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Goals:

(1) To construct the highest weight representations of
Kac-Moody Lie algebras inside algebras of
polydifferentials.

(2) To connect this with the Schechtman-Varchenko
approach to the KZ system.

(3) To apply this to the associated WZW system



1. Polydifferentials.

Definition: Let M be a manifold, Z a finite set. A
polydifferential on M7 is a section of ®;c7(A*T*M)
(this is an ordinary tensor product—no total order on
7 is needed, no Koszul rule applies).

On the &z-invariant polydifferentials on M7 is
defined an exterior derivative up to sign, making it a
complex whose cohomology is (@7 H®(M))%z

(= H*(MZ)®1 unless H*(M) = HEEN(M)).

We take for M the Riemann sphere (denoted here P)
whose affine coordinate is denoted t. For X C Z,
dt x = [l:ex dty IS regarded is a (meromorphic)
polydifferential of degree | X'| on PZ (no total order on
X is needed).

Two modifications here: we allow 7 to be (countably)
infinite and we work in a relative setting (with base
the affine line C, coordinate z, later C™):

PL:PIxC —C.



Let V be the graded C-vector space of the relative
polydifferentials on P% which is C-spanned by the
forms

o — (z) L dtithiN—l e dtil

I« — W] — .
(tiny —ting_q) (tip — ti )ty — 2)

where I = (in,in_1,..-,%1) runs over the finite

sequences in Z. (We write wy, if we want to leave the
variable z € C unnamed.) Stipulate wy, = w«x = 1.
Notice that we get zero unless the sequence I is
without repetition. Denote by Vy the space of
(possibly infinite) sums of these relative
polydifferentials of degree NV and put

Y = @?VO:ODN-

Lemma 1 (Shuffle rule) The graded vector space V
is closed under product (it is a shuffle algebra): for
finite sequences in I and J inZ,

WxW Jx — Z WK x
K a shuffle of I and J



Some operators in V.

Let be given complex numbers (\;);c7 and
(cij)ijet,i=4- Fori € I define an operator ®; in the
space of meromorphic relative polydifferentials by

A;dt; dt;dt;
ty — 2 ]g i, —t; La/at ’

Here dt; is the multiplication operator in the space of
these polydifferentials and by ¢4 ,5,, its adjoint (which
acts in the sth tensor factor by sending dt; to 1 and 1
to 0). So for a finite subset X C Z, we have

—Z

1 33

Cbi i

®;(dty) = (t )dt dt «.

(the right hand side is zero when 1 € X).

Lemma 2 This operator preserves V (hence also the
completion V), for

CDCU(WI*) — Z ()\iC — Z Ca:,’i)wf”x]’*a

I=1"1 iel’
(the right hand side vanishes ifx € I).

Proof: Straightforward from shuffle rule.



Residue operators. We regard Res(; _..y, ¢ € 7, as
an operator of V to itself (so strictly speaking it is the
composite of a residue and the pull-back along the
projection that suppresses the xth factor).

Observe that for a sequence I in Z without repetition
and x € Z, we have

—wjy, I =uaJ

Res/,, _ _ywr, =
(tz=00) 1 {O otherwise

A straightforward calculation then yields:

Corollary 3 Givenzx,y € 7, then

[®z, Res(; —oo)lwre =0 unlessz =y ¢ I, in
which case it multiplies wy, by the scalar

Az — el Cx,i-



2. Representations inside V.

Let (ci 1)} ;—1 be a generalized Cartan matrix:
Ck k = 2, and for k # [, Ck.l € ZSO with
Clk = 0& Clk = 0

Associated Lie algebra g with generators

€1,..-,er, f1,..., fr subjectto [ér, f;] = O for k # 1
and if we put hy, := [, f], then

[hg, &) = e, [hg, 1l = —cpifi, [hy, hy] = 0.

The Kac-Moody Lie algebra g is obtained by also
imposing the Serre relations

ad(Ep) g =0, ad(f)t wf =0
for k £ 1.

h, the Cartan subalgebra: linear span of the h;’s. (In
g we omit tilde’s.)



In what follows we suppose our index set Z endowed
with a surjection m : Z — {1,...,r} such that each
fiber 7, := 7w~ 1(k) is countably infinite.

We write ¢ for 7 (7).

If P = (py,.-.,p1) is any sequencein {1,...,r},
then we put

w(P) = _Z Wk
I=P

where the sum is over all sequences in Z that map
under wto P (for N = O, read 1). The right hand
side is an element of V that is invariant under the
group &, of all permutations of Z that leave =
invariant. In fact, these elements give a basis of V.

Now fix a dominant weight relative to the above Lie
data, i.e., asequence A = (\1,..., ) Of r
nonnegative integers.



We take for the coefficients defining ®;, ¢; ; 1= ¢; 7,
)\7; = )\gi

A=dt; dtidtj
Cii= =) G oot
jFe

tr — 2

For this choice of coefficients, we put

fei= > @; (actsinV).
iEIk

Then

fkw(P) — Z ()\k — CL P/)w(P”kP’)
P=P"P! |

The residue formula suggests to put:

w(P) iftP=kP,
0 otherwise

é'kw(P) .= {

It is then clear that €;, and f; commute when k % [
and that [ex, fi.] multiplies w(P) by the scalar

AL — ¢ p- The residue lemma shows that we have
an interpretion €;, as a sum of residues along divisors
at infinity:



Lemma 4 Letw € VS~. Then the restriction of &,w
to the hyperplane t; = oo, 1 € I, as a
polydifferential equals — Res(; —xo) w. In fact, if we
identify this residue with a form on PL via its

pull-back under the projection P% — Pé_{i}, then

ék(w) = — Z Res(ti:oo) w.
1€1;
In particular, e;.(w) = 0O if and only if w is regular
along the hyperplanes (t; = o), i € 1.

Proposition 5 The operators éy, fr., k=1,...,r,
define a representation of § on V= which in addition
satisfies the Serre relation ad(f,)1 ki f; = 0

(k % 1).

Denote by V() the smallest subspace of VO~ that
contains 1 and is invariant under the operators

f17'°°7f7°-



Theorem 6 Then g acts on V() through the highest
weight representation of g of weight A with highest
weight vector 1. This highest weight representation is
integrable in the sense that each of the e;, and f;,
acts in a locally nilpotent fashion.

Generalization to a tensor product of highest
weight representations

Fix dominant weights, A(1), ... X(")_ Work now with
n variables z1, ..., 2" instead of one: we consider
PL, : P x C" — C". For n sequences I!,... I"
In Z we have the relative polydifferential

wll(zl)wIQ(ZQ) cewm(2™).

on PZ . Itis zero unless the sequence I(1) ... 1(n)
Is without repetition.

V(z): the graded vector space spanned by these
polydifferentials.

V(z) n: the completion of V(z) v which allows for
infinite sums, V(z) := @&nV(z) .



Given n sequences (PL,...,P™)in{1,...,7}, we
observe that

[I «(PHED) = > wpn(eHwp(e?) - wm(e),
v=1

v=pv
sum is over all n-tuples of sequences (I1,...,1™)in
7 which map under = to (P1,..., P").

These elements form a C-basis of V(z)®~ and so
the above factorization defines an isomorphism

V()57 2 V" @¢ -+ ®¢ VO
The action of f;. operating on the vth factor with

dominant weight A(*) is denoted f,g”. The sum

> 1 flg”) acts as fj, in the tensor representation
and hence is simply denoted f;.. We do likewise for
the other generators of g.



It is clear that

V(¥ = V()\(l)) ¢ - Q¢ V(A(”))

is the smallest subspace of PV that contains 1 and
is invariant under the operators f,g”) and E,g”). It is
the tensor product of n highest weight
representations.

Notice that the subspace V(\*)q killed by b is trivial
unless Y7 _ . M%) is a sum of positive roots:

7,;,:1 )\(k) = 2:1 mMmpQ, ifm = Zk mi., then
V(A*)o = Vi (X\*) (polydifferentials of degree m).

It follows from our residue formula that:
Theorem 7 The space of g-invariants V(\*)9 is the

space of polydifferentials in Vy,(\*) that are regular
along every hyperplane at infinity (t; = o), i € Z.



3. The KZ-connection

Let \* = (A1) .. (")) and
vOH) = v @ - @ V(W) (a representation
of g) be as before.

We fix the choice of a symmetric g-invariant tensor

C € (g® g)%. We may regard C' as a g-invariant
symmetric bilinear form on g*. If g is simple, then C
IS unique up to scalar, and C' is nondegenerate, when
nonzero.

C will have the form
C =Cp+ Z Ca,
(8%

with Cy € § ® § and the sum is over all the roots.
Here Cy can be any symmetric tensor invariant
under the Weyl group. It then determines C as
follows: if o is a positive root and e, € go and

fa € g—qo are generators such that hqy := [eq, fo] IS
the corresponding coroot in h (this means that



a(hy) = 2),then Cy = %C’(a, a)eq ® fo and
C_oq = 3C(a, @) fa ® ea (80 C_ is the transpose
of Cp).

Comparison with the 1991 paper of Schechtman and
Varchenko

They consider the case of a ‘symmetrized
generalized Cartan matrix’ and use a presention of g
derived from that. They work with a fixed weight
space and take 7 finite and minimal in a sense (the
representation is then absent). The interpretation of
the KZ connection in terms of polydifferentials that
we give below is due to them.

The KZ connection

For 1 < v < p < n, let C%:1) pe the endomorphism
of V(\*) obtained by letting C act trough the tensor
factors indexed by v and . This operator commutes
with the diagonal action of g and hence preserves the
g-isotypical summands.



Our base variety will be the subset U,, C C™ defined
by Hz/<,u(zy —21) # 0.

The KZ connection is the connection on the trivial
bundle over Uy, with fiber V(\*), given by the
End(V(\*))-valued differential

AC _: Z C(V’u)d(z’/ _ z,UJ)
KZ - YRR
1<v<pu<n ~ <
where C(*:#) means to have C act on V(\*) via its
tensor factors indexed by v and u. This is clearly a
connection with logarithmic singularities on C". It is
known to be flat.



A Gauss-Manin connection
Central in the discussion is a differential associated

to C':
d(t;—

7701=%Z¢j617;7£j0(04 7) t—t
) d(t )
o Z Zc(arp)‘ ) U
v=1€Tl —c
_ Ll
Y oW, /\w))d(z )
1<v<u<n vz

It is logarithmic and we can formally write it as
—dlog F¢, where FC is a product of linear forms
with complex exponents. Consider the first order
differential operator d© := d + n¢. So d is the
ordinary exterior derivative for the multivalued
polydifferentials after they get formally multiplied by
the inverse of FC: d¢ = FC d (F©)~1. In particular
(but still formally), a d©-closed form is F times a
d-closed form.

The corresponding connection (of Gauss-Manin
type) on the form level requires us to lift each basis



vector field 9, := 8/9z¥ on Uy, to PZ x U, and then
covariant derivation with respect to z¥ will be Lie
derivation with respect to that lift. In order to ensure
that logarithmicity is preserved we take a lift that
depends on the argument:

Lemma8 Letw := w1 (Zl)wIQ(ZQ) wm(2™) be
a basis element of V(z) and let

Oy = 0y + Yicrv a% (a vector field on P x Uy, that
lifts the vector field 0, to Uy). Then the twisted Lie
derivative LC '=d%y5 + 15 d° mapsw to

n®(8,).w and the latter lies in C[Un] ®¢ V(z). This
map is Sr-equivariant and defines a connection on
V(z) with logarithmic pole whose form A%, ,, lies in

d(z¥ — zH
5 ( )

v o_
vy ? zH

We refer to this as the Gauss -Manin connection.

Theorem 9 The GM connection on the trivial bundle
over Uy, with fiber V(\*) coincides with the KZ

.. AC _ AC
connection. AG M= A 78/



4. The WZW system

We assume g simple. Let ¢ € g be a longest nonzero
iterated commutator of e;’s (spans the highest coroot
space). For z € Un, we write ez 1= > 7 _4 ).

Definition. Fix a positive integer ¢, refered to as the
level. The space of conformal blocks of level ¢
relative to z is the subspace of V(\*) killed by g and
é‘ﬁ+1. These define a subbundle of the trivial bundle
V(A*){; , called the bundle of conformal blocks of
level £. We denote this bundle W(\*),.

There is a natural generator B € (g ® g)9%, namely
the one which takes the value 2 on the highest
Coroot.

Denote by g, the number of times e;. occurs and put
g =1+ 37 _4 g (the dual Coxeter number).

Proposition 10 (Beilinson-Feigin) The bundle
W(\*), is flat for the KZ-connection for which
C = Cg e ﬁB .



Can characterize W(\*), in terms of a vanishing
property.

Assume that V(\*)g 7%= O (otherwise no issue) so
that 37 _; A(¥) is a sum of simple roots:

221 )\(k) — T:l mirpdir.
Theorem 11 (vanishing criterion) w € V(\*)
defines a section of W(\*), if and only if for any
subset X CZ with| X NZy| = (£ + 1)g, w
vanishes on the locus t, = oo for allx € X (i.e., if
we blow up this subspace, then w vanishes on it).



4. Topological interpretation

As before, we assume that V(A\*)g #= 0, so that
7];:1 )\(k) = 271;21 MEo. We put m 1= > . my.

For the study of V(A\*)g = Vi (A\*) no harm is done
if we assume (as we will) that Z is finite and

| Z1.| = my. (so that |[Z] = m).

Now V(\*)g has become a space of relative
polydifferentials of maximal degree m on IPIn.

Denote by D C P{; the sum of the divisors defined
by t;, =00, t; = 2%, ¢; =1 (i & 7).

Let ©2°(log)ys,, be the Oyn-module of relative
logarithmic forms on IP%n with polar divisor D that are
anti-invariant relative to the Gz-action. Wedging with
nc turns 2¢(1og)y, into a complex (C # O here).

Lemma 12 Foreveryz € Uy, V(A\*)g maps
isomorphically onto Q2™ (log), with

FV(A)2) = f(Vin—1(X*)) being mapped onto
77C A Qm_l(log)z-



Corollary 13 (Schechtman-Varchenko) We geft for
every z € Uy, an identification

V(A =2 H™(Q*(109)z,nS ).

With the help of work of Deligne and
Esnault-Schechtman-Viehweg we can obtain a
topological interpretation of the right hand side.

On P{, — D we have a local system ¢ of rank one
with connection form n°.

There is a natural blow up X — PIn, minimal for the
property that the full transform of D is a normal
crossing divisor. Then n® has on every irreducible
component a residue. Let D C X be a union of such
irreducible components with the property that if an
irreducible component has integral residue, then it is
in D if and only if that residue is nonpositive (so this
D is not unique). We then have an inclusion

j:PIn—DCX—D.



The following sharpens a theorem of
Schechtman-Varchenko.

Theorem 14 For every z € Uy, we have a natural
identification of V(\*)® = H™(Q*(10g)z, nS A) with
H™(PL — Dy,; R*5LY)S9N. This identifies the
Gauss-Manin given by AS,, , with the usual one.

It is conjectured that the bundle of conformal blocks
has a flat inner product. We conjecture more:

Conjecture 15 For every z € Uy, the flat
isomorphism V(\*) & H™(PL — D,; R*;LE)S9n
identifies YW(\*), with the bidegree (m, 0)-part of
the image of

H (P — Dy L )9" — H™(P] — Dy; R®jiLS)0"

So this bidegree (m, 0)-part should be flat and the
inner product then should come from Hodge theory
(use that ]LZCE has a flat metric).



The conjecture holds for the case g = sl(2); this
essentially follows from work of T.R. Ramadas (Ann.
of Math. 2009) (we gave a more direct proof (J.
Geom. and Physics 2009) by deriving this from the
equivalent formulation: if w € Q2*(log), satisfies the
vanishing conditions of Thms 7 and 11, then EStw,
IS square integrable).



