Representations out of polydifferentials and the KZ-system

Eduard Looijenga (Universiteit Utrecht)

Sapporo, August 2009

Goals:

(1)To construct the highest weight representations of Kac-Moody Lie algebras inside algebras of polydifferentials.

(2) To connect this with the Schechtman-Varchenko approach to the KZ system.

(3) To apply this to the associated WZW system

1. Polydifferentials.

Definition: Let M be a manifold, \mathcal{I} a finite set. A *polydifferential* on $M^{\mathcal{I}}$ is a section of $\bigotimes_{i \in \mathcal{I}} (\wedge^{\bullet} T^* M)$ (this is an *ordinary* tensor product–no total order on \mathcal{I} is needed, no Koszul rule applies).

On the $\mathfrak{S}_{\mathcal{I}}$ -invariant polydifferentials on $M^{\mathcal{I}}$ is defined an exterior derivative up to sign, making it a complex whose cohomology is $(\otimes_{\mathcal{I}} H^{\bullet}(M))^{\mathfrak{S}_{\mathcal{I}}}$ $(\neq H^{\bullet}(M^{\mathcal{I}})^{\mathfrak{S}_{\mathcal{I}}}$ unless $H^{\bullet}(M) = H^{\mathsf{even}}(M)$.

We take for M the Riemann sphere (denoted here \mathbf{P}) whose affine coordinate is denoted t. For $X \subset \mathcal{I}$, $dt_X = \prod_{x \in X} dt_x$ is regarded is a (meromorphic) polydifferential of degree |X| on $\mathbf{P}^{\mathcal{I}}$ (no total order on X is needed).

Two modifications here: we allow \mathcal{I} to be (countably) infinite and we work in a relative setting (with base the affine line \mathbb{C} , coordinate z, later \mathbb{C}^n):

 $\mathbf{P}^{\mathcal{I}}_{\mathbb{C}}:\mathbf{P}^{\mathcal{I}}\times\mathbb{C}\to\mathbb{C}.$

Let $\mathcal V$ be the graded $\mathbb C\text{-vector}$ space of the relative polydifferentials on $\mathbf P^\mathcal I_{\mathbb C}$ which is $\mathbb C\text{-spanned}$ by the forms

$$\omega_{I*} = \omega_I(z) := \frac{dt_{i_N} dt_{i_{N-1}} \cdots dt_{i_1}}{(t_{i_N} - t_{i_{N-1}}) \cdots (t_{i_2} - t_{i_1})(t_{i_1} - z)}$$

where $I = (i_N, i_{N-1}, \dots, i_1)$ runs over the finite sequences in \mathcal{I} . (We write ω_{I*} if we want to leave the variable $z \in \mathbb{C}$ unnamed.) Stipulate $\omega_{\emptyset*} = \omega_* = 1$. Notice that we get zero unless the sequence I is without repetition. Denote by $\hat{\mathcal{V}}_N$ the space of (possibly infinite) sums of these relative polydifferentials of degree N and put $\hat{\mathcal{V}} := \bigoplus_{N=0}^{\infty} \hat{\mathcal{V}}_N$.

Lemma 1 (Shuffle rule) The graded vector space V is closed under product (it is a shuffle algebra): for finite sequences in *I* and *J* in \mathcal{I} ,

$$\omega_{I*}\omega_{J*} = \sum_{K \text{ a shuffle of } I \text{ and } J} \omega_{K*}$$

Some operators in $\widehat{\mathcal{V}}$.

Let be given complex numbers $(\lambda_i)_{i \in \mathcal{I}}$ and $(c_{i,j})_{i,j \in \mathcal{I}, i \neq j}$. For $i \in \mathcal{I}$ define an operator Φ_i in the space of meromorphic relative polydifferentials by

$$\Phi_i := \frac{\lambda_i dt_i}{t_i - z} - \sum_{j \neq i} c_{i,j} \frac{dt_i dt_j}{t_i - t_j} \iota_{\partial/\partial t_j},$$

Here dt_i is the multiplication operator in the space of these polydifferentials and by $\iota_{\partial/\partial t_i}$ its adjoint (which acts in the *i*th tensor factor by sending dt_i to 1 and 1 to 0). So for a finite subset $X \subset \mathcal{I}$, we have

$$\Phi_i(dt_X) = \left(\frac{\lambda_i}{t_i - z} - \sum_{x \in X} \frac{c_{i,x}}{t_i - t_x}\right) dt_i dt_X.$$

(the right hand side is zero when $i \in X$).

Lemma 2 This operator preserves \mathcal{V} (hence also the completion $\widehat{\mathcal{V}}$), for

$$\Phi_x(\omega_{I*}) = \sum_{I=I''I'} (\lambda_x - \sum_{i \in I'} c_{x,i}) \omega_{I''xI'*},$$

(the right hand side vanishes if $x \in I$).

Proof: Straightforward from shuffle rule.

Residue operators. We regard $\operatorname{Res}_{(t_x=\infty)}, x \in \mathcal{I}$, as an operator of \mathcal{V} to itself (so strictly speaking it is the composite of a residue and the pull-back along the projection that suppresses the *x*th factor).

Observe that for a sequence I in \mathcal{I} without repetition and $x \in \mathcal{I}$, we have

$$\operatorname{Res}_{(t_x=\infty)}\omega_{I*} = \begin{cases} -\omega_{J*} & \text{if } I = xJ, \\ 0 & \text{otherwise} \end{cases}$$

A straightforward calculation then yields:

Corollary 3 Given $x, y \in \mathcal{I}$, then $[\Phi_x, \operatorname{Res}_{(t_y=\infty)}]\omega_{I*} = 0$ unless $x = y \notin I$, in which case it multiplies ω_{I*} by the scalar $\lambda_x - \sum_{i \in I} c_{x,i}$.

2. Representations inside $\hat{\mathcal{V}}$.

Let $(c_{k,l})_{k,l=1}^r$ be a generalized Cartan matrix: $c_{k,k} = 2$, and for $k \neq l$, $c_{k,l} \in \mathbb{Z}_{\leq 0}$ with $c_{l,k} = 0 \Leftrightarrow c_{l,k} = 0$

Associated Lie algebra $\tilde{\mathfrak{g}}$ with generators $\tilde{e}_1, \ldots, \tilde{e}_r, \tilde{f}_1, \ldots, \tilde{f}_r$ subject to $[\tilde{e}_k, \tilde{f}_l] = 0$ for $k \neq l$ and if we put $\tilde{h}_k := [\tilde{e}_k, \tilde{f}_k]$, then

 $[\tilde{h}_k, \tilde{e}_l] = c_{k,l}\tilde{e}_l, \quad [\tilde{h}_k, \tilde{f}_l] = -c_{k,l}\tilde{f}_l, \quad [\tilde{h}_k, \tilde{h}_l] = 0.$

The Kac-Moody Lie algebra \mathfrak{g} is obtained by also imposing the Serre relations

 $\operatorname{ad}(\tilde{e}_k)^{1-c_{k,l}}\tilde{e}_l = 0, \quad \operatorname{ad}(\tilde{f}_k)^{1-c_{k,l}}\tilde{f}_l = 0$

for $k \neq l$.

 \mathfrak{h} , the Cartan subalgebra: linear span of the h_k 's. (In \mathfrak{g} we omit tilde's.)

In what follows we suppose our index set \mathcal{I} endowed with a surjection $\pi : \mathcal{I} \to \{1, \ldots, r\}$ such that each fiber $\mathcal{I}_k := \pi^{-1}(k)$ is countably infinite. We write \overline{i} for $\pi(i)$.

If $P = (p_N, \dots, p_1)$ is any sequence in $\{1, \dots, r\}$, then we put

$$\omega(P) := \sum_{\overline{I}=P} \omega_{I*},$$

where the sum is over all sequences in \mathcal{I} that map under π to P (for N = 0, read 1). The right hand side is an element of $\hat{\mathcal{V}}$ that is invariant under the group \mathfrak{S}_{π} of all permutations of \mathcal{I} that leave π invariant. In fact, these elements give a basis of $\hat{\mathcal{V}}^{\mathfrak{S}_{\pi}}$.

Now fix a *dominant weight* relative to the above Lie data, i.e., a sequence $\lambda = (\lambda_1, \dots, \lambda_r)$ of r nonnegative integers.

We take for the coefficients defining Φ_i , $c_{i,j} := c_{\overline{i},\overline{j}}$, $\lambda_i := \lambda_{\overline{i}}$:

$$\Phi_i := \frac{\lambda_{\overline{i}} dt_i}{t_x - z} - \sum_{j \neq i} c_{\overline{i}, \overline{j}} \frac{dt_i dt_j}{t_i - t_j} \iota_{\partial/\partial t_j},$$

For this choice of coefficients, we put

$$ilde{f}_k := \sum_{i \in \mathcal{I}_k} \Phi_i \quad (ext{acts in } \widehat{\mathcal{V}}).$$

Then

$$\tilde{f}_k \omega(P) = \sum_{P=P''P'} (\lambda_k - c_{k,P'}) \omega(P''kP')$$

The residue formula suggests to put:

$$\tilde{e}_k \omega(P) := \begin{cases} \omega(P') & \text{if } P = kP', \\ 0 & \text{otherwise} \end{cases}$$

It is then clear that \tilde{e}_k and \tilde{f}_l commute when $k \neq l$ and that $[\tilde{e}_k, \tilde{f}_k]$ multiplies $\omega(P)$ by the scalar $\lambda_k - c_{k,P}$. The residue lemma shows that we have an interpretion \tilde{e}_k as a sum of residues along divisors at infinity: **Lemma 4** Let $\omega \in \hat{\mathcal{V}}^{\mathfrak{S}_{\pi}}$. Then the restriction of $\tilde{e}_k \omega$ to the hyperplane $t_i = \infty$, $i \in \mathcal{I}_k$, as a polydifferential equals $-\operatorname{Res}_{(t_i=\infty)} \omega$. In fact, if we identify this residue with a form on $\mathbf{P}_{\mathbb{C}}^{\mathcal{I}}$ via its pull-back under the projection $\mathbf{P}_{\mathbb{C}}^{\mathcal{I}} \to \mathbf{P}_{\mathbb{C}}^{\mathcal{I}-\{i\}}$, then

$$\tilde{e}_k(\omega) = -\sum_{i\in\mathcal{I}_k} \operatorname{Res}_{(t_i=\infty)} \omega.$$

In particular, $\tilde{e}_k(\omega) = 0$ if and only if ω is regular along the hyperplanes $(t_i = \infty)$, $i \in \mathcal{I}_k$.

Proposition 5 The operators \tilde{e}_k , \tilde{f}_k , k = 1, ..., r, define a representation of $\tilde{\mathfrak{g}}$ on $\hat{\mathcal{V}}^{\mathfrak{S}_{\pi}}$ which in addition satisfies the Serre relation $\operatorname{ad}(\tilde{f}_k)^{1-c_{k,l}}\tilde{f}_l = 0$ $(k \neq l)$.

Denote by $\mathcal{V}(\lambda)$ the smallest subspace of $\widehat{\mathcal{V}}^{\mathfrak{S}_{\pi}}$ that contains 1 and is invariant under the operators $\widetilde{f}_1, \ldots, \widetilde{f}_r$.

Theorem 6 Then $\tilde{\mathfrak{g}}$ acts on $\mathcal{V}(\lambda)$ through the highest weight representation of \mathfrak{g} of weight λ with highest weight vector 1. This highest weight representation is integrable in the sense that each of the e_k and f_k acts in a locally nilpotent fashion.

Generalization to a tensor product of highest weight representations

Fix dominant weights, $\lambda^{(1)}, \ldots, \lambda^{(n)}$. Work now with n variables z^1, \ldots, z^n instead of one: we consider $\mathbf{P}_{\mathbb{C}^n}^{\mathcal{I}} : \mathbf{P}^{\mathcal{I}} \times \mathbb{C}^n \to \mathbb{C}^n$. For n sequences I^1, \ldots, I^n in \mathcal{I} we have the relative polydifferential

$$\omega_{I^1}(z^1)\omega_{I^2}(z^2)\cdots\omega_{I^n}(z^n).$$

on $\mathbf{P}_{\mathbb{C}^n}^{\mathcal{I}}$. It is zero unless the sequence $I^{(1)} \cdots I^{(n)}$ is without repetition.

 $\mathcal{V}(\mathbf{z})$: the graded vector space spanned by these polydifferentials.

 $\widehat{\mathcal{V}}(\mathbf{z})_N$: the completion of $\mathcal{V}(\mathbf{z})_N$ which allows for infinite sums, $\widehat{\mathcal{V}}(\mathbf{z}) := \bigoplus_N \widehat{\mathcal{V}}(\mathbf{z})_N$.

Given *n* sequences (P^1, \ldots, P^n) in $\{1, \ldots, r\}$, we observe that

$$\prod_{\nu=1}^{n} \omega(P^{\nu})(z^{\nu}) = \sum_{\overline{I^{\nu}}=P^{\nu}} \omega_{I^{1}}(z^{1})\omega_{I^{2}}(z^{2})\cdots\omega_{I^{n}}(z^{n}),$$

sum is over all *n*-tuples of sequences (I^1, \ldots, I^n) in \mathcal{I} which map under π to (P^1, \ldots, P^n) .

These elements form a \mathbb{C} -basis of $\hat{\mathcal{V}}(z)^{\mathfrak{S}_{\pi}}$ and so the above factorization defines an isomorphism

$$\widehat{\mathcal{V}}(\mathbf{z})^{\mathfrak{S}_{\pi}}\cong \widehat{\mathcal{V}}^{\mathfrak{S}_{\pi}}\otimes_{\mathbb{C}}\cdots\otimes_{\mathbb{C}}\widehat{\mathcal{V}}^{\mathfrak{S}_{\pi}}.$$

The action of \tilde{f}_k operating on the ν th factor with dominant weight $\lambda^{(\nu)}$ is denoted $\tilde{f}_k^{(\nu)}$. The sum $\sum_{\nu=1}^n \tilde{f}_k^{(\nu)}$ acts as \tilde{f}_k in the tensor representation and hence is simply denoted \tilde{f}_k . We do likewise for the other generators of \tilde{g} .

It is clear that

$$\mathcal{V}(\lambda^*) := \mathcal{V}(\lambda^{(1)}) \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} \mathcal{V}(\lambda^{(n)})$$

is the smallest subspace of $\hat{\mathcal{V}}^{\mathfrak{S}_{\pi}}$ that contains 1 and is invariant under the operators $\tilde{f}_{k}^{(\nu)}$ and $\tilde{h}_{k}^{(\nu)}$. It is the tensor product of *n* highest weight representations.

Notice that the subspace $\mathcal{V}(\lambda^*)_0$ killed by \mathfrak{h} is trivial unless $\sum_{k=1}^r \lambda^{(k)}$ is a sum of positive roots: $\sum_{k=1}^r \lambda^{(k)} = \sum_{k=1}^r m_k \alpha_k$; if $m := \sum_k m_k$, then $\mathcal{V}(\lambda^*)_0 = \mathcal{V}_m(\lambda^*)$ (polydifferentials of degree m).

It follows from our residue formula that:

Theorem 7 The space of \mathfrak{g} -invariants $\mathcal{V}(\lambda^*)^{\mathfrak{g}}$ is the space of polydifferentials in $\mathcal{V}_m(\lambda^*)$ that are regular along every hyperplane at infinity $(t_i = \infty), i \in \mathcal{I}$.

3. The KZ-connection

Let $\lambda^* = (\lambda^{(1)}, \dots, \lambda^{(n)})$ and $\mathcal{V}(\lambda^*) = \mathcal{V}(\lambda^{(1)}) \otimes \dots \otimes \mathcal{V}(\lambda^{(n)})$ (a representation of \mathfrak{g}) be as before.

We fix the choice of a symmetric g-invariant tensor $C \in (\mathfrak{g} \otimes \mathfrak{g})^{\mathfrak{g}}$. We may regard C as a g-invariant symmetric bilinear form on \mathfrak{g}^* . If g is simple, then C is unique up to scalar, and C is nondegenerate, when nonzero.

 \boldsymbol{C} will have the form

$$C = C_0 + \sum_{\alpha} C_{\alpha},$$

with $C_0 \in \mathfrak{h} \otimes \mathfrak{h}$ and the sum is over all the roots. Here C_0 can be any symmetric tensor invariant under the Weyl group. It then determines C as follows: if α is a positive root and $e_{\alpha} \in \mathfrak{g}_{\alpha}$ and $f_{\alpha} \in \mathfrak{g}_{-\alpha}$ are generators such that $h_{\alpha} := [e_{\alpha}, f_{\alpha}]$ is the corresponding coroot in \mathfrak{h} (this means that $\alpha(h_{\alpha}) = 2$), then $C_{\alpha} = \frac{1}{2}C(\alpha, \alpha)e_{\alpha} \otimes f_{\alpha}$ and $C_{-\alpha} = \frac{1}{2}C(\alpha, \alpha)f_{\alpha} \otimes e_{\alpha}$ (so $C_{-\alpha}$ is the transpose of C_{α}).

Comparison with the 1991 paper of Schechtman and Varchenko

They consider the case of a 'symmetrized generalized Cartan matrix' and use a presention of \mathfrak{g} derived from that. They work with a fixed weight space and take \mathcal{I} finite and minimal in a sense (the representation is then absent). The interpretation of the KZ connection in terms of polydifferentials that we give below is due to them.

The KZ connection

For $1 \le \nu < \mu \le n$, let $C^{(\nu,\mu)}$ be the endomorphism of $\mathcal{V}(\lambda^*)$ obtained by letting *C* act trough the tensor factors indexed by ν and μ . This operator commutes with the diagonal action of \mathfrak{g} and hence preserves the \mathfrak{g} -isotypical summands. Our base variety will be the subset $U_n \subset \mathbb{C}^n$ defined by $\prod_{\nu < \mu} (z^{\nu} - z^{\mu}) \neq 0$. The KZ connection is the connection on the trivial bundle over U_n with fiber $\mathcal{V}(\lambda^*)$, given by the End $(\mathcal{V}(\lambda^*))$ -valued differential

$$A_{KZ}^{C} := \sum_{1 \le \nu < \mu \le n} C^{(\nu,\mu)} \frac{d(z^{\nu} - z^{\mu})}{z^{\nu} - z^{\mu}},$$

where $C^{(\nu,\mu)}$ means to have C act on $\mathcal{V}(\lambda^*)$ via its tensor factors indexed by ν and μ . This is clearly a connection with logarithmic singularities on \mathbb{C}^n . It is known to be flat.

A Gauss-Manin connection

Central in the discussion is a differential associated to C:

$$\eta^{C} := \frac{1}{2} \sum_{i,j \in \mathcal{I}, i \neq j} C(\alpha_{\overline{i}}, \alpha_{\overline{j}}) \frac{d(t_{i} - t_{j})}{t_{i} - t_{j}} + \sum_{\nu = 1}^{n} \sum_{i \in \mathcal{I}} C(\alpha_{\overline{i}}, \lambda^{(\nu)}) \frac{d(t_{i} - z^{\nu})}{t_{i} - z^{\nu}} + \sum_{1 \leq \nu < \mu \leq n} C(\lambda^{(\nu)}, \lambda^{(\mu)}) \frac{d(z^{\nu} - z^{\mu})}{z^{\nu} - z^{\mu}}$$

It is logarithmic and we can formally write it as $-d \log F^C$, where F^C is a product of linear forms with complex exponents. Consider the first order differential operator $d^C := d + \eta^C$. So d^C is the ordinary exterior derivative for the multivalued polydifferentials after they get formally multiplied by the inverse of F^C : $d^C = F^C d (F^C)^{-1}$. In particular (but still formally), a d^C -closed form is F_C times a d-closed form.

The corresponding connection (of Gauss-Manin type) on the form level requires us to lift each basis

vector field $\partial_{\nu} := \partial/\partial z^{\nu}$ on U_n to $\mathbf{P}^{\mathcal{I}} \times U_n$ and then covariant derivation with respect to z^{ν} will be Lie derivation with respect to that lift. In order to ensure that logarithmicity is preserved we take a lift that depends on the argument:

Lemma 8 Let $\omega := \omega_{I^1}(z^1)\omega_{I^2}(z^2)\cdots\omega_{I^n}(z^n)$ be a basis element of $\mathcal{V}(\mathbf{z})$ and let $\tilde{\partial}_{\nu} := \partial_{\nu} + \sum_{i \in I^{\nu}} \frac{\partial}{\partial t_i}$ (a vector field on $\mathbf{P}^{\mathcal{I}} \times U_n$ that lifts the vector field ∂_{ν} to U_n). Then the twisted Lie derivative $\mathcal{L}^C_{\tilde{\partial}_{\nu}} := d^C \iota_{\tilde{\partial}_{\nu}} + \iota_{\tilde{\partial}_{\nu}} d^C$ maps ω to $\eta^C(\tilde{\partial}_{\nu}).\omega$ and the latter lies in $\mathbb{C}[U_n] \otimes_{\mathbb{C}} \mathcal{V}(\mathbf{z})$. This map is \mathfrak{S}_{π} -equivariant and defines a connection on $\mathcal{V}(\mathbf{z})$ with logarithmic pole whose form A^C_{GM} lies in

$$\sum_{\nu < \mu} \frac{d(z^{\nu} - z^{\mu})}{z^{\nu} - z^{\mu}} \otimes_{\mathbb{C}} \mathsf{End}_{\mathbb{C}^n}(\mathcal{V}(\mathbf{z})).$$

We refer to this as the Gauss -Manin connection.

Theorem 9 The GM connection on the trivial bundle over U_n with fiber $\mathcal{V}(\lambda^*)$ coincides with the KZ connection: $A_{GM}^C = A_{KZ}^C$.

4. The WZW system

We assume \mathfrak{g} simple. Let $\tilde{e} \in \mathfrak{g}$ be a longest nonzero iterated commutator of e_k 's (spans the highest coroot space). For $\mathbf{z} \in U_n$, we write $e_{\mathbf{z}} := \sum_{k=1}^r z^{\nu} \tilde{e}^{(\nu)}$.

Definition. Fix a positive integer ℓ , referred to as the *level*. The space of conformal blocks of level ℓ relative to z is the subspace of $\mathcal{V}(\lambda^*)$ killed by g and $\tilde{e}_z^{\ell+1}$. These define a subbundle of the trivial bundle $\mathcal{V}(\lambda^*)_{U_n}^{\mathfrak{g}}$, called the *bundle of conformal blocks of level* ℓ . We denote this bundle $\mathcal{W}(\lambda^*)_{\ell}$.

There is a natural generator $B \in (\mathfrak{g} \otimes \mathfrak{g})^{\mathfrak{g}}$, namely the one which takes the value 2 on the highest coroot.

Denote by g_k the number of times e_k occurs and put $g := 1 + \sum_{k=1}^{r} g_k$ (the *dual Coxeter number*).

Proposition 10 (Beilinson-Feigin) The bundle $W(\lambda^*)_{\ell}$ is flat for the KZ-connection for which $C = C_{\ell} := \frac{1}{g+\ell}B.$

Can characterize $\mathcal{W}(\lambda^*)_{\ell}$ in terms of a vanishing property.

Assume that $\mathcal{V}(\lambda^*)_0 \neq 0$ (otherwise no issue) so that $\sum_{k=1}^r \lambda^{(k)}$ is a sum of simple roots: $\sum_{k=1}^r \lambda^{(k)} = \sum_{k=1}^r m_k \alpha_k.$

Theorem 11 (vanishing criterion) $\omega \in \mathcal{V}(\lambda^*)$ defines a section of $\mathcal{W}(\lambda^*)_{\ell}$ if and only if for any subset $X \subset \mathcal{I}$ with $|X \cap \mathcal{I}_k| = (\ell + 1)g_k, \omega$ vanishes on the locus $t_x = \infty$ for all $x \in X$ (i.e., if we blow up this subspace, then ω vanishes on it).

4. Topological interpretation

As before, we assume that $\mathcal{V}(\lambda^*)_0 \neq 0$, so that $\sum_{k=1}^r \lambda^{(k)} = \sum_{k=1}^r m_k \alpha_k$. We put $m := \sum_k m_k$.

For the study of $\mathcal{V}(\lambda^*)_0 = \mathcal{V}_m(\lambda^*)$ no harm is done if we assume (as we will) that \mathcal{I} is finite and $|\mathcal{I}_k| = m_k$ (so that $|\mathcal{I}| = m$). Now $\mathcal{V}(\lambda^*)_0$ has become a space of relative polydifferentials of *maximal* degree m on $\mathbb{P}_{U_m}^{\mathcal{I}}$.

Denote by $D \subset \mathbf{P}_{U_n}^{\mathcal{I}}$ the sum of the divisors defined by $t_i = \infty$, $t_i = z^{\nu}$, $t_i = t_j$ $(i \neq j)$. Let $\Omega^{\bullet}(\log)_{U_n}$ be the \mathcal{O}_{U^n} -module of *relative* logarithmic forms on $\mathbb{P}_{U_n}^{\mathcal{I}}$ with polar divisor D that are *anti-invariant* relative to the $\mathfrak{S}_{\mathcal{I}}$ -action. Wedging with η_C turns $\Omega^{\bullet}(\log)_{U_n}$ into a complex $(C \neq 0$ here).

Lemma 12 For every $z \in U_n$, $\mathcal{V}(\lambda^*)_0$ maps isomorphically onto $\Omega^m(\log)_z$ with $f(\mathcal{V}(\lambda^*)_2) = f(\mathcal{V}_{m-1}(\lambda^*))$ being mapped onto $\eta^C \wedge \Omega^{m-1}(\log)_z$. **Corollary 13 (Schechtman-Varchenko)** We get for every $z \in U_n$ an identification

$$\mathcal{V}(\lambda^*)^{\mathfrak{g}} \cong H^m(\Omega^{ullet}(\log)_{\mathbf{Z}}, \eta^C_{\mathbf{Z}} \wedge).$$

With the help of work of Deligne and Esnault-Schechtman-Viehweg we can obtain a topological interpretation of the right hand side.

On $\mathbf{P}_{U_n}^{\mathcal{I}} - D$ we have a local system \mathbb{L}^C of rank one with connection form η^C .

There is a natural blow up $\mathcal{X} \to \mathbf{P}_{U_n}^{\mathcal{I}}$, minimal for the property that the full transform of D is a normal crossing divisor. Then η^C has on every irreducible component a residue. Let $\tilde{D} \subset \mathcal{X}$ be a union of such irreducible components with the property that if an irreducible component has *integral* residue, then it is in \tilde{D} if and only if that residue is nonpositive (so this \tilde{D} is not unique). We then have an inclusion

$$j: \mathbf{P}_{U_n}^{\mathcal{I}} - D \subset \mathcal{X} - \tilde{D}.$$

The following sharpens a theorem of Schechtman-Varchenko.

Theorem 14 For every $z \in U_n$, we have a natural identification of $\mathcal{V}(\lambda^*)^{\mathfrak{g}} \cong H^m(\Omega^{\bullet}(\log)_z, \eta_z^C \wedge)$ with $\mathbb{H}^m(\mathbf{P}_z^{\mathcal{I}} - D_z; R^{\bullet}j_!\mathbb{L}_z^C)^{sign}$. This identifies the Gauss-Manin given by A_{GM}^C with the usual one.

It is conjectured that the bundle of conformal blocks has a flat inner product. We conjecture more:

Conjecture 15 For every $z \in U_n$, the flat isomorphism $\mathcal{V}(\lambda^*) \cong \mathbb{H}^m(\mathbf{P}_z^{\mathcal{I}} - D_z; R^{\bullet}j_!\mathbb{L}_z^C)^{sign}$ identifies $\mathcal{W}(\lambda^*)_{\ell}$ with the bidegree (m, 0)-part of the image of

 $H_c^m(\mathbf{P}_{\mathbf{z}}^{\mathcal{I}} - D_{\mathbf{z}}; \mathbb{L}_{\mathbf{z}}^{C_{\ell}})^{sign} \to \mathbb{H}^m(\mathbf{P}_{\mathbf{z}}^{\mathcal{I}} - D_{\mathbf{z}}; R^{\bullet}j_!\mathbb{L}_{\mathbf{z}}^{C})^{sign}$

So this bidegree (m, 0)-part should be flat and the inner product then should come from Hodge theory (use that $\mathbb{L}^{C_{\ell}}_{\mathbf{z}}$ has a flat metric).

The conjecture holds for the case $\mathfrak{g} = \mathfrak{sl}(2)$; this essentially follows from work of *T.R. Ramadas* (Ann. of Math. 2009) (we gave a more direct proof (J. Geom. and Physics 2009) by deriving this from the equivalent formulation: if $\omega \in \Omega^{\bullet}(\log)_{\mathbb{Z}}$ satisfies the vanishing conditions of Thms 7 and 11, then $F_{\mathbb{Z}}^{C_{\ell}}\omega_{\mathbb{Z}}$ is square integrable).