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Goals:
(1)To construct the highest weight representations of
Kac-Moody Lie algebras inside algebras of
polydifferentials.
(2) To connect this with the Schechtman-Varchenko
approach to the KZ system.
(3) To apply this to the associated WZW system



1. Polydifferentials.

Definition: Let M be a manifold, I a finite set. A
polydifferential on MI is a section of ⊗i∈I(∧•T ∗M)
(this is an ordinary tensor product–no total order on
I is needed, no Koszul rule applies).

On the SI-invariant polydifferentials on MI is
defined an exterior derivative up to sign, making it a
complex whose cohomology is (⊗IH•(M))SI

(6= H•(MI)SI unless H•(M) = Heven(M)).

We take for M the Riemann sphere (denoted here P)
whose affine coordinate is denoted t. For X ⊂ I,
dtX =

∏
x∈X dtx is regarded is a (meromorphic)

polydifferential of degree |X| on PI (no total order on
X is needed).

Two modifications here: we allow I to be (countably)
infinite and we work in a relative setting (with base
the affine line C, coordinate z, later Cn):

PIC : PI × C→ C.



Let V be the graded C-vector space of the relative
polydifferentials on PIC which is C-spanned by the
forms

ωI∗ = ωI(z) :=
dtiNdtiN−1

· · · dti1
(tiN − tiN−1

) · · · (ti2 − ti1)(ti1 − z)
.

where I = (iN , iN−1, . . . , i1) runs over the finite
sequences in I. (We write ωI∗ if we want to leave the
variable z ∈ C unnamed.) Stipulate ω∅∗ = ω∗ = 1.
Notice that we get zero unless the sequence I is
without repetition. Denote by V̂N the space of
(possibly infinite) sums of these relative
polydifferentials of degree N and put
V̂ := ⊕∞N=0V̂N .

Lemma 1 (Shuffle rule) The graded vector space V
is closed under product (it is a shuffle algebra): for
finite sequences in I and J in I,

ωI∗ωJ∗ =
∑

K a shuffle of I and J
ωK∗



Some operators in V̂.
Let be given complex numbers (λi)i∈I and
(ci,j)i,j∈I,i 6=j. For i ∈ I define an operator Φi in the
space of meromorphic relative polydifferentials by

Φi :=
λidti
ti − z

−
∑
j 6=i

ci,j
dtidtj

ti − tj
ι∂/∂tj ,

Here dti is the multiplication operator in the space of
these polydifferentials and by ι∂/∂ti its adjoint (which
acts in the ith tensor factor by sending dti to 1 and 1
to 0). So for a finite subset X ⊂ I, we have

Φi(dtX) =
(

λi
ti − z

−
∑
x∈X

ci,x

ti − tx

)
dtidtX .

(the right hand side is zero when i ∈ X).

Lemma 2 This operator preserves V (hence also the
completion V̂), for

Φx(ωI∗) =
∑

I=I ′′I ′
(λx −

∑
i∈I ′

cx,i)ωI ′′xI ′∗,

(the right hand side vanishes if x ∈ I).

Proof: Straightforward from shuffle rule.



Residue operators. We regard Res(tx=∞), x ∈ I, as
an operator of V to itself (so strictly speaking it is the
composite of a residue and the pull-back along the
projection that suppresses the xth factor).

Observe that for a sequence I in I without repetition
and x ∈ I, we have

Res(tx=∞) ωI∗ =

−ωJ∗ if I = xJ,

0 otherwise

A straightforward calculation then yields:

Corollary 3 Given x, y ∈ I, then
[Φx,Res(ty=∞)]ωI∗ = 0 unless x = y /∈ I, in
which case it multiplies ωI∗ by the scalar
λx −

∑
i∈I cx,i.



2. Representations inside V̂.

Let (ck,l)
r
k,l=1 be a generalized Cartan matrix :

ck,k = 2, and for k 6= l, ck,l ∈ Z≤0 with
cl,k = 0⇔ cl,k = 0

Associated Lie algebra g̃ with generators
ẽ1, . . . , ẽr, f̃1, . . . , f̃r subject to [ẽk, f̃l] = 0 for k 6= l

and if we put h̃k := [ẽk, f̃k], then

[h̃k, ẽl] = ck,lẽl, [h̃k, f̃l] = −ck,lf̃l, [h̃k, h̃l] = 0.

The Kac-Moody Lie algebra g is obtained by also
imposing the Serre relations

ad(ẽk)1−ck,lẽl = 0, ad(f̃k)1−ck,lf̃l = 0

for k 6= l.

h, the Cartan subalgebra: linear span of the hk’s. (In
g we omit tilde’s.)



In what follows we suppose our index set I endowed
with a surjection π : I → {1, . . . , r} such that each
fiber Ik := π−1(k) is countably infinite.
We write ī for π(i).

If P = (pN , . . . , p1) is any sequence in {1, . . . , r},
then we put

ω(P ) :=
∑
Ī=P

ωI∗,

where the sum is over all sequences in I that map
under π to P (for N = 0, read 1). The right hand
side is an element of V̂ that is invariant under the
group Sπ of all permutations of I that leave π
invariant. In fact, these elements give a basis of V̂Sπ.

Now fix a dominant weight relative to the above Lie
data, i.e., a sequence λ = (λ1, . . . , λr) of r
nonnegative integers.



We take for the coefficients defining Φi, ci,j := c̄i,̄j,
λi := λ̄i:

Φi :=
λ̄idti
tx − z

−
∑
j 6=i

c̄i,̄j
dtidtj

ti − tj
ι∂/∂tj ,

For this choice of coefficients, we put

f̃k :=
∑
i∈Ik

Φi (acts in V̂).

Then

f̃kω(P ) =
∑

P=P ′′P ′
(λk − ck,P ′)ω(P ′′kP ′)

The residue formula suggests to put:

ẽkω(P ) :=

ω(P ′) if P = kP ′,
0 otherwise

It is then clear that ẽk and f̃l commute when k 6= l

and that [ẽk, f̃k] multiplies ω(P ) by the scalar
λk − ck,P . The residue lemma shows that we have
an interpretion ẽk as a sum of residues along divisors
at infinity:



Lemma 4 Let ω ∈ V̂Sπ. Then the restriction of ẽkω
to the hyperplane ti =∞, i ∈ Ik, as a
polydifferential equals −Res(ti=∞) ω. In fact, if we
identify this residue with a form on PIC via its

pull-back under the projection PIC → P
I−{i}
C , then

ẽk(ω) = −
∑
i∈Ik

Res(ti=∞) ω.

In particular, ẽk(ω) = 0 if and only if ω is regular
along the hyperplanes (ti =∞), i ∈ Ik.

Proposition 5 The operators ẽk, f̃k, k = 1, . . . , r,
define a representation of g̃ on V̂Sπ which in addition
satisfies the Serre relation ad(f̃k)1−ck,lf̃l = 0

(k 6= l).

Denote by V(λ) the smallest subspace of V̂Sπ that
contains 1 and is invariant under the operators
f̃1, . . . , f̃r.



Theorem 6 Then g̃ acts on V(λ) through the highest
weight representation of g of weight λ with highest
weight vector 1. This highest weight representation is
integrable in the sense that each of the ek and fk
acts in a locally nilpotent fashion.

Generalization to a tensor product of highest
weight representations
Fix dominant weights, λ(1), . . . , λ(n). Work now with
n variables z1, . . . , zn instead of one: we consider
PICn : PI × Cn → Cn. For n sequences I1, . . . , In

in I we have the relative polydifferential

ωI1(z1)ωI2(z2) · · ·ωIn(zn).

on PICn. It is zero unless the sequence I(1) · · · I(n)

is without repetition.

V(z): the graded vector space spanned by these
polydifferentials.
V̂(z)N : the completion of V(z)N which allows for
infinite sums, V̂(z) := ⊕N V̂(z)N .



Given n sequences (P1, . . . , Pn) in {1, . . . , r}, we
observe that
n∏

ν=1

ω(P ν)(zν) =
∑

Iν=P ν

ωI1(z1)ωI2(z2) · · ·ωIn(zn),

sum is over all n-tuples of sequences (I1, . . . , In) in
I which map under π to (P1, . . . , Pn).

These elements form a C-basis of V̂(z)Sπ and so
the above factorization defines an isomorphism

V̂(z)Sπ ∼= V̂Sπ ⊗C · · · ⊗C V̂Sπ.

The action of f̃k operating on the νth factor with
dominant weight λ(ν) is denoted f̃(ν)

k . The sum∑n
ν=1 f̃

(ν)
k acts as f̃k in the tensor representation

and hence is simply denoted f̃k. We do likewise for
the other generators of g̃.



It is clear that

V(λ∗) := V(λ(1))⊗C · · · ⊗C V(λ(n))

is the smallest subspace of V̂Sπ that contains 1 and
is invariant under the operators f̃(ν)

k and h̃(ν)
k . It is

the tensor product of n highest weight
representations.

Notice that the subspace V(λ∗)0 killed by h is trivial
unless

∑r
k=1 λ

(k) is a sum of positive roots:∑r
k=1 λ

(k) =
∑r
k=1mkαk; if m :=

∑
kmk, then

V(λ∗)0 = Vm(λ∗) (polydifferentials of degree m).

It follows from our residue formula that:

Theorem 7 The space of g-invariants V(λ∗)g is the
space of polydifferentials in Vm(λ∗) that are regular
along every hyperplane at infinity (ti =∞), i ∈ I.



3. The KZ-connection

Let λ∗ = (λ(1), . . . , λ(n)) and
V(λ∗) = V(λ(1))⊗ · · · ⊗ V(λ(n)) (a representation
of g) be as before.

We fix the choice of a symmetric g-invariant tensor
C ∈ (g⊗ g)g. We may regard C as a g-invariant
symmetric bilinear form on g∗. If g is simple, then C
is unique up to scalar, and C is nondegenerate, when
nonzero.

C will have the form

C = C0 +
∑
α
Cα,

with C0 ∈ h⊗ h and the sum is over all the roots.
Here C0 can be any symmetric tensor invariant
under the Weyl group. It then determines C as
follows: if α is a positive root and eα ∈ gα and
fα ∈ g−α are generators such that hα := [eα, fα] is
the corresponding coroot in h (this means that



α(hα) = 2), then Cα = 1
2C(α, α)eα ⊗ fα and

C−α = 1
2C(α, α)fα ⊗ eα (so C−α is the transpose

of Cα).

Comparison with the 1991 paper of Schechtman and
Varchenko
They consider the case of a ‘symmetrized
generalized Cartan matrix’ and use a presention of g

derived from that. They work with a fixed weight
space and take I finite and minimal in a sense (the
representation is then absent). The interpretation of
the KZ connection in terms of polydifferentials that
we give below is due to them.

The KZ connection
For 1 ≤ ν < µ ≤ n, let C(ν,µ) be the endomorphism
of V(λ∗) obtained by letting C act trough the tensor
factors indexed by ν and µ. This operator commutes
with the diagonal action of g and hence preserves the
g-isotypical summands.



Our base variety will be the subset Un ⊂ Cn defined
by
∏
ν<µ(zν − zµ) 6= 0.

The KZ connection is the connection on the trivial
bundle over Un with fiber V(λ∗), given by the
End(V(λ∗))-valued differential

ACKZ :=
∑

1≤ν<µ≤n
C(ν,µ)d(zν − zµ)

zν − zµ
,

where C(ν,µ) means to have C act on V(λ∗) via its
tensor factors indexed by ν and µ. This is clearly a
connection with logarithmic singularities on Cn. It is
known to be flat.



A Gauss-Manin connection
Central in the discussion is a differential associated
to C:

ηC := 1
2
∑
i,j∈I,i 6=j C(ᾱi, αj̄)

d(ti−tj)
ti−tj +

−
n∑

ν=1

∑
i∈I

C(ᾱi, λ
(ν))

d(ti − zν)

ti − zν

+
∑

1≤ν<µ≤n
C(λ(ν), λ(µ))

d(zν − zµ)

zν − zµ
.

It is logarithmic and we can formally write it as
−d logFC , where FC is a product of linear forms
with complex exponents. Consider the first order
differential operator dC := d+ ηC . So dC is the
ordinary exterior derivative for the multivalued
polydifferentials after they get formally multiplied by
the inverse of FC : dC = FC d (FC)−1. In particular
(but still formally), a dC-closed form is FC times a
d-closed form.

The corresponding connection (of Gauss-Manin
type) on the form level requires us to lift each basis



vector field ∂ν := ∂/∂zν on Un to PI × Un and then
covariant derivation with respect to zν will be Lie
derivation with respect to that lift. In order to ensure
that logarithmicity is preserved we take a lift that
depends on the argument:

Lemma 8 Let ω := ωI1(z1)ωI2(z2) · · ·ωIn(zn) be
a basis element of V(z) and let
∂̃ν := ∂ν +

∑
i∈Iν

∂
∂ti

(a vector field on PI × Un that
lifts the vector field ∂ν to Un). Then the twisted Lie
derivative LC

∂̃ν
:= dCι∂̃ν + ι∂̃νd

C maps ω to

ηC(∂̃ν).ω and the latter lies in C[Un]⊗C V(z). This
map is Sπ-equivariant and defines a connection on
V(z) with logarithmic pole whose form ACGM lies in

∑
ν<µ

d(zν − zµ)

zν − zµ
⊗C EndCn(V(z)).

We refer to this as the Gauss -Manin connection.

Theorem 9 The GM connection on the trivial bundle
over Un with fiber V(λ∗) coincides with the KZ
connection: ACGM = ACKZ .



4. The WZW system

We assume g simple. Let ẽ ∈ g be a longest nonzero
iterated commutator of ek’s (spans the highest coroot
space). For z ∈ Un, we write ez :=

∑r
k=1 z

ν ẽ(ν).

Definition. Fix a positive integer `, refered to as the
level. The space of conformal blocks of level `
relative to z is the subspace of V(λ∗) killed by g and
ẽ`+1
z . These define a subbundle of the trivial bundle
V(λ∗)g

Un
, called the bundle of conformal blocks of

level `. We denote this bundleW(λ∗)`.

There is a natural generator B ∈ (g⊗ g)g, namely
the one which takes the value 2 on the highest
coroot.
Denote by gk the number of times ek occurs and put
g := 1 +

∑r
k=1 gk (the dual Coxeter number ).

Proposition 10 (Beilinson-Feigin) The bundle
W(λ∗)` is flat for the KZ-connection for which
C = C` := 1

g+`B.



Can characterizeW(λ∗)` in terms of a vanishing
property.

Assume that V(λ∗)0 6= 0 (otherwise no issue) so
that

∑r
k=1 λ

(k) is a sum of simple roots:∑r
k=1 λ

(k) =
∑r
k=1mkαk.

Theorem 11 (vanishing criterion) ω ∈ V(λ∗)
defines a section ofW(λ∗)` if and only if for any
subset X ⊂ I with |X ∩ Ik| = (`+ 1)gk, ω
vanishes on the locus tx =∞ for all x ∈ X (i.e., if
we blow up this subspace, then ω vanishes on it).



4. Topological interpretation
As before, we assume that V(λ∗)0 6= 0, so that∑r
k=1 λ

(k) =
∑r
k=1mkαk. We put m :=

∑
kmk.

For the study of V(λ∗)0 = Vm(λ∗) no harm is done
if we assume (as we will) that I is finite and
|Ik| = mk (so that |I| = m).
Now V(λ∗)0 has become a space of relative
polydifferentials of maximal degree m on PIUn.

Denote by D ⊂ PIUn the sum of the divisors defined
by ti =∞, ti = zν, ti = tj (i 6= j).
Let Ω•(log)Un be the OUn-module of relative
logarithmic forms on PIUn with polar divisor D that are
anti-invariant relative to the SI-action. Wedging with
ηC turns Ω•(log)Un into a complex (C 6= 0 here).

Lemma 12 For every z ∈ Un, V(λ∗)0 maps
isomorphically onto Ωm(log)z with
f(V(λ∗)2) = f(Vm−1(λ∗)) being mapped onto
ηC ∧Ωm−1(log)z.



Corollary 13 (Schechtman-Varchenko) We get for
every z ∈ Un an identification

V(λ∗)g ∼= Hm(Ω•(log)z, η
C
z ∧).

With the help of work of Deligne and
Esnault-Schechtman-Viehweg we can obtain a
topological interpretation of the right hand side.

On PIUn −D we have a local system LC of rank one
with connection form ηC .

There is a natural blow up X → PIUn, minimal for the
property that the full transform of D is a normal
crossing divisor. Then ηC has on every irreducible
component a residue. Let D̃ ⊂ X be a union of such
irreducible components with the property that if an
irreducible component has integral residue, then it is
in D̃ if and only if that residue is nonpositive (so this
D̃ is not unique). We then have an inclusion

j : PIUn −D ⊂ X − D̃.



The following sharpens a theorem of
Schechtman-Varchenko.

Theorem 14 For every z ∈ Un, we have a natural
identification of V(λ∗)g ∼= Hm(Ω•(log)z, ηCz ∧) with
Hm(PIz −Dz;R•j!LCz )sign. This identifies the
Gauss-Manin given by ACGM with the usual one.

It is conjectured that the bundle of conformal blocks
has a flat inner product. We conjecture more:

Conjecture 15 For every z ∈ Un, the flat
isomorphism V(λ∗) ∼= Hm(PIz −Dz;R•j!LCz )sign

identifiesW(λ∗)` with the bidegree (m,0)-part of
the image of

Hm
c (PIz−Dz; LC`z )sign → Hm(PIz−Dz;R•j!LCz )sign

So this bidegree (m,0)-part should be flat and the
inner product then should come from Hodge theory
(use that LC`z has a flat metric).



The conjecture holds for the case g = sl(2); this
essentially follows from work of T.R. Ramadas (Ann.
of Math. 2009) (we gave a more direct proof (J.
Geom. and Physics 2009) by deriving this from the
equivalent formulation: if ω ∈ Ω•(log)z satisfies the
vanishing conditions of Thms 7 and 11, then FC`z ωz

is square integrable).


