H}(z,\overline{z}))$$

• Qudratic terms

$$z^{2} : -A^{\odot \star} j h_{20} = B(\phi, \overline{\phi}),$$

$$z\overline{z} : (2i\omega_{0} - A^{\odot \star}) j h_{11} = B(\phi, \phi),$$

which are uniquely solvable and define h_{20} and h_{11} .

Resonance cubic term

$$z^{2}\overline{z} : (i\omega_{0}I - A^{\odot \star})jh_{21} = C(\phi, \phi, \overline{\phi}) + B(\overline{\phi}, h_{20}) + 2B(\phi, h_{11}) - 2c_{1}j\phi.$$

This system is **singular**. Pairing with ϕ^{\odot} gives

$$c_1 = \frac{1}{2} \langle \phi^{\odot}, C(\phi, \phi, \overline{\phi}) + B(\overline{\phi}, h_{20}) + 2B(\phi, h_{11}) \rangle$$

• The first Lyapunov coefficient $l_1 = \frac{1}{\omega_0} \Re(c_1)$.

Computational formulas:

Eigenfunctions

$$\phi(\theta) = e^{i\omega_0 \theta} q,$$

$$\phi^{\odot} = \left(p, p \int_{\theta}^{h} e^{i\omega_0 (\theta - \tau)} d\zeta(\tau) \right)$$

where $q \in \mathbb{C}^n, p \in \mathbb{C}^{n*}$ satisfy

$$\Delta(i\omega_0)q = 0$$
, $p\Delta(i\omega_0) = 0$, $p\Delta'(i\omega_0)q = 1$.

Quadratic coefficients

$$h_{20} = e^{2i\omega_0\theta} \Delta (2i\omega_0)^{-1} D^2 F(0)(\phi, \phi)$$

$$h_{11} = \Delta(0)^{-1} D^2 F(0)(\phi, \overline{\phi})$$

The normal form coefficient

$$c_{1} = \frac{1}{2} p \left[D^{2} F(0)(\overline{\phi}, e^{2i\omega_{0}\theta} \Delta(2i\omega_{0})^{-1} D^{2} F(0)(\phi, \phi)) + 2D^{2} F(0)(\phi, \Delta(0)^{-1} D^{2} F(0)(\phi, \overline{\phi})) + D^{3} F(0)(\phi, \overline{\phi}) \right]$$

(implemented in **DDE-BIFTOOL** to compute the first Lyapunov coefficient l_1).

Computation of derivatives: DDE at the critical parameter values:

$$\dot{x}(t) = f(x(t), x(t - \tau_1), x(t - \tau_2), \dots, x(t - \tau_m))$$

• Recall that $f: \mathbb{R}^{n(m+1)} \to \mathbb{R}^n$ with

$$X := (x^0, x^1, x^2, \dots, x^m) \mapsto f(x^0, x^1, x^2, \dots, x^m), \ x^j \in \mathbb{R}^n, j = 0, 1, 2, \dots, m.$$

• The (multi-)linear forms:

For $Q, P, R \in \mathbb{R}^{n(m+1)}$ with components q_k^j, p_k^j, r_k^j define

$$D^{2}f^{0}(Q,P) := \sum_{k_{1},k_{2}=1}^{n} \sum_{j_{1},j_{2}=0}^{m} \frac{\partial^{2}f(0)}{\partial x_{k_{1}}^{j_{1}} \partial x_{k_{2}}^{j_{2}}} q_{k_{1}}^{j_{1}} p_{k_{2}}^{j_{2}}$$

$$D^{3}f^{0}(Q,P,R) := \sum_{k_{1},k_{2},k_{3}=1}^{n} \sum_{j_{1},j_{2},j_{3}=0}^{m} \frac{\partial^{3}f(0)}{\partial x_{k_{1}}^{j_{1}} \partial x_{k_{2}}^{j_{2}} \partial x_{k_{3}}^{j_{3}}} q_{k_{1}}^{j_{1}} p_{k_{2}}^{j_{2}} r_{k_{3}}^{j_{3}}$$

Computation of derivatives:

$$F: C([-h, 0], \mathbb{R}^n) \to \mathbb{R}^n, \ F(\phi) = f(\phi(0), \phi(-\tau_1), \phi(-\tau_2), \dots, \phi(-\tau_m))$$

• 2nd Differentials:

$$D^{2}F(0)(\phi,\phi) = D^{2}f^{0}(\Phi,\Phi),$$

$$D^{2}F(0)(\phi,\overline{\phi}) = D^{2}f^{0}(\Phi,\overline{\Phi}),$$

$$D^{2}F(0)(\overline{\phi},h_{20}) = D^{2}f^{0}(\overline{\Phi},H_{20}),$$

$$D^{2}F(0)(\phi,h_{11}) = D^{2}f^{0}(\Phi,H_{11}),$$

where

$$\Phi = (\phi(0), \phi(-\tau_1), \dots, \phi(-\tau_m)),$$

$$H_{20} = (h_{20}(0), h_{20}(-\tau_1), \dots, h_{20}(-\tau_m)),$$

$$H_{11} = (h_{11}(0), h_{11}(-\tau_1), \dots, h_{11}(-\tau_m)).$$

• 3rd Differential:

$$D^{3}F(0)(\phi,\phi,\overline{\phi}) = D^{3}f^{0}(\Phi,\Phi,\overline{\Phi}).$$