Moduli of abelian varieties in mixed and in positive
characteristic

Frans Oort

ABSTRACT. We start with a discussion of CM abelian varieties in character-
istic zero, and in positive characteristic. An abelian variety over a finite field
is a CM abelian variety, as Tate proved. Can it be CM lifted to characteristic
zero? Here are other questions. Does there exist an abelian variety, say over
Q2, or over Fp, of dimension g > 3 not isogenous with the Jacobian of an
algebraic curve? Can we construct algebraic curves, say over C, where the Ja-
cobian is a CM abelian variety? We give (partial) answers to these questions
and discuss stratifications and foliations of moduli spaces of abelian varieties
in positive characteristic.
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Introduction

0.1. In 1857, discussing what we now call Riemann surfaces of genus p, Riemann

“

wrote: und die zu ihr behorende Klasse algebraischer Gleichungen von 3p-3
stetig veranderlichen Gréssen ab, welche die Moduln dieser Klasse genannt werden
sollen.” See [125], Section 12. Therefore, we now use the concept “moduli” as the

parameters on which deformations of a given geometric object depend.

0.2. Moduli of CM abelian varieties. Most readers, reading this title will
have the reaction: “CM abelian varieties have no moduli.” Indeed, over C this
is true, see 3.3, and “the moduli” of such objects over C is not a very interesting
topic. The arithmetic of CM points over a number field is fascinating, on which
Hilbert stated:“... the theory of complex multiplication ... was not only the most
beautiful part of mathematics but also of all science.” See [124], page 200. However
this will not be our focus.

We will study CM abelian varieties in positive characteristic, and in mixed
characteristic. In positive characteristic there are many CM abelian varieties which
“do have moduli”: there are CM abelian varieties which cannot be defined over
a finite field. A theorem by Grothendieck, see 3.2, and see [92], however tells us
that after applying an isogeny, we can descend to a finite field. We end Section 3
by discussing a proof by Yu of this theorem.

A theorem by Tate tells us that every abelian variety defined over a finite
field is a CM abelian variety, see [132]. Does every abelian variety over a finite field
admit a CM lifting? A theorem by Honda says that after extending the base field
and moreover applying an isogeny we can arrive at a situation where a CM lifting
is possible; see 4.5. Is an isogeny necessary? Is a field extension necessary? These
questions have a satisfactory answer, see Section 4. For complete information see
[12]

Fix an algebraically closed field k, and an integer g > 3. Does there exist an
abelian variety of dimension g not isogenous with a Jacobian? We discuss partial
answers to this interesting question; see Section 5.

0.3. Moduli of abelian varieties in positive characteristic. In the second
part we discuss stratifications and foliations of our basic hero A, @ F),: the moduli
spaces of polarized abelian varieties of dimension ¢ in positive characteristic p.

In characteristic zero we have strong tools at our disposal: besides algebraic-
geometric theories we can use analytic and topological methods. It seems that we
are at a loss in positive characteristic. However the opposite is true. Phenomena,
only occurring in positive characteristic, provide us with strong tools to study
these moduli spaces.
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We describe constructions of various stratifications and foliations which re-
sult from p-adic aspects of abelian varieties in characteristic p. The terminology
“stratification” and “foliation” will be used in a loose sense.

e A stratification will be a way of writing a space as a finite disjoint union
of locally closed subspaces of that space; in some cases we will also check
whether the boundary of one stratum is the union of “lower strata”.

e A foliation will be a way of writing a space as a disjoint union of locally
closed subspaces of that space; in this case we have some extra conditions,
specified below.

For an abelian variety A — S over a base scheme S, and a positive integer
m we define the group scheme:

Alm] := Ker(xm : A — A).

Note that A[m] — S is a finite, flat group scheme. For a prime number p we define
the p-divisible group of A by:

This ind-group scheme is also called a Barsotti-Tate group scheme. If the prime
number p is invertible on the base, the study of A[p>°] amounts to the same as the
study of T),(A), the Tate p-group of A. However, the ind-group scheme A[p>] pro-
vides us with information very different from aspects of T;(A) := lim.proj.; A[¢%],
where £ is a prime number invertible on the base scheme, respectively different
from the characteristic p of the base field.

For g,d € Zso we write Ay 4 — Spec(Z) for the moduli space of abelian
schemes of dimension g, with a polarization of degree d? over base schemes over
Z. See [79]. In the second part of this paper we fix a prime number p and we write
Ay for the scheme

Ag = Ugq Ag,d @Iy,

the moduli scheme of polarized abelian varieties in characteristic p. In some cases
we only have coherent results for subvarieties of a given type of A, 1, the principally
polarized case; e.g. EO strata, and the Grothendieck conjecture. However, in other
cases it is interesting and necessary to study also non-principally polarized abelian
varieties, e.g. in the case of NP strata and of leaves.

In §§ 6 — 14 base fields, and base schemes will be in characteristic p, unless
otherwise specified. We will write & and 2 for an algebraically closed field. We
write K for an arbitrary field.

0.4. Here is a survey of the strata and leaves we are going to construct. For
an abelian variety A over an algebraically closed field and its p-divisible group
X = A[p*>], we consider three “invariants” of A:
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NP A A]p™>®]— A]p™>]/ ~;

over an algebraically closed field, by the Dieudonné - Manin theorem, the
isogeny class of a p-divisible group can be identified with the Newton polygon of
A, see 6.5, 6.6. We obtain the Newton polygon strata. See Section 7.

EO  (4,A) — (A N)p] — (4, N)pl/ =

over an algebraically closed field the isomorphism class of (A4, \)[p] will be
called the EO class of (A, A); we obtain EO strata; see [104]. Important feature
(Kraft, Oort): the number of geometric isomorphism classes of group schemes of
a given rank annihilated by p is finite. See Section 10 for definitions and more
details.

Fol (A,A) = (A, N)[p™] — (A4, N)[p>]/ =

we obtain a foliation of an open Newton polygon stratum; see [111]. Note
that for f < g — 1 the number of central leaves is infinite; here f is the p-rank, see
6.4. See Section 11 for definitions and more details.

It will turn out that strata and leaves defined in this way are locally closed in A,.
To the p-divisible group X = A[p>] of an abelian variety A we attach various
“invariants”:

A[p®] up to ~ 3 NP | W,
Alp'l = X[p'] up to & | EO | S,
(A[p>], A) up to = (X,\) | Fol | C(z)

We explain these notions and notations below.

0.5. Here are some motivating questions and problems connected with stratifica-
tions and foliations considered:

e What is the Hecke orbit of a point in the moduli space of polarized abelian
varieties? Over C: such an orbit is dense in the moduli space A(C). What
can we say about this question in positive characteristic? See 13.

e What is the maximal dimension of a complete subvariety of A4(C) ?

e What are the complete subvarieties of maximal dimension in A, ® I, 7

e Describe NP strata in the moduli space of abelian varieties in characteristic
p. Are they irreducible? If not, what is the number of geometrically
irreducible components?

e A conjecture by Grothendieck: which Newton polygons occur in the local
deformation space of a given p-divisible group, or a given polarized abelian
variety? See Section 8. This conjecture pins down the following question.

e What are the boundary points inside .4, of an open Newton polygon stra-
tum? A similar question for EO strata and for central leaves.

e What kind of strata are given by fixing the isomorphism class of the p-
kernel of abelian varieties studied.
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e What kind of leaves are given by fixing the isomorphism class of the p-
divisible group of the abelian varieties studied.
e In which way do these stratifications and foliations “intersect”?

It will turn out that various stratifications and foliations of A; ® F,, and a
description of these structures give access to most of these questions.

0.6. Hecke correspondences in characteristic zero, or more generally Hecke orbits
involving isogenies of degree prime to the characteristic of the base field, are finite-
to-finite. However, in characteristic p Hecke correspondences may blow up and
down subsets of the moduli space (if we consider “a-Hecke-orbits”). We will
understand this phenomenon, by introducing “isogeny leaves”, and we will see
that on “central leaves” all Hecke correspondences are finite-to-finite.

For some of our results we have to restrict to principally polarized abelian va-
rieties, in order to obtain nice, coherent statements. For example the Grothendieck
conjecture, see Section 8, holds for principally polarized abelian varieties, but its
analogue for non-principal polarizations admits counterexamples.

In some cases, by some miracle, statements holds more generally for all de-
grees of polarizations (e.g. the dimensions of the p-rank-strata, e.g. irreducibility
of non-supersingular central leaves). However, in other cases the condition that
the polarization is principal is essential, e.g. the question whether (a = 1)-locus is
dense in a NP stratum.

Note: X 2 Y = N(X) = N(Y); conclusion: every central leaf in Fol is
contained in exactly one Newton polygon stratum in NP. Here N'(X) stands for
the Newton polygon of X, see 6.4.

However, a NP-stratum can contain points in many different EO strata, and
an EO stratum may intersect several NP-strata; this phenomenon is only partially
understood. If the p-rank is smaller than g — 1 a NP-stratum contains infinitely
many central leaves. Whether an EO stratum equals a central leaf is studied and
answered in the theory of minimal p-divisible groups, see Section 12.

We will see that supersingular abelian varieties on the one hand and non-supersingular
abelian varieties on the other hand in general behave very differently.

0.7. Supersingular NP-strata, EO-strata and central leaves in general are re-
ducible (Katsura-Oort, Li-Oort, Harashita) (for p > 0). But

0.8. Non-supersingular NP-strata, EO-strata in the principally polarized case
and central leaves are geometrically irreducible (Oort, Ekedahl-Van der Geer,
Chai-Oort).

These structures will be studied for (polarized) abelian varieties. They can also be
discussed for p-divisible groups and for quasi-polarized p-divisible groups. These
questions, usually easier, will be omitted, except for a brief discussion of the papers
[155], [120].
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Many of results discussed below can be considered for arbitrary Shimura
varieties instead of the moduli space of abelian varieties. Especially stratifications
and foliations studied below have been described in that language. It would be
nice to have a survey of results in that quickly developing field. However for this
note that would lead us too far. So we have decided to restrict this survey to
results about CM abelian varieties and about stratifications and foliations in the
moduli space of abelian varieties.

Acknowledgment. Several results in this survey are joint work with Ching-Li
Chai; the influence of his ideas will be clear in many aspects. I received further in-
spiration from joint work with Tadao Oda, John Tate, Hendrik Lenstra, Toshiyuki
Katsura, Tomoyoshi Ibukiyama, Ke-Zheng Li, Torsten Ekedahl, Eyal Goren, Jo-
han de Jong, Thomas Zink, Brian Conrad, Chia-Fu Yu and Ben Moonen. I thank
them all.

1. Notation/Preliminaries.

1.1. We write K and « for a field. We write Q% for an algebraic closure of Q.
Also L will be used, but in that case this will usually be a CM field. We write k
for an algebraically closed field. Once a positive characteristic p is fixed, we write
F:= E, an algebraic closure of the prime field in characteristic p.

We write End(A) for the ring of endomorphisms of an abelian variety A over
a field K; this ring has no Z-torsion, i.e. if n € Z~ and ¢ € End(A4) with n-¢ =0,
then ¢ = 0. We write End”(A) := End(A) ®z Q, the endomorphism algebra of A.

An abelian variety A over a field K is called simple, or K-simple if confusion
can occur, if 0 and A are the only abelian subvarieties of A, over K. It may
happen, and examples are easy to give, that A is K-simple, although A ® K’ is
not K’-simple for some field extension K C K'.

If an abelian variety A over a field K is simple, if and only if its endomorphism
algebra End®(A) is a division algebra.

Suppose the characteristic of K equals p > 0. For a group scheme G over
K we write f(G), called the p-rank of G, for the number f = f(G) such that
Hom(pp 1, Gx) = (Z/p)! for an algebraic closure k of K. For an abelian variety
G = A this number can also be defined by:

Hom(Z/p, A(k)) = A(k)[p] = (Z/p)’.

For an abelian variety A of dimension g we have 0 < f < g, and all values do
appear.

1.2. We say that an abelian variety A over of dimension g a field K D F, is
ordinary in case f(A) = g; we say that A is almost ordinary if f(A) =g — 1.
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A polarization on an abelian variety A induces an involution ¢ : End® A) —
End’(A), called the Rosati involution. This is positive definite; see [63], Ch. 1,
1.

A central simple algebra of finite dimension over Q with a positive definite
involution is called an Albert algebra. Such algebras have been classified; for ref-
erences e.g. see [78], Section 21; [64], Ch. 5, § 5; [118], 18.2, [15], 10.14.

It has been proved that for any Albert algebra (D,t) and any prime field P
there exists an algebraically closed field & D P, and a simple abelian variety A over
k such that its endomorphism algebra with Rosati involution equals (D,¢) up to
isomorphism. This has been proved by Albert, by Shimura and by Gerritzen. For
abelian varieties over C, see [128], Section 4, especially Theorem 5. For abelian
varieties in arbitrary characteristic see [37], Th. 12; see [97], Th. 3.3. However,
given P =T, and (D, ) it is in general not so easy to find the minimal g for which
an abelian variety of dimension ¢ realizes this Albert algebra in that characteristic;
there are cases where the result depends on the characteristic; see [97].

1.3. The group scheme o, is defined as the kernel of the Frobenius homomorphism
F : Go — G, on the additive group scheme G,. The rank of o, equals p. As
a scheme, over a base field K D F, it equals Spec(K[e]/(eP)). If it is clear over
which base S in characteristic p we work, we will write «,, in stead of oy, 5; we
will take care this does not lead to confusion; e.g. the meaning of Hom(a,, o) is
unclear if a base scheme is not specified. For a group scheme G over K we define
the a-number of G as

a(G) = dimg (Hom(a, g, GEg)),

where E is a perfect field containing K. For a group scheme of dimension g smooth
over a base field K D F), clearly 0 < a(G) < g. By the way, in case A is an abelian
scheme of dimension g and a(A) = g then over an algebraically closed field A is
isomorphic with a product of supersingular curves; for more information see § 6;
such an abelian variety is called superspecial; see 6.16.

Moduli of CM abelian varieties

2. Complex multiplication on abelian varieties

2.1. Some references: the book [130] is the classic studying this topic; in [132]
we find a proof for the Tate conjecture for abelian varieties over a finite field; the
Albert classification is described in [78]. We will only discuss one aspect of this
topic.

Proposition 2.2. Let K be a field, and let A be an abelian variety over K of
dimension g. Let A C End’(A) be a commutative, semi-simple Q-subalgebra.
Then dimgA < 2g. a
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This proposition is well-known. For example see [12], Ch. I. Note that dimgA
need not be a divisor of 2g.

Definition 2.3. Let A be an abelian variety of dimension g. We say that A ad-
mits sufficiently many complex multiplications, sometimes abbreviated as smCM,
if there exists a commutative, semi-simple Q-subalgebra A C EndO(A) of dimen-
sion 2g over Q. An abelian variety which admits smCM will be called a “CM
abelian variety”.

2.4. The terminology “complex multiplication” stems from the theory of elliptic
curves. An elliptic curve E over C either has End(E) = Z, or Z & End(E).
This last case is indicated by the phrase “F has complex multiplication” as every
element of End(E) is induced by multiplication by a complex number z on the
tangent space of E. An endomorphism on a complex abelian variety is induced by
a linear transformation (not necessarily a multiplication) on its tangent space.

We give some comments. Sometimes people consider an “elliptic curve E over
Q with complex multiplication”. However, if E is defined over Q, then End(E) =
Z. The case considered concerns the property that Z g End(E ® C). Indeed, it
may happen that an abelian variety A over a field K does not admit smCM (over
K), but that there exists an extension K C K’ such that A ® K’ admits smCM.
For example the elliptic curve defined by Y2 = X3 — 1 over Q has “no CM” over
Q, but End(E ® Q(v-3)) = Z[G].

For any elliptic curve the property Z G End(E) implies that E admits smCM.
However there are many cases where an abelian variety A has an endomorphism
ring which is bigger than Z, although A does not admit smCM. For these reasons
we feel that the expression “A has complex multiplications” is ambiguous.

Furthermore it might happen that an abelian variety A over a field K admits
smCM, and that End(A4) G End(A ® K') for some field extension. For example,
as Deuring and Tate proved, an elliptic curve ' defined over F, admits smCM,
and EndO(E) is an imaginary quadratic field. However, if moreover F is “super-
singular”, i.e. the elliptic curve E has the property E(F)[p] = 0, then End(E ® F)
is a maximal order in a quaternion algebra.

We will encounter the terminology “of CM type”. We will use this only
for abelian varieties in characteristic zero. The type specifies the action of the
endomorphism algebra on the tangent space: an abelian variety of CM type is a CM
abelian variety over a field of characteristic zero with this extra information. An
isogeny induces an isomorphism of the endomorphism algebras; in characteristic
zero the type of a CM abelian variety is invariant under isogenies.

However in positive characteristic p the action of the endomorphism ring R
cannot be extended to an action of the endomorphism algebra D on the tangent
space T, because p.1 € R acts as zero on T' and End(A) has no Z-torsion. More-
over an isogeny might change the endomorphism ring, and it is not so easy to
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understand in which way an isogeny A — B changes the action of End(A) on T4
into the action of End(B) on Tg. Even if an isogeny leaves the endomorphism ring
invariant, the action of this ring on the tangent space may change. This interesting
phenomenon lies at the roots of aspects of the theory and the results we are going
to describe.

Proposition 2.5. Let L be a number field. The following conditions are equiva-
lent.

o There exists a subfield Lo C L which is totally real, [L : Lo) =2 and L is
totally imaginary.

o There exists an involution ¢ € Aut(L) such that for every embedding v :
L — C complex conjugation on C leaves (L) C C invariant, and its
restriction to ¥(L) coincides with ¢. O

Here “totally real” for a field Ly means that every embedding of Ly into C
gives an image contained in R. “Totally complex” for a field L means that no
embedding of L into C gives an image contained in R. For details see [63], Ch. 1,
§ 2, see [12].

Definition 2.6. A finite extension L of Q, i.e. a number field, is called a CM
field if it satisfies one of the equivalent conditions of the previous proposition.

Remark 2.7. If A is a CM abelian variety, then there exists a CM field L C
End’(A) with [L : Q] = 2.dim(A), see [133], Lemme 2 on page 100. However,
warning: a subfield of this size inside End’(A) need not be a CM field.

2.8. Some properties of CM fields and of CM abelian varieties have been described
in: [130], [63], [132], [78], [128], [133], [64], [97].

3. The isogeny class of a CM abelian variety is defined over a
finite extension of the prime field

Definition 3.1. Let A be an abelian variety over a field K, and let K1 C K be a
subfield. We say that A can be defined over K if there exists a field K C K5 and
an abelian variety B over K such that A ® Ky & B ® K.

Note that some authors use a different definition, saying that A can be defined
over K if it can be descended down from K to Kj.

We remark, with notation as in the definition, that this does not imply there
exists an abelian variety C' over K7 such that C @ K = A. An example is given
in [118], 15.2: for K = Fp2 with p = 3 (mod 4), the Weil p*-number m = p-v/—1
defines (the isogeny class of) an abelian variety A over K = F,2 such that A can
be defined over K; = F,, but such that A cannot be descended directly to K.

Here is another example. Let f € Q[X] be a cubic polynomial with no
multiple zeros in Q. Let ¢ be a transcendental over Q, and K = Q(t). Consider
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the elliptic curve E over K defined by tY? = f. We see that F ® Q(v/t) can
be descended to Q; hence E can be defined over Q, although E itself cannot be
descended to Q. The theory of quadratic twists explains this example, and shows
that we can give such examples for every elliptic curve over a field K which admits
a separable quadratic extension.

Here is again an example; compare with 5.21. Consider the elliptic curve E
(as the complete, nonsingular model of the affine curve)

Y3=X.(X—-1)(X —t), where QcC Q(t)

is a purely transcendental extension. We see that the morphism (z,y) — z is
a 3 : 1 (Galois) covering ramified in three points. Hence the curve E can be
defined over Q = Q% N Q(¢). Another argument: the curve E has CM by Z[(s]
given by y +— (3-y; from, this it follows that the elliptic curve E’ defined by
n? = ¢ — 1 has the property that over the algebraic closure K¢ = Q(¢)® we have
E® K*=>= F' ® K% This can all be made explicit by a computation. We see that
E cannot be descended to Q, but there exists a cubic extension K C K’ such that
EQK 2F oK'

Theorem 3.2 (Grothendieck, [95], [151]). Let A be an abelian over field K which
admits smCM; let P C K be the prime field contained in K. Hence P = Q or
P =T,. There exists a finite extension P C K; and an abelian variety A" over K
which is K-isogenous to A such that A’ can be defined over K. O

A variant inspired by Grothendieck’s proof was published, with his permis-
sion, in [95]. Another proof, sketched below, was given by Yu, see [151], 1.3 and
1.4. Note that an isogeny A ~x A’ as in the theorem can be chosen over K,
as follows by the proof of Yu, but in general A’ cannot be descended to a finite
extension of P.

Corollary 3.3 ([130], Proposition 26 on page 109). In case the characteristic of
the base field is zero, an abelian variety A which admits smCM can be defined over
a number field. O

This result was proved long before 3.2 was published. As finite group schemes
in characteristic zero are reduced, the result of this corollary also follows from the
more general theorem above.

In case the characteristic of the base field equals p, and A is ordinary, or
almost ordinary, i.e. the p-rank of an abelian variety A satisfies f(A4) > dim(A4)—1,
and A admits smCM, then A can be defined over a finite extension of the prime
field. However for lower p-rank an isogeny may be necessary as we shall see.

Example 3.4. In positive characteristic there exist abelian varieties which admit
smCM, and which cannot be defined over a finite field (i.e. the isogeny as in the
theorem sometimes is necessary). We give an example. Suppose A is an abelian
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surface over field K of characteristic p > 0. Suppose f(A) = 0. Then A is
supersingular, i.e. over an algebraic closure k = K it is isogenous with a product
of two elliptic (supersingular) curves. There are precisely two possibilities:
e cither a(A) = 2; in this case A ® k = E?;
e or a(A) = 1; in this case there is a unique oy x C A, unique up to a
K-automorphism of a, i, and a(A/a,) = 2.

Let E be a supersingular elliptic curve over a finite field x. (For every finite field
there exists a supersingular elliptic curve over K, as follows by results by Deuring,
or by the Honda-Tate theory). Let ¢ be a transcendental over k, and K := x(t).
Fix o, C E, and construct

prop—apxa, C(EXE)®K, by ¢=(1,1).

We see that A := ((Ex E)®K)/p(a,) is defined over K and End”(E?) = End"(A).
We easily check: a(A) = 1, and A cannot be defined over a finite field. Moreover
E admits smCM over k, and E% ~ A, hence A admits smCM over K. This is a
typical example illustrating the theorem; see [93] ; also see [77].

Remark 3.5. If an abelian variety C' admits smCM, then there exists a finite
extension K C K’, and a sequence C ® K’ =: By — By — --- — B,, of quotients
by a,, over K’ such that B,, can be descended down to a finite field.

The example above is a special case of a general phenomenon. For any abelian
variety B over a finite field with f(B) < dim(B) — 1 there exists a field K and an
abelian variety A ~x B ® K such that A admits smCM, and such that A cannot
be defined over a finite field.

In fact, for every moduli point in A, ® [F,, one can define the isogeny leaf
passing through that point, see [111], see § 11. The dimension of an isogeny leaf
depends on the Newton polygon involved, and on the polarization. The dimension
of isogeny leaves is determined in [119]; it is positive in case the p-rank is at most
g —2; see § 11. A generic point of an isogeny leaf of positive dimension through a
CM point gives a CM abelian variety which cannot be defined over a finite field.

3.6. The Serre tensor construction. An explanation can be found in [20],
Section 7, and also in [12]. Consider a scheme S, a commutative ring R, an
abelian scheme A — S and a ring homomorphism R — End(A). Let M be a
projective R-module of finite rank. Using that M is projective, one shows that
the functor T~ M ®pr A(T) on S-schemes is represented by an S-scheme. The
representing object will be denoted by M ®g A, and the operation A — M ®z A
is called the Serre tensor construction.

Working over a general base, the condition that M is R-projective is needed in
general; see 4.10. However, working over a base field *“finitely generated” suffices.
We will use this in the following situation: A is an abelian variety over a field, L
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is a number field, R = End(A) is an order in L. Clearly the ring of integers Oy, of
L is finitely generated over R. We obtain O ®r A, an abelian variety isogenous
with A, with O, C End(A).

Theorem 3.7 (Poincaré-Weil). Let A be an abelian variety over a field K. There
exist simple abelian varieties By,--- , B, over K and an isogeny A ~ [] B;. O

This theorem is well know. A proof in case K is a perfect field is not difficult.
For a proof over an arbitrary field, see [36].

3.8. Sketch of a proof by Yu of 3.2; see [151]. We can choose an isogeny
A ~ T] B; with every B; simple over K by the Poincaré-Weil theorem. In case A
admits smCM, every B; admits smCM. Hence it suffices to prove the theorem in
case A is simple over K.

For a simple abelian variety D := End’(A) is a division algebra, central
simple over its center. As A admits smCM we conclude by [133], lemme 2 on page
100 there exists a CM field L C D with [L : Q] = 2-dim(A). By the Serre tensor
construction there exists an isogeny A ~p B such that the ring of integers Op, of
L is contained in End(B); we have ¢ : O, — End(B). Moreover B can be chosen
in such a way that B admits an Op-linear polarization A of degree d? prime to
the characteristic of K. In [151], Section 3 a certain moduli space is constructed
of (C,t, 1) where deg(u) = d?, with certain properties on the Lie algebra of the
abelian schemes considered. This deformation functor of triples (C,t, u) where
deg(u) = d?, with certain properties, is “rigid”, and as a scheme it is represented
and finite over K, see [151], 3.7 and [150]. This finishes a sketch of this proof of
3.2. m|

Remark 3.9. Finiteness of polarizations of a given degree up to isomorphisms on
an abelian varieties already appeared in [82]. Rigidity of a deformation functor
appeared in the case of superspecial abelian varieties in [94], 4.5.

4. CM liftings

4.1. In the Honda-Tate theory CM liftings are constructed and used, see [46],
[133]. A refined study whether CM liftings exist in all situations is studied in [99]
and in [12]. Also see [132], [21], [118].

Definitions 4.2. Let x D F, be a field, and let Ay be an abelian variety over
K. A lifting of Ay, meaning a lifting to characteristic zero, is given by an integral
domain I" of characteristic zero and an abelian scheme A — Spec(I") with a given
isomorphism A Qr k & Ag.

If moreover Ay is a CM abelian variety, a CM lifting is a lifting as above with
the property that an order A in a CM algebra of rank 2-dim(Ay) is contained in
End(A). This implies that over the field of fractions K = frac(I') we have that
A®r K is a CM abelian variety (in characteristic zero).
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Question 4.3. Suppose given a CM abelian variety Ay over k£ D F,. Does there
exist a CM lifting of Ag?

Remark 4.4. What does “rigidity” of CM abelian varieties suggest about this
question?

It is very easy to give an example where the answer to 4.3 is negative. Take
any abelian variety Ay which cannot be defined over a finite field, but which is
isogenous to an abelian variety defined over a finite field; by a result by Tate, see
[132], we know Ag is a CM abelian variety. If a CM lifting would exist then the
generic fiber of that lifting could be defined over a number field, see 3.3. This
gives a contradiction with the fact that Ay cannot be defined over a finite field.
This idea can also be implemented for certain abelian varieties over finite fields,
see [99], and we obtain the result as in 4.7.

If Ag is an ordinary (i.e. f(Ap) = dim(A)) or an almost ordinary abelian
variety (i.e. we require f(Ag) = dim(A4) — 1) over a finite field, then a CM lifting
exists. For an ordinary abelian variety this follows from the Serre-Tate theory of
canonical liftings [67], [56], [58]; for an almost ordinary abelian variety, see [99],
Section 2, see [96], 14.6.

Theorem 4.5 (Honda; [46], Th 1 on page 86; [133], Th. 2). Let Ay be an abelian
variety over a finite field k. Then there exists a finite extension k C k' and an
isogeny Ag @ k' ~ Bg such that By admits a CM lifting. a

Questions 4.6. Consider an abelian variety over a finite field x. In order to be
able to perform a CM lifting

is an isogeny necessary ? an answer will be given in 4.7;

is a field extension necessary 7 there will be two answers.

e In order to be able to perform a CM lifting to a normal domain: yes, a
field extension might be necessary; see 4.8.

e However, for any Ag over a finite field k there exists a k-isogeny Ag ~ By
such that By admits a CM lifting to a characteristic zero domain (which
need not be normal); see 4.9.

Theorem 4.7 ([99] Th. B, and [12]: in general, an isogeny is necessary). For
every prime number p, every integer g and every integer f such that 0 < f < g—2
there exists an abelian variety Ao over F, an algebraic closure of Fp, such that
dim(A) = g and f(A) = f and such that Ay does not admit a CM lifting to
characteristic zero. O

Example 4.8. See [12]. There is an example of an abelian variety Ao over a
finite field k such that for any Ag ~. By the abelian variety By does not admit a
CM lifting to a normal domain of characteristic zero. In fact, consider a prime
number p = 2, 3 (mod 5); this means that p remains prime in the cyclotomic
extension Q C Q(¢s) =: L. Consider 7 := p-¢s. This is a Weil g-number for



14 Moduli of abelian varieties in mixed and in positive characteristic

g = p?; this means that 7 is an algebraic integer and for every complex embedding
¢ : L — C the complex number t(7) has absolute value ,/g. We use Honda-
Tate theory; see [133], [144], [118]. This tells us that there exists a simple abelian
variety A over Fy whose Weil number equals m = Frob, , (and A is unique up to
F,-isogeny). From properties of m one can read off the structure of the division
algebra D = End”(A); see [133], Th. 1 on page 96; see [118], 5.4 and 5.5. From
the fact that Q C Q(r) = L is unramified away from p, and the fact that there is
a unique prime above p in L, it follows that D/L is split away from p; hence D/L
has all Brauer-invariants equal to zero; hence D = L. This proves dim(A4) = 2.

Next we compute the reflex field of a CM type of L; see [63], 1.5. As L/Q is
Galois, the reflex field is a CM field contained in L. However L itself is the only
CM field contained in L. Hence L is its own reflex field for any CM type.

Let A ~ By, and suppose B — Spec(T") is a CM lifting of By to a normal
domain T with field of fractions K = frac('). As L = End’(4) = End’(By) is a
field, and B admits smCM, we would conclude L = End’(B) = End’(Bg). As
any field of definition of a CM abelian variety in characteristic zero contains the
reflex field, [130], Prop. 30 on pp. 74/75, see [63], 3.2 Th. 1.1, we conclude that
K contains a reflex field of L; hence K O L. Hence the residue class of I" on the
one hand is Fy (here we use normality of I'); on the other hand it contains the
residue class field of L at p which is Fp4. The contradiction Fps C IF,,» proves that
any abelian variety F,-isogenous to A cannot be CM lifted to a normal domain in
characteristic zero. This method, using the “residual obstruction”, is discussed in
[12].

Theorem 4.9 (B. Conrad - Chai - Oort; [12]). For any abelian variety A over a
finite field k there exists a k-isogeny A ~ By such that By admits a CM lifting to
characteristic zero. O

A proof of this theorem is quite involved. We note that, even if End’(A) is a
field, in general any CM lifting may have an endomorphism ring which is smaller
than End(B); see 4.10.

Remark 4.10. In [12] it is shown that there exists a CM lifting of B — Spec(T")
of any By over Fj2 as in 4.8, with End(By) = Z[(5]. The generic fiber of such a
lifting has the property

7+ 5-Z[¢s) € End(By) :== R G Z[(s).
In this case the Serre tensor construction B ® g Z[(5] over a ring in mixed charac-
teristic is not representable.
5. Abelian varieties isogenous to a Jacobian

5.1. Main reference: [17]; [112]; see [135]. In this section we mostly work over

=0
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Question 5.2. Suppose given an algebraically closed field k, and an integer g > 3.
Does there exist an abelian variety A which is not isogenous to the Jacobian of an
algebraic curve over k 7

Various things have to be explained. Do we also take in consideration a polarization
on A, in this case we consider Hecke orbits, or are we considering isogenies which
need not respect (the Q-class of) a polarization? Do we consider only irreducible
curves, or are also reducible curves considered? It turns out that these details are
not of much influence on the statement in results we have. We refer to [17] for
precise description of these details.

5.3. Bjorn Poonen suggested not only to consider the Torelli locus, but, more
generally, to ask whether for every g > 0 and every closed subset X C A, ® k
of dimension smaller than dim(A, ® k) there exists an abelian variety A whose
isogeny orbit Z(A) does not meet X. The case above is the special case of the
closed Torelli locus 7; = X, which indeed is lower dimensional if g > 3. This more
general situation can be phrased as a statement (which might be true or false):

5.4. I(k,g)  For every closed subset X & Ay ® k, with dim(X) < g(g +1)/2 =
dim(Ay) there exists [(A,\)] = z € Ay(k) such that Z(z) N X = 0. Writing
dim(X) we implicitly assume that all irreducible components of X have the same
dimension.

Remark 5.5. An easy argument shows that for any uncountable field k of char-
acteristic zero the statement I(k, g) is true, and hence in that case Question 5.2
has a positive answer.

Definition 5.6. A moduli point [(4, \)] = z € Ay is called a CM point, or is called
a special point, if A admits smCM over an algebraically closed field of definition.
A closed subset S C A, ® Q% is called a special subset if it is a finite union of
Shimura subvarieties; we refer to the theory of Shimura varieties for this notion.
E.g. see [76].

Note that a CM point and a special subset in characteristic zero is defined
over Q. Note that a special point is a Shimura subvariety.

Conjecture 5.7 ((AO), the André-Oort conjecture). Let T be a Shimura variety.
Let T C T(Q%) be a set of special points. Then it is conjectured that the Zariski
closure TZ% is a special subset, i.e. a finite union of special subvarieties.

This was mentioned as Problem 1 on page 215 of [1] for curves in a Shimura
variety. Independently this was conjectured for closed subsets of A, of arbitrary
dimension; see [101], 6A, and [102]. The common generalization is called the
André-Oort conjecture. Also see [2]; see [109], § 4, § 5.

Special cases were proved by André, Edixhoven, Moonen, Yafaev, Clozel-
Ullmo. The general case of this conjecture is claimed to be true under assumption
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of the Generalized Riemann Hypothesis in papers by Klingler-Yafaev and Ullmo-
Yafaev, see [60], [136].

5.8. Present status of the question I(k, g).

For k = C this property holds.

For k = Q* the property holds under assumption of (AO); see 5.9.

For k =F := IE‘TD it seems to be unknown whether this property holds. Also
in this case the answer to Question 5.2 is unknown.

Theorem 5.9 (Chai-Oort, [17]). For any g and for the base field k = Q®, if the
congecture (AO) holds, then I(k, g) holds. O

Remark 5.10. Instead of considering .4, one can also consider an arbitrary
Shimura variety (over C, or over Q% = Q), and consider Hecke orbits. The ana-
logue of 5.9 also holds, under (AQO), in this more general situation. We refer to
[17] for details. In this note we will only consider the case of Ag.

5.11. We sketch some of the ideas going into the proof of 5.9. For details see [17].
We work over & = Q% and we write A, instead of A; ® Q¢. If L is a CM
field, [L : Q] = 2g, then the normal closure L™ of L has degree at most 29-(g!)
over Q. We say that L is a Weyl CM field if [L™ : Q] = 29-(¢!). We say that
(A, N)] =2 € Ay(Q?) is a Weyl CM point if the related CM algebra is a Weyl CM
field. Tt can be shown that for any given g > 0 there are “many” Weyl CM fields;
e.g. see [18]; in fact:
Proposition 5.11(a). For any number field E and any given g there is a Weyl
CM field of degree 2g such that L and E are linearly disjoint over Q. See [17]. O
Note: if A is a Weyl CM abelian variety (in characteristic zero), then A is
absolutely simple. Hence a Weyl CM Jacobian automatically is the Jacobian of an
irreducible curve. Or: a Weyl CM point in the closed Torelli locus 7 is already
in the open Torelli locus 7.

Proposition 5.11(b). Let L be a Weyl CM field with mazimal totally real field
E=LyCL. IfY C Ay is a special subvariety with 0 < dim(Y) < g(g+1)/2
which contains a Weyl CM point associated with L, then Y is a Hilbert modular
variety associated with Lg. See [17]. O

Once these properties are established we are able to prove the Theorem 5.9
as follows. Consider X C A, of dimension less than g(g + 1)/2. Consider the
set I' = CM(X) of all CM points in X. Assuming (AO) we know that ['%e" =:
S C X is a finite union of special subvarieties. There are three kind of irreducible

components:
e those of dimension zero Sy, - - - , S,, associated with CM algebras Ly, --- , L,
® Suy1,- - ,Sp which are a Hilbert modular variety associated with a totally
real algebras F,41, -, Ep,

e and all other components.
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Using 5.11(a) we can choose a Weyl CM field L of degree 2g linearly disjoint from
the compositum of Ly, -, Ly, Fot1,- -+, Fp. Let £ be Weyl CM point associated
with this Weyl CM field. As L is not isomorphic with Ly, --- , L, we see that Z(x)
does not contain a zero dimensional component S; with ¢ < a. As S is contained
in X we see that every irreducible component has dimension less than g(g +1)/2;
note that L is linearly disjoint from each of the FE;; hence by Proposition 5.11(b)
we see that Z(z) does not contain a point in a positive dimensional component of
S. Hence Z(z) NS = (; this proves the theorem. O

Remark 5.12. We say that a totally real field Lo of degree g over Q is of Weyl
type if the normal closure (Lg)™ has degree g! over Q. Does 5.11(b) hold for CM
points where the totally real field is of Weyl type? Suppose L is a CM field of
degree 2g over Q and its totally real field is of Weyl type. In this case there are
three possibilities for the normal closure L™:

o [L7:Q]=2g' ;

e (this case only can occur in case g is even) [L™ : Q] =297 1.g! ;

o (L is a Weyl CM field) [L™ : Q] =29-g! .
There are many Shimura varieties in A, containing points of the first kind, which
are not Hilbert modular varieties. For example, we can take a PEL Shimura
variety associated with a quadratic complex field. In other words: in order to
have a result like 5.11(b) it does not suffice to consider CM fields with totally real
field of Weyl type. However (in case g is even), for a CM point as in the second
case the analogue of 5.11(b) does hold: a lower dimensional special subvariety of
positive dimension containing such a point is a Hilbert modular variety.

Theorem 5.13 (Tsimerman, [135]). For any g and for the base field k = Q%,
then I(k, g) holds. O

This makes use of 5.9. In his prove T'simerman constructs an infinite sequence
of Weyl CM points, not using GRH, of which only finitely many have an isogeny
orbit intersecting a given X.

Remark 5.14. In [19], Conjecture 6, we find the conjecture that for g > 3 there
should be only finitely many CM Jacobians (of irreducible curves) of dimension
g. A.J. de Jong and R. Noot showed this is not correct; see [51]; see 5.20 below.
Later we realized that examples by Shimura, see [129], could be used to contradict
this conjecture. For g = 4,5,6,7 we can find infinitely many irreducible algebraic
curves with CM Jacobian; see 5.20. It might be that for large g the conjecture
still holds. We modify the conjecture.

Theorem 5.15 (Modified Coleman conjecture; Chai-Oort, [17]). Assume (AO).
For any g > 3 the number of isomorphism classes of algebraic curves of genus
g over Q% with Weyl CM Jacobian is finite. (Such curves are irreducible and
regular.) O
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5.15(1). Proposition (A.J. de Jong and S. Zhang, [53], Corollary 1.2). Let Ly be
a totally real field of degree g over Q.
If g > 4 no Hilbert modular variety attached to Lg is contained in Ty C Ag 1.
If g = 4 and a Hilbert modular variety attached to Lo is contained in Ty C
Ay then Ly contains a field quadratic over Q. a
For the case g = 4 it seems unknown whether there exists a Hilbert modular
variety contained in 7y C Aq1 .
Proof of Theorem 5.15. Note that for a Weyl CM field L its maximal totally real
subfield Ly does not have any Q & E’ & Lo. By 5.15(1) we see that for any Weyl
CM field with g > 3 a corresponding Hilbert modular variety is not contained in
T4. Suppose the moduli point of a Weil CM abelian variety is contained in 7.
By 5.11(b) any special subvariety of positive dimension containing this point is a
Hilbert modular variety. Using (AO) this implies that the Zariski closure of all
Weyl CM points in the (open or closed) Torelli locus is a finite set. a
Note that a Weyl CM point in 7 is contained in Tgo.

Remark 5.16. At present there seems to be no proof of the modified Coleman
conjecture avoiding the use of (AO).

Definition 5.17. Let k be an algebraically closed field. Let C be a complete,
irreducible, regular curve over k. Write G := Aut(C). We say that C' has many
automorphisms if the local deformation functor of (C,G) on schemes over k is
representable by a zero-dimensional scheme.

Question 5.18. How can we find irreducible, regular, complete curves of genus g
with CM Jacobian?

It seems difficult to give a complete answer. I know two methods which cover
special cases.

5.18 (1). Curves with “many automorphisms”. We can try to find a curve
with automorphisms, such that the action of Aut(C') guarantees that the Jacobian
has smCM.

Note that for a given value of g the number of isomorphism classes of curves
of genus g with many automorphisms is finite. Hence it is not possible along these
ideas to give infinitely many CM curves for a given genus.

Note that a curve with many automorphisms, as defined above, does not give
a Weyl CM Jacobian.

Most CM curves I know do not have many automorphisms.

Probably there exist curves with many automorphisms which are not a CM
curves.

5.18 (2). Shimura varieties inside the Torelli locus. Suppose given g, and a
Shimura subvariety S C A4 1 contained in the closed Torelli locus:

Sc1, with SNT)#0.
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As the set of CM points is dense in S we see that if dim(S) > 0 then the set of
CM points in SN TgO is infinite. This is the case for 1 < g < 3 and S = A,. For
g =4,5,6,7 along these lines infinite series of CM curves of a given genus can be
constructed. We will indicate below an idea of such a construction.

Note that this is an existence theorem which a priori does not indicate how
to construct explicit examples. In general it is difficult to use properties of S C 7,
to derive a description of CM curves giving moduli points in S.

Here is an easy example which explains the difficulty. Every elliptic curve
can be given (over an algebraically closed field of characteristic not equal to 2) by
an equation

Y2=X(X-1)(X-)\).

There are many ways to see that for infinitely many values of A the corresponding
curve is a CM elliptic curve (an existence theorem). However I do not know an
explicit formula to give infinitely many values of A € C with this property. The
same remark applies to all examples used in 5.18 (2).

See [76] for a description of the question for the (non-)existence of Shimura
varieties in the Torelli locus. Using an answer to that question and (AO) it might
be that one can settle the original Coleman conjecture for certain values of g.
However it seems a difficult question to determine all positive dimensional Shimura
varieties in 7, for all g.

Examples 5.19. (1a) g=(n—1)(n—2)/2; ¢=1,3,6,10,---.
Consider for any n € Z~, the Fermat curve defined by

X"+Y"r=2".
The genus of this irreducible, regular curve over Q% equals (n — 1)(n —2)/2 > 0
whose Jacobian has smCM. See [127], VI, 1.2 and 1.5
(Ib) g=(¢—-1)/2; ¢g=1,2,3,5,---. Consider an odd prime number ¢, and
define 2g + 1 = ¢. A curve defined (as the normalization of the compactification
of the curve defined) by

Vi=X%X-1)

with 1 < a < g has genus g and its Jacobian has smCM; see [148], pp.814/815; see
[53], 1.4.

(1c) (Example communicated to me by Yuri Zarhin.) If p > 3 is a prime and
T € Z>1, then the curve defined by

is a CM curve. Its genus is ¢ = p” — 1. Its Jacobian is isogenous with abelian
varieties of dimension p* — p’~! with smCM by Q(C3.pi) for 1 <i < r. Hence the
curve is a CM curve.
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(1d) For every a € k and a # 0 and every d,m € Z>o consider the curve defined
by y¢ = 2™ — a; see [137], 2.4. This is a CM curve.

Probably there are many more examples of curves with smCM given by many
automorphisms.

Examples 5.20. The idea to find CM Jacobians by constructing special subvari-
eties contained in 7, was formulated and carried out in special cases in [51]. Their
method produces an infinite number of CM Jacobians of a given genus g for which
a family of a particular kind can be constructed. Since then more examples have
been found. We now have 10 examples of positive dimensional special subvarieties
constructed in this way inside 7, meeting ’Tgo for 4 < g < 7. They can be found in
[51], [129], [22], [126], [76], [109]. Below we mention 4 of these examples in order
to indicate the line of ideas, and we present the original idea contained in [51] why
this method does work in the cases indicated. For another, better method and for
a complete survey see [76].

(2a) g < 3. In this case the dimension of M, equals the dimension of A,.
Because A, 1 ® k is irreducible, we obtain 7, @ k = Ag1 ® k for g < 3. Hence in
these cases every CM point of A, ; defines a CM Jacobian (of a possibly reducible
curve). In this case there are many CM Jacobians of an irreducible curve; however
the existence theorem does not indicate how to construct such curves explicitly.
Already for g = 1 it is easy to see how to construct a complex torus with CM.
In every concrete case one can derive from the analytic presentation an algebraic
equation for the corresponding elliptic curve. However I do not know a mechanism
to produce all CM Jacobians in this way.

(2b) g =4.  See [129], (2) and see [51], 1.3.1; g = 4.  The family of curves of
genus 4 defined by

Y3 =X(X-1)(X —a)(X —b)(X —¢)

gives an irreducible component of a PEL type Shimura variety of dimension three
inside 7; meeting 7,°.

(2¢) g =5. The family of curves of genus 5 defined by
Y®=X*(X - 1)(X —a)

gives an irreducible component of a PEL type Shimura variety inside 75 meeting
(2d) g =6. The family of curves of genus 6 defined by
Y8 =X%(X - 1)?*X —a)

gives an irreducible component of a PEL type Shimura variety inside 74 meeting
70,
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(2e) g=7. Consider the curve
Y9 =X(X —-1)(X —a).
See [109], 7.7. See [126], [76].

5.21. We explain the essential steps in the proof showing that Example 5.20 (2e)
indeed gives a positive dimensional special variety inside T}, in this case for g = 7,
meeting the interior Tgo; for many more examples, references and for better proofs
we refer to [126] and to [76]; see [75] for all examples obtained by families of cyclic
covers known at present.

The equation Y = X (X — 1)(X — a) defines an affine plane curve, which is
non-singular for a # 0, 1; the normalization of a complete model of this curve, for
a fixed a is a curve C, of genus g = 7, as we see by an application of the Zeuthen-
Hurwitz formula. In this way we obtain a morphism P! — {0,1,00} — M7. We
denote by A the closure of its image in A7 ;. Following arguments in [51] we show
below that A C A7 1 is a special subvariety.

A basis for the regular differentials on every fiber is given by:

XdX XdX dX dX dX dX dX
Uys yroys vy ye v v

dX dX
{W’W}'

Non-primitive: Dual pair:

Yo’
Remark that T3 = X (X — 1)(X — a) defines an elliptic curve, its Jacobian has
smCM by Q(¢3) and we have a dominant morphism C, — E,; up to isogeny the
Jacobian of C, is a product of this elliptic curve an abelian variety of dimension
6; this decomposition is given by the primitive, and the non-primitive weights.

From this basis for the regular differentials on C, we see the weights of the
action Y +— (oY by the CM field Q((9) on the tangent space of the Jacobian
Jac(C,). Take any of the fibers Jac(C,), and study the PEL Shimura variety
given by this action. By [128], Theorem 5 on page 176, see the proof on page 182,
we conclude that the dimension of this Shimura variety equals the number of dual
pairs. Hence in this case the dimension of this PEL Shimura variety is equal to the
number of parameters, which equals one. As this is the dimension of the Zariski
closure A C 77 of the image of the moduli map of the base of C' — P! — {0, 1, cc}
into ’Z;O we conclude that A is an irreducible component of this PEL Shimura
variety; hence the image of P! — {0, 1, 00} is dense open inside a special subvariety
contained in 77. O

In fact the morphism P! — {0,1,00} — A C 77 extends to a morphism
P! — 7;. The Zariski closure A inside 77 is complete, but this is of no importance
for the argument proving there exist infinitely many g =7 CM Jacobians.

Question 5.22. How can we find CM curves of genus g > 3 which are “isolated”
(in the sense not contained in the closure of an infinite set of points defined by
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CM Jacobians) and not with many automorphisms? It seems plausible that such
curves exist. How to find such curves?

Here is the central question which, up to now, seems unsettled.

5.23. Expectation. (See [102], § 5 and [76].) For large g (in any case g > 8),
there does not exist a special subvariety Z C Ag1 ® C with dim(Z) > 1 such that
Z C1y and ZN Tgo is monempty.

Note that if this expectation holds for a certain g, and (AO) holds, then the
original Coleman conjecture holds for that g.

5.24. It seems we know very little about possible answers to this expectation. We
do not know whether there exists a special subvariety Z as in the expectation where
the generic point corresponds with a Jacobian with endomorphism ring equal to
Z. We do not know whether for ¢ = 4 any of the curves inside A4 described by
Mumford in [80] is contained in the closed Torelli locus. We do not know whether
for ¢ = 4 there exists a Hilbert modular variety contained in the closed Torelli
locus. We refer to [76] for a discussion and for a description of all examples know
to us at present. Some aspects of our experience seem to indicate the Expectation
5.23 could be right. However I do not see any structural evidence at present, hence
I like to call this an expectation, and not a conjecture yet.

Stratifications and foliations of moduli spaces of abelian va-
rieties in positive characteristic

From now on all base fields, all base schemes will be in characteristic p.

6. Supersingular abelian varieties

6.1. The influential paper [24] studied properties of supersingular elliptic curves
and their endomorphism algebras. In [77] and [66] families and moduli spaces of
supersingular abelian varieties are studied.

6.2. Dieudonné modules. We work over a perfect field K D F,. Dieudonné
modules classify finite group schemes and p-divisible groups over a perfect field.

Write W = W (K) for the ring of infinite Witt vectors over K. Write
o : W — W for the (unique) lift of the Frobenius a — a? on K. Write D
for the ring generated over W by F and V satisfying the well-know relations
FV =p =VF, and Fa = o(a)F and aV = Vo(a). There is an equivalence of
categories between left modules of finite length over Dy and finite commutative
group schemes over K of p-power rank; for N we write D(V) for its covariant
Dieudonné module. If N is of rank p?, then D(N) is of length i.

As p-divisible groups are ind-limits of such finite group schemes this also
classifies p-divisible groups over K. The category of local-local p-divisible groups
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over K is equivalent with the category of left Dyx-modules which are free of finite
rank over W and on which F and V operate nilpotently. The category of formal
p-divisible groups is equivalent with the category of left Dy-modules which are
free of finite rank over W and on which V operates nilpotently. The height of X
equals the rank of D(X) as a free W-module. The dimension of the p-divisible
group equals the K-dimension of D(X)/V-D(X).

Remark 6.3. In the original version, see [68], the Dieudonnné functor is con-
travariant. Over a perfect field K duality of Dieudonné modules and Cartier
duality of finite groups correspond. Hence the covariant and the contravariant
theory for finite group schemes over a perfect field amount to the same under this
operation. The same for duality of modules and the theory of Serre duality on
p-divisible groups over K.

We note that the Serre dual Xt of a p-divisible group is defined as follows.
For a p-divisible group X and i € Z~( we have an exact sequence

0— X[p'] — X[p'] — X[p""'] — 0.

We write:
X! =lim.ind.; (X[p'] — X[p"~')P.

We have chosen to use the covariant Diedonné module theory as this is compatible
with the theory of displays. In the covariant theory the morphism F : N — N(®)
results in multiplying with V on D(N) and V : N (P) — N results in multiplying
by F on D(NN). Therefore we have distinguished the morphisms F' and V on group
schemes on the one hand and the operations V and F on Dieudonné modules on the
other hand. For the theory of Dieudonné modules and related concepts, see [68],
[23], [32]; see [104], 15.3 — 15.6 and [15], § 6 for further explanation and references.
See [145] for a treatment of the Tate conjecture formulated for p-divisible groups.

6.4. Newton polygons. Newton polygons classify p-divisible groups up to isogeny.
For a p-divisible group X over a field we define its Newton polygon as “the Newton
polygon of the Frobenius action on X”. Over K = F, this is a correct definition,
but over any other field F' need not be an endomorphism of X. Therefore a more
refined definition has to be given.

For coprime, non-negative integers m and n we define a p-divisible group
X = Gm,n. We write G1,0 = G, [p™] and

Goa =Gl o=Q/Z,.
For m > 0 and n > 0 we define G, ,, by the Dieudonné module
D(G.n) = Dk /Dg-(F™ = V™).

We have (Gn)' 2 Gy and hence dim((Gyy,,n)t) = n. For ged(m,n) = 1 we see
that Gy, is a simple p-divisible group of dimension m.
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Remark on notation: these p-divisible groups are already defined over F,; for
every K D ), we will use the notation Gy, ,, instead of G, ,, @, K if no confusion
is possible.

To G,,,n we attach the Newton polygon consisting of m + n slopes equal to
m/(m + n); indeed this is the Newton polygon of F': Gy, 5, — G Over Fy,.

We write f(X) for the number of copies G1 o in the above sum; this is called
the p-rank of X. Over an algebraically closed field k we have Hom(p,, X) =
(Z/p)! ).

Theorem 6.5 (Dieudonné and Manin, [68]). Let k be an algebraically closed field.
For every p-divisible group X over k there are d;, c; € Z>o and an isogeny

X ~ Z Ga, .-
O

A Newton polygon is a lower convex polygon starting at (0,0), ending at
(d, h), such that the break points are in Z x Z. To Y, Gg,.., with >, d; = d and
> (di+¢;) = h we associate the Newton polygon obtained by arranging the slopes
d; /(d; + ¢;) with multiplicity (d; 4+ ¢;) in non-decreasing order. We write N (Y") for
the Newton polygon defined by X =Y ® k and the isogeny as above. The Newton
polygon thus obtained we sometimes indicate by the (formal sum) >, (d;, ¢;).

The isogeny class of a p-divisible group over an algebraically closed field k
uniquely determines (and is uniquely determined by) its Newton polygon:

6.6. Corollary [Dieudonné and Manin, see [68], page 35]
“Classification theorem” :

{X}/ ~r — {Newton polygon}.
|

6.7. Note that for an abelian variety A its Newton polygon N(A) := N (A[p™]) is
symmetric in the sense that 8 and 1— in N'(A) have the same multiplicity. Over a
finite field this was proved by Manin, see [68], page 74; in that proof the functional
equation of the zeta-function for an abelian variety over a finite field is used. The
general case (an abelian variety over an arbitrary field of positive characteristic)
follows from [90], Theorem 19.1: that theorem proves A[p>]t = A![p>], and we
finish by (Gpm.n)' = G-

6.8. Example / Definition. For an elliptic curve E, an abelian variety of
dimension one, over a field K of characteristic p, the possible Newton polygons
are (1,0) + (0,1) and (1,1). The first case is called ordinary. In the second case
we have the following equivalent statements

(1) N(E) = (1,1).

(2) The p-rank of F is zero.
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(3) E(k)[p| = 0.
(4) End(E ® k) has rank four over Z.
(5) Definition. E is supersingular.

6.9 (Definition 1). To an abelian variety A over a field K’ O F,, we can associate
its Newton polygon AN/ (A), see 6.4. We say that A is supersingular if every slope
in NV (A) is equal to 1/2, i.e.
A is supersingular €5 N(A) = g-(1,1).

Remark. Equivalently: A[p>] ® k ~ (G11)9.

We write o = o, for the Newton polygon consisting of 2g slopes equal to 1/2.

Note that “A is supersingular” implies that the p-rank of A equals to zero:
f(A) = 0. Conversely, every abelian variety of dimension g =1 or g = 2 of p-rank
zero is supersingular. However for every g > 3 there exist many abelian varieties
of p-rank equal to zero of dimension g which are not supersingular.

Terminology. Of course, a supersingular abelian variety is not a singular variety.
Where does the terminology come from? In characteristic zero, the j-invariant of
an elliptic curve £ with CM is called a singular j-value. Deuring in his influential
paper [24] studied elliptic curves of p-rank zero over a finite field; such a curve
(over a finite extension of the field) has an endomorphism ring which is a maximal
order in a quaternion algebra; this ring is bigger than the endomorphism ring of a
CM elliptic curve in characteristic zero; hence the terminology “supersingular” was
invented. A purist perhaps would like to say “an elliptic curve with supersingular
j-value”.

Note that for any abelian variety A over any field we have rkg End’(4) <
(29)%. Equality End”(A ® k) = (29)? holds if and only if the base field K has
positive characteristic, A is supersingular and all endomorphisms of A are defined
over K.

6.10 (Definition 2). Let FE be a supersingular elliptic curve over a finite field.
An abelian variety A over a field K (of characteristic p) is supersingular if and
only if

there exists an isogeny Ay ~p E9, where E is a supersingular elliptic curve.

Theorem 6.11 (See [93], Section 4; also see [132], Th. 2 on page 140). Definition
1 and Definition 2 are equivalent.

Sketch of a proof. If F is a supersingular elliptic curve then N (EY) = g-(1,1).
Hence (2) = (1).

Conversely suppose that N (A) = g¢-(1,1). Then there exists an isogeny
Ag[p™®] ~ (G11)9. Hence there exists an isogeny Ay ~p B with a(B) = g. Let
(B,p)] =y € Ay ® F,. Let T be an irreducible component of A, ® F), con-
taining y. Deformation theory shows that any infinitesimal deformation of B
keeping a(—) = dim(B) constant is trivial. Hence the set of points y' € T with
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y' = [(B',u)] and a(B’) = g is zero-dimensional and closed. This proves that B
is defined over a finite field.

Next we show: let B be a supersingular abelian variety defined over Fy. Then
there exists an isogeny By ~p E9, where E is a supersingular elliptic curve. Sup-
pose n is even (or perform a quadratic extension, and replace B by a simple factor
if necessary). Let m = mp be the Weil g-number associated with B; i.e.  is the al-
gebraic number defined as the endomorphism m = F™, the “geometric Frobenius”
on B/F,. Then | ¢(m) |= \/q for every ¢ : Q(r) — C by the Weil conjecture.
Note that § := 7m/,/q is a unit at all finite places not dividing p. The condition
that all Frobenius slopes are equal to 1/2 shows that [ is also a unit at every
finite place dividing p. A well-known theorem in number theory, see [3], page 105,
Th.2, shows that under these conditions [ is a root of unity, say §° = 1 for some
s € Z~qg- Hence 7° € Q, which shows that B ® F,. ~ EY9, with r = ¢°, where F a
supersingular elliptic curve over F,., see [133], page 97. O

Remark 6.12. In characteristic zero an abelian variety of CM type is defined
over a number field, see [130], Proposition 26 on page 109. However in positive
characteristic there are examples of an abelian variety admitting sufficiently many
complex multiplications not defined over a finite field (hence the first part of the
proof is not superfluous). See § 3 for a discussion. In retrospect it is not surprising
what we see in the proof.

6.13. The number h = h(p) of isomorphism classes of supersingular elliptic curves
over F := T, was computed by Hasse, Deuring and Igusa. See [24], [48]. It can be
given as a class number. Also see [54] page 118. In fact:

o) = (1= (S0}/3+ (1= (T} /a+ P,

where (%) denotes the Legendre symbol. Equivalently:

h2)=1=h@); hp)=2"1 if p=1 (mod 12);

12
_1.P e . R e AV .
h(p) =1+ 1 if p=5 (mod12); h(p)=1+ it p=7 (mod 12);
h(p):2+p12 if p=11 (mod 12).
It can also be given by:
#(Aut(E)) 24

i(E)
the sum taken over all isomorphism classes of supersingular elliptic curves over F.

We see that the number of supersingular curves over F depends on p, and
goes to oo for p — oo, which is a special case of a general phenomenon; see 7.5.
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6.14. Deligne and Shioda proved: Suppose g > 2. Let Ey,--- , Eoy be supersingu-
lar elliptic curves over F. Then

Eyx---xE;, =2 FEgX--- X Ey.

See [131], Th. 3.5.

Write Ay ; for the set of isomorphism classes (E9,u) over F = F,, where E is a
supersingular elliptic curve, and p : E9 — (E9) is a polarization with Ker(u) =
E9[F7]. This number A, ; can be expressed as a class number; e.g. see [47], Section
2; see [66], Chapter 4, Chapter 8.

6.15. For a supersingular elliptic curve E in characteristic p we know that j(E) €
FFp2; this is not hard to prove: the morphism F? : E — E®*) has kernel E[F?] =
E[p]. Hence EW) ~ E/E[p] 2 E, and this proves (j(E))p2 = j(E). However
we know more: any supersingular value j(E) is a fourth power in F,2; see the
appendix of [33].

6.16. Theorem/Definition (see [94], Th. 2). Let A be an abelian variety of
dimension g over a field K. Write k for an algebraic closure of K D F,. The
following are equivalent:

(1) a(4) = dim(4) = g.

(2) There exists an isomorphism Ay = E9,

where F is a supersingular elliptic curve.

(3) Definition. A is called superspecial. O

Remark 6.17. Note the following curious fact.

For g = 1 a polarization on an elliptic curve is uniquely determined by its
degree, e.g. #(A1 o) =1, and there are many isomorphism classes of supersingular
elliptic curves (many, if p > 0). However,

for g > 2 there is only one isomorphism class of a superspecial abelian variety
of dimension g, but #(Ag,0) is large for p > 0.

6.18. In characteristic zero a decomposition of the Lie algebra of a Lie group (of
course) does not imply a decomposition of the Lie group. The analogue of the
Lie algebra of a Lie group of an abelian variety A in positive characteristic is its
p-divisible group X = A[p™]. Does a decomposition, say up to isogeny, of A[p]
imply a decomposition of A ?

YES for supersingular abelian varieties: see Definition 2.

NO, in all other cases:

Theorem 6.19 ([65]; also see [13], 5.). For every symmetric Newton polygon
& # o there exists a simple abelian variety B over F := IFT, with N'(B) = €. O

6.20. More information about supersingular abelian varieties can be found in the
following papers: [24], [48], [44], [4], [5], [152], [27], [45], [38], [89], [153], [154], [94],
[131], [47], [54], [55], [77], [66], [32].
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7. NP strata

7.1. Consider the locus of all moduli points corresponding with an abelian variety
with a given Newton polygon. Grothendieck and Katz show this is a locally closed
set of the moduli space; see [38] for the first idea, and [57] for the final result. We
discuss what the dimension of such a stratum is and we consider (ir)reducibility
of such strata.

7.2. Let ¢ be a Newton polygon. Let X — S be a p-divisible group over a base
scheme S in characteristic p. We write

W(S) ={s € S| N(X,) = (}
This is called the (open) Newton polygon stratum in S defined by (.

Theorem 7.3 (Grothendieck-Katz. See [57], Th. 2.3.1 on page 143). The subset
WE(S) C S is locally closed. O

7.4. Working over a perfect field, we will endow Wg(S ) with the reduced scheme
structure. We will write
VVEO = Wg(Ag,ﬂ

for the (open) Newton polygon stratum defined by the symmetric Newton polygon
£ in the moduli space of principally polarized abelian varieties in characteristic p.
See 8.8 for the notation Weg.

It would be nice to have a natural scheme structure on NP strata. However,
up to now attempts have failed to construct such a theory.

We write

Sg,l = Wo(Ag,l) = Woa

where 0 = ¢-(1,1) is the Newton polygon defining supersingular abelian varieties.
We have seen that Sp 1, the locus of supersingular elliptic curves, has many
components for p > 0. We shall see that the same kind of behavior holds for the
supersingular locus for all g.
For a p-divisible group X — S over an irreducible scheme S we write a(—/S5)
for the number a(X,,), where 1 is the generic point of S; analogous notation for
an abelian scheme A — S.

Theorem 7.5 (Li — Oort). (1) For every irreducible component S of Sg1 @F we
have a(—/S) = 1.

(2) The number of irreducible components of Sg1 ®F equals the class number
Hy(p,1) if g is odd, respectively Hy(1,p) in case g is even.

(8) The subscheme S,1 is of pure dimension [g?/4]. O

See [66] for the definition of these class numbers, and see [66], 4.9 for these
results. The results (1) and (3), and hence (2), were reproved in [105].
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Remark 7.6. All three statements do fail for certain values of g and certain
components of the supersingular locus We(Ay) in the non-principally polarized
case. For example see [55], 6.10, see [66], 10.5; for many more examples, and an
“explanation”, see [119].

Note that Hy(p,1) > 0 and Hy(1,p) > 0 for g > 0. In those cases S;1 @ F
is reducible.

Parts (1) and (3) generalize to all Newton polygon strata in A, 1; see Theorem
7.9. However (2) is special for the supersingular locus in A, 1; see Theorem 7.12.

7.7. We introduce a partial ordering in the set of Newton polygons having the
same endpoints.

G

G

We write (1 = (o if (7 is “below” (s, i.e. if no point of (; is strictly above
(5. This might seem strange. However, explanation: if (7 is “below” (o, the locus
defined by (; is “bigger” than the locus defined by (s.

What can be said about (ir)reducibility of other Newton polygon strata and
about their dimensions?

7.8. The dimension of Newton polygon strata, polarized case. We fix an
integer g. For every symmetric NP £ of height 2g we define:

A ={(z,y) €ZxZ|y<z<g, (xz,y) onor above &},

and we write

[ sdim(€) == #(A(9)). ]

Theorem 7.9 ([105], [103]). For every symmetric Newton polygon & the stratum
We C Ag1 is pure of dimension sdim(&). For every irreducible component S of
We we have a(—/S) = 1. O

Note that 7.5(3) is a special case. Note that without the condition that we
work with principal polarizations dimensions of components of Newton polygon
strata can be quite different from what is said above; see [119] for precise results, see
7.13. Also in the non-principally polarized case there are irreducible components
on which a(—/S) can be larger than one.

We discuss some of the techniques used for a proof of 7.9 and an application.

Theorem 7.10 ([103]). Let Xy be a p-divisible group over a field K. Assume
a(Xo) = 1. Write N(Xo) =: ¢’. Write D = Def(Xy) for the local deformation
space. For every ¢ = (' the NP stratum M¢(D) is reqular, and these strata are
nested (inclusion of their Zariski closures) exactly as given by the ordered graph of
Newton polygons below (.
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Let (Xo,A) be a principally quasi-polarized p-divisible group over a field K.
Assume a(Xo) = 1. Write N(Xo) =: €. Write DP = Def(Xy, \) for the local
deformation space. For every & > & the NP stratum Mc(DP) is regular, of
dimension sdim(§) and these strata are nested (inclusion of their Zariski closures)
ezactly as given by the ordered graph of symmetric Newton polygons below &'. O

Note that without the condition that we work with principal polarizations
the conclusion of second half of the theorem does not hold in general.

We have seen that for an abelian variety A its Newton polygon N (4) = £ is
symmetric, see 6.7. Manin conjectured the converse:
A conjecture by Manin. Let p be a prime number, and let £ be a symmetric
Newton polygon. There exists an abelian variety A in characteristic p with N'(A) =
. See [68], page 76, Conjecture 2.

Corollary 7.11 (Manin Conjecture; Serre-Honda-Tate, Oort). For every p and
symmetric & the Manin conjecture holds. O

This was proved independently by Serre (unpublished), and by Honda and Tate;
see [133], page 98.

For a proof purely in characteristic p see [103], Section 5. We give a sketch
in which way the corollary follows from 7.5 and 7.10.

(1) Note that for the supersingular Newton polygon ¢ = o, = g-(1,1) the
conjecture holds.

(2) Construct a principally quasi-polarized supersingular p-divisible group
(X0, A) with a(Xp) = 1.

(3) For a given symmetric £ (automatically below o), using 7.10, we construct
(X,;\) — S, a formal deformation, with special fiber (Xp,\), and generic fiber
(X, A) with NV(X,,) = £ Here we use the fact that a(X,) = 1.

(4) Use (1) and (2) and produce (By, \) with (Bg, A\)[p>®] = (Xo, A).

(5) By Serre-Tate theory there exists a formal abelian scheme (B,\) — S
with (B, \)[p>=] = (X, ).

(6) By Chow-Grothendieck the formal polarized abelian scheme (B,\) — S
can be algebraized to an abelian scheme (B, \) — S. We have produced B, with
N(B,) = N(X,) = &

For details see [103], Section 5. O

It is interesting to see that in this proof we algebraize twice; first by noting
that supersingular p-divisible groups come from an abelian variety, Xg — By;
the second time the polarization helps to show the existence of an algebraization
X—B.

Finally, Conjecture 8B of [101] was proved:
Theorem 7.12 (Chai — Oort, [107], [14], Theorem A). For every symmetric New-

ton polygon & # o the locus We is geometrically irreducible. Moreover a(—, We) <
1. O
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Remark 7.13. What can be said about dimensions of strata in the non-principally
polarized cases? For every g and every 0 < f < g there is a unique symmetric
Newton polygon which is maximal (the lowest) in the set of all Newton polygons
having that p-rank. These are: the ordinary Newton polygon g-(1,0)+g-(0, 1), with
g = [, the almost ordinary Newton polygon (g—1)-(1,0)+(1,1)+(g—1)-(0,1) with
g—1=f,and for f < g—1wetake f-(1,0)+(g—f—1,1)+(1,g— f—1)+f-(0,1);
for these Newton polygons all components of the stratum We(Ay) have the same
dimension, equal to sdim(¢).

For all other £ the locus We(Ay) is not equi-dimensional; in [119] we find
which dimensions do appear for a given Newton polygon.

7.14. Newton polygon strata were discussed in the following papers: [68], [61],
(57), (98], [66], [101], [8], [14], [34], [107], [122], [113], [115].

8. A conjecture by Grothendieck

8.1. Grothendieck proved that “Newton polygons go up under specialization”
and he conjectured conversely that a pair of comparable Newton polygons for p-
divisible groups appears in a deformation/specialization, see [38]. This conjecture
was proved for p-divisible groups, for principally polarized p-divisible groups and
for principally polarized abelian varieties. For the non-principally polarized case
the equivalent of this conjecture does not hold; see [103], [105], [119].

8.2. Grothendieck proved that “Newton polygons go up under specialization”.
That means that the Newton polygon of a special fiber in a family of p-divisible
groups has no points under the Newton polygon of the generic fiber. Does the
converse hold? In [38], the appendix, we find a letter of Grothendieck to Barsotti,

“

and on page 150 we read: - The wishful conjecture I have in mind now is the
following: the necessary conditions --- that G’ be a specialization of G are also
sufficient. In other words, starting with a BT group Gy = G, taking its formal
modular deformation --- we want to know if every sequence of rational numbers
satisfying - - - these numbers occur as the sequence of slopes of a fiber of G as some
point of S.”

This conjecture has been proved for p-divisible groups. The equivalent of
this conjecture holds for principally quasi-polarized p-divisible groups, and for
principally polarized abelian varieties; however the equivalent of this conjecture
in general does not hold for polarized p-divisible groups and for polarized abelian
varieties.

Theorem 8.3 (Oort, [52], [103], and [105]). (The Grothendieck Conjecture, Mon-
treal 1970.) Let K be a field of characteristic p, and let Xo be a p-divisible group
over K. We write N(Xy) =: 8 for its Newton polygon. Suppose given a Newton
polygon v “below” B, i.e. B <. There exists a deformation X, of Xo such that

N(X,) =1. O
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Theorem 8.4 (Oort, [105]). (The principally quasi-polarized analog of the Grothendieck
Conjecture.) Let (Xo,Ao) be a principally quasi-polarized p-divisible group, and let
¢ be a Newton polygon such that (1 = N'(Xg) < (2 (i-e. no point of (7 is below (3).
Then there exists an irreducible scheme S, a closed point 0 € S and a principally
quasi-polarized p-divisible group (X, ) — S such that the fiber above 0 is (X, \o)
and the generic fiber has Newton polygon equal to (5.

An analogous statement holds for principally polarized abelian varieties. O

Remark 8.5. The statement can be rephrased by saying that for & < & the
locus ng is in the Zariski closure of Wg. Note that the notation WEO is only used
in the case of principal polarizations. See [15], 1.17 — 1.22, and see §8, and §11 for
more explanation and comments.

Remark 8.6. The analog of the Grothendieck conjecture for quasi-polarized p-
divisible groups, respectively polarized abelian varieties (in case these are not prin-
cipal polarizations) in general does not hold. An example can be found in [55],
6.10: inside Aj3 s there is a component of the supersingular locus which has dimen-
sion equal to three; hence this is not contained in the closure of W?2,1)+(1’2)(‘A3)’
because the p-rank zero locus inside Az has pure dimension (3(3 —1)/2) =3 =3
by [87], Theorem 4.1. More supersingular examples to be found in [66], § 10. A
complete answer to the question whether an irreducible component of a Newton
polygon stratum is contained in the closure of another Newton polygon stratum
is described in [119], thus giving many counterexamples to the (non-principally)
polarized analogue of the Grothendieck conjecture.

Remark 8.7. As usual, deformations of the p-divisible group of a polarized
abelian variety give, by the Serre-Tate theory, polarized formal abelian schemes,
and by the Chow-Grothendieck theorem this gives deformations of polarized abelian
schemes. For an explanation and references see [103], 5.5. Hence the first state-
ment in 8.4 implies the analogous result for principally polarized abelian varieties.

Remark 8.8. There are two ways to produce a natural definition of a closed
Newton polygon stratum. One can consider the Zariski closure

We(Ag) € (We(Ay))™™ C A,
Also we can consider
{[(A, W] [N (4) < €} C A,
As this last subset is closed, if follows that it contains (We(A,))%:
(We(Ag))?™ € {[(A,N)] € Ay | N(4) < €}

There are many examples showing that these two closed sets do not coincide, see
8.6, and see [119], in the non-principally polarized case. However, the Grothendieck
conjecture says that inside A these two coincide, and we write and conclude

We = (We(Ag1))™ = {[(A V)] € Ag1 [ N(4) <€} € Aga.
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9. Purity

9.1. In [52] it was proved that if a Newton polygon jumps in a family, then already
it jumps in codimension one (and hence the name “purity”).

Note that this property seems unlikely as we see that in the proof of 7.3 a
priori several equations are needed to describe the locus where the Newton polygon
jumps. Therefore the purity theorem came as a surprise.

In this section we explain basic ingredients which are used in proofs of 7.9, 8.3,
8.4. We have at our disposal local deformation theory, for abelian varieties, and
for polarized abelian varieties, for p-divisible groups, as initiated by Schlessinger.
So why not write down a universal deformation, study Newton polygon strata
in such a deformation space, compute dimensions, and see which strata are in
the boundary of other strata? It seems that such a direct approach could be
successful. However it turns out, that it is difficult in general to describe Newton
polygon strata in this way. In general the number of equations obtained is larger
than the codimension of the stratum we are looking for, and perhaps the stratum
we are looking for (as in the Grothendieck conjecture) can very well be empty;
indeed, in the non-principally polarized case we can construct (many) examples
where this is the case.

This is very much in analogy with the problem of lifting polarized abelian va-
rieties from characteristic p to characteristic zero. There the principally polarized
case can be handled directly, as Grothendieck showed, see [91]. But deformation
theory did not give the possibility of a direct approach in the non-principally polar-
ized case. Mumford showed us how to proceed. For ordinary abelian varieties the
theory of Serre-Tate canonical liftings works well. For the arbitrary case we first
deform in characteristic p to a polarized ordinary abelian variety (a non-canonical
choice, why would it exist?), and then finish by performing the canonical lifting of
the generic fiber of that deformation. This program was carried out in [87]. For
another approach see [86].

This two-step procedure, in a different form, also gives access to the Grothendiek
conjecture considered here. In [103] we see that deforming p-divisible groups,
and deforming principally polarized abelian varieties with a(X) < 1, respectively
a(A) <1, gives a deformation space in which the Newton polygon strata are reg-
ular, and nested exactly as requested by the partial ordering of Newton polygons;
in these cases all results 7.9, 8.3, 8.4 follow directly by what I call the “method
of Cayley-Hamilton”. Hence we are done if we can deform to a situation with
a(—) < 1 keeping the Newton polygon fized, in the unpolarized case, and in the
(quasi) principally polarized case. This turned out to be a difficult problem. It
took me many years, some failures, and drastically new ideas to perform this step.
Here is the central idea.
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Theorem 9.2 (Deformation to a < 1; see [52], 5.12 and [105], 2.8). Let Xy be
a p-divisible group over a field K. There exists an integral scheme S, a point
0 € S(K) and a p-divisible group X — S such that the fiber Xy is isomorphic with
Xo, and for the generic point n € S we have:

N(Xp) =N(X,) and a(X,)<1.
O

Theorem 9.3 ( Deformation to a < 1 in the principally quasi-polarized case; see
[52], 5.12 and [105], 3.10). Let Xo be a p-divisible group over a field K with a
principal quasi-polarization \o : Xo — X{. There exists an integral scheme S, a
point 0 € S(K) and a principally quasi-polarized p-divisible group (X, \) — S such
that there is an isomorphism (Xo, Ao) = (X, Ao, and for the generic point n € S
we have:
N(Xp) =N(X,) and a(X,)<1.
O

Once 9.2 is proved, the Grothendieck conjecture is easily derived, see [105],
3.10. Here is the new idea which can be used to prove 9.2 and 9.3.

Theorem 9.4 (Purity of the Newton polygon stratification; de Jong - Oort). Let
S be an integral scheme, and let X — S be a p-divisible group. Let v = N (X)) be
the Newton polygon of the generic fiber. Let S D D = Sz, :={s€ S| N(A;) 27}
(Note that D is closed in S by Grothendieck-Katz.) Then either D is empty or
codim(D C S) =1, i.e. every irreducible component of D has codimension one in
S. O

9.5. We know two proofs of this theorem, and both proofs are non-trivial. See
[52], Th. 4.1. Also see [138], Th. 6.1; this second proof of Purity was analyzed
and reproved [138], [106], [139], [156]. Purity was further discussed in [85], [156],
[106], [15]. Also see [149]. In fact the version proposed and proved by Vasiu gives
a stronger result: it shows that D < S is an affine morphism.

The purity theorem gives, via the theory of catalogs, a proof of 9.2 for simple
p-divisible groups, see [52], 5.11 and 5.12. T do not know a direct, easy proof of
this useful theorem 9.2. Once the case X is simple in Theorem 9.2 is settled, the
general case, and the polarized versions are easily proved; see [105], 3.10 and 3.11.

Once we have this result, using dimensions of Newton polygon strata we
obtain a proof of 9.2, see [52], 5.12. For a discussion see [15], Section 7. It would
be nice to have a more direct proof of 9.2; what is the essential structure underlying
this fact?

10. EO strata

10.1. Consider a set inside the moduli space characterized by the property that
any two points = [(4,A)] and y = [(B, )] in one stratum give geometrically
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isomorphic Ag[p] = By[p]. Such a locus is called an EO stratum, see [104]. We
will give a survey of some properties of these strata. In this section we will be
brief, as a more extensive survey can be found in [35].

10.2. A theorem by Kraft, see [62], later, independently found by Oort, says that
over an algebraically closed field k in characteristic p the number of isomorphism
classes of groups schemes of a given rank, annihilated by p is finite. This motivated
Ekedahl and Oort to study a stratification of the moduli space A, where the
strata, finite in number, are given by the geometric isomorphism classes of possible
Alp]. In [104] we find the first definitions and results on this idea. Here we give
a short survey of some of these results. Later Moonen, Van der Geer, and many
others found another description of the index set, and other interpretations of this
stratification; e.g. see [28] for a detailed description.

10.3. Truncated Barsotti-Tate groups. For a p-divisible group X we can
consider its truncation at level one X[p]. A p-divisible group is also called a
Barsotti-Tate group; the truncation at level one is what we call a BT; group
scheme. Here is the precise definition.

We say that a finite, locally free group scheme N — S is a BTy, or a BT,
group scheme, or a Barsotti-Tate group truncated at level one, if F(N) = N[V]; see
[49], 1.1 for a more general definition. Note that this implies that N is annihilated
by VF = p; moreover for a BT also the property V(N) = N|[F] holds. Note that
if N — S is a BTy, then all fibers are BT; groups schemes. Note that a BT,
group scheme, or more, generally a BT,, group scheme, over a perfect field is the
truncation of a p-divisible group, see [49], 1.7

Note there exist examples of a finite, locally free group scheme N — S, say
with S irreducible, where the generic fiber is a BT, but where N/S is not a BTy;
e.g. over S = Spec(k[[t]) there exists a group scheme, an extension of «, by «,
such that the generic fiber is a BT, and the closed fiber is isomorphic with o, x c,
see [90], 15.5 for a discussion of such examples; or, consider a deformation of «,,
to (a twist of) 41, and note that the first is not a BT, and the second is; see [134]
for a discussion of such examples.

There exist examples of a finite, locally free group scheme N — S, say with
S irreducible, where a special fiber is a BT, but where the generic fiber is not;
hence N/S is not a BT;. For example take an elliptic curve E — S = Spec(k[[t]])
with special fiber supersingular, and generic fiber ordinary; the group scheme
N := E[F?] has the property mentioned.

10.4. We produce a stratification on A, ;. One could also study such a stratifica-
tion on all components of A,. However, results are complicated and not very neat
if we consider polarizations of degree divisible by p; also we do not know whether
such stratifications could be interesting, while the EO stratification on Ay turns
out to be very useful.
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We give a description of a classification of isomorphism classes of possible
Alpl, for [(A,N)] =z € Ay 1. Most material is easily constructed and described,;
in some cases some combinatorics is needed. However there is one detail in the
constructions and definitions which is non-obvious. We classify on the one hand
BT, group schemes N which are symmetric, meaning there exists some isomor-
phism N = NP: such a group scheme can arise as N = A[p], where a principal
polarization A — A? induces

N = Alp] = Afp] = (Alp)”.

On the other hand we can consider pairs (N, <>), where N = A[p] and where <>
is a bilinear, non-degenerate, alternating on the Dieudonné module of N induced
by a principal polarization on A. Over an algebraically closed field these two
concepts are the same; see [104], Section 9. This fact is not so hard to prove in
characteristic not equal to two, and one can give a more natural approach to the
bilinear form needed on IN; however, in characteristic p = 2 I do not know an
easy proof of this essential tool; it seems desirable to characterize the pairing <>
on D(N) only in terms of group schemes.

As we seem to be forced to give the bilinear form on the Dieudonné module
we have to be careful doing deformation theory (as “Dieudonné modules” of finite
group scheme over an arbitrary base are not very easy to handle); see [104], 12.1 —
12.5 where we use displays for quasi-polarized p-divisible groups and the property
“V = p/F” in order to reconstruct V on a finite group scheme B|p] from the display
defining the deformation B.

10.5. On a BT, finite group scheme N over a field K we construct the canonical
filtration. Consider V : N®) — N, and take all images under iteration of V.
From all finite subgroup schemes obtained we take the inverse images under F :
N — N®); on the set of subgroup schemes we repeat these processes, each time
by V possibly constructing new group scheme in between 0 C N[F] = Im(N),
and by F~! in between N[F] = Im(N) C N; each step respects the filtration we
already have; after a finite number of steps the process does not give anymore new
subgroup schemes; we arrive at the coarsest filtration stable under V and F~!;
this is called the canonical filtration.

10.6. The canonical filtration in group schemes of given rank can have various
lengths. Let N be a symmetric BT, finite group scheme; here the word symmetric
means there is some isomorphism N = NP. In this case the canonical filtration
is symplectic and V and F~! stable; a filtration with these properties is called a
good filtration, see [104], 5.3.

For a symmetric group scheme of rank p?9 over an algebraically closed field
we construct a filtration

0CN, C---CNy=N[F]=Im(N) C--- Ny
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which is symplectic, stable under V and F~!, i.e. a good filtration, with all sub-
quotients N;;1/N; of rank p (of length one). This refines the canonical filtration.
This is called a final filtration. In general a final filtration is not unique, see 10.12.
However for a symmetric N and some final filtration {N; | 1 < j < 2g} there is a
sequence of non-negative integers

¢ ={p1),--,¥(29)} defined by V(N;) = Nyj);

this is called the final sequence attached to the symmetric N. ILe. this sequence
tells us where the steps in the filtration are mapped to which steps under V. It
turns out that, although the final filtration need not be unique, the final sequence
does not depend on the final filtration chosen. It can be computed combinatorially
from the data describing the canonical filtration. The sequence

o =1{p(@) =v@i) |1 <i < g} ={p(1), -, 0(9)}

is called the elementary sequence attached to the symmetric N, notation ES(N) =
. For properties of elementary sequences and final sequences we refer to [104],
§§8 2, 5. The concepts elementary sequence, final sequence and canonical type
correspond one-to-one.

In [28] and in [72] we see another combinatorial way to encode the elementary
sequence of a symmetric BT; group scheme.

In particular an elementary sequence ¢ has the property (and this notion is
defined by):

p(i) <p(i+1) < (i) + 1;
we write ¢(0) = 0. Hence the number of elementary sequences of length g equals
29. We will see that every elementary sequence of length g does occur on Ay; see
Theorem 10.11.
Moreover ¥ (29 — i) = (i) + g — 4. Hence ¢ = {¢(1),--- ,4(2g)} can be
computed knowing only ¢ = {¢(1),--- ,¥(g)}.

10.7. Let N be a symmetric BT finite group scheme over a perfect field K. Let
M =D(N) be its Dieudonné module. we consider

<> Mx M — K,

a non-degenerate, alternating pairing; “alternating” means: < x,x >= 0 for every
x € M. The pair (N, <,>) will be called a polarized BT;; we see that this is a
special case of a symmetric BT;.

Suppose (4, A) is a principally polarized abelian variety over K. The princi-
pal polarization induces a pairing on the Dieudonné module of A[p>°] and hence
it induces a non-degenerate, alternating pairing on M = D(A[p]. A principally
polarized abelian variety (A, A) induces this pair (N, <>), see [104], 12.2(2). We
write

(N7<a>) = (A,)\)[p}
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Given an elementary sequence ¢ = {¢(1), - ,¢(g)}, with related final sequence
¥ we construct (N, <,>g), called the standard type given by ¢, see [104], 9.1
for details. The result is given by an ordered basis {Z1,--- Zy; Zgy1,- - , Zag} for
M =D(N,), where the sets

{Yy, - i} U{Xy, -+, Xy} and {Z1,---Zg; Zgy1, -+ . Zog}
are equal, the pairing is given by
<Yy, Xj>=46;;, <Y,YV;>=0=<X;,X;> V0<i,j<g
and
FX)=2;, FY;))=0V0<i<g.
This determines the action by V on M; in fact
V(Zi) =0, V(Zag—it1)=2Y; V0<i<yg;
here
V(Zag—is1) = +Y; if Zog_ip1 € {Yy, -, Y}
and
V(Zog—iv1) =-Y; it Zyg_ 11 € {Xy,--- , X}

Theorem 10.8. Let (N, <, >) be a polarized BTy group scheme of rank 2g defined
over a field K. Let ¢ be the elementary sequence determined by N. Let k be an
algebraic closure of K. There exists an isomorphism

(N, <,>)®@k = (N, <,>4) @k.

O

See [104], Theorem 9.4. A proof for this theorem is not difficult in character-
istic p > 2. However, I do not know a simple proof in characteristic 2.

10.9. Conclusion. If a BTy group scheme admits a polarization, then over an al-
gebraically closed field the pairing <, > is uniquely determined up to isomorphism.
A symmetric BT) group scheme over an algebraically closed field is uniquely de-
termined by its elementary sequence.

After these combinatorial preparations we list the definition of EO strata and
some of the properties.

Definition 10.10. Suppose given an elementary sequence ¢ of length g. We
write:

Se ={l(A,N)] =z € Ag1 | ES(A[p]) = #};
this is called an AO stratum. We write

1=g

o= o).

i=1
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We define
! /- . .
P <p = G <p@l) Vi
For a subset 7' C A, 1 we write T%%" for the Zariski closure of T inside A, ;. We
write
' Cpo= S, CS,.
We have ¢’ < ¢ = ¢’ C ¢, [104], 11.1, but the converse does not hold, [104], 14.3.

It turns out that S, C Ag1 is locally closed. Hence we have written A, as a
disjoint union of a finite number of locally closed subsets. For these strata we
have the following properties.

Theorem 10.11 (Ekedahl - Oort, [104], 4.1, 1.2, 1.3, § 13). (1) S, is quasi-affine
(“The Raynaud trick”).

(2) dim(S,) = ¢ |

(8) Spr N SZr £ 0 = S, C SZ; hence

(4) the boundary of S, consists of the union of all Sy with ¢’ S . O

Most of these results were reproved in [28]; e.g. the dimension formula we
find in their Section 8 and in 9.3.

Example 10.12. Here is an (easy) example showing that a final filtration is not
unique, although the final sequence is determined by a symmetric BT;. Suppose
N is a superspecial BTy of rank 2¢g. This means that 0 C N[F] = Im(N) C N,
where N[F] is also annihilated by V. This is the case if and only if F2 =0 = V2
on the symmetric N. For g > 1 a related final filtration is not unique. We work
out the example for ¢ = 2. A final filtration has the property that it is symplectic
and V(N3) = N; = F(N3). Study the Dieudonné module M = D(N). As this
is superspecial we can write M = K-e + K-Fe + K-f + K-F f with the pairing
e.g. given by < e, Fe >= ¢ =< f,Ff >, with € # 0 (having other properties) and
other pairs giving zero. We see that any choice M3, generated by My and a vector
X =be+cfe M, with b,c € K has the property that X is pairing to zero with
M, = K-F(X). Hence < X, FX >= (bbP 4 ccP)e. As Mz only depends on b/c we
see that there are exactly p + 1 final filtrations refining the canonical filtration on
a superspecial BT for g = 2.

Lemma 10.13. Let g > 1; write r = [g/2]; i.e. either 2r = g or 2r = g+ 1. Let
e ={p1), - ,0(g)} be an elementary sequence. The EO stratum S, C Ag1 is
contained in the supersingular locus Sg.1 = Wy = Wy (Ag.1) if and only if o(r) = 0:

p(r) =0<«= S, CW,.

Also see Step 2 in the proof of Theorem 4.8 of [14].
Proof (=). Suppose ¢(r) = 0. Consider the related final sequence

Y={p(1), - ,0(9);¥(g+1), - ,¥(29)}, with (i) =1(i) forl <i<g.
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Consider [(A,\)] =z € S,. We write N = A[p]. On D(N) = M = M, we have a
filtration given by ¢

0CM C---CMy=Ker(V)=Im(F) C--- C Ma,.
Claim:

if o(r) =0 then F(Mg4,) C M, and V(Mg4,) C M,.

Note that N,4/N, C A/N,. If we prove the claim, we conclude that a(A/N,) = g,
where D(N, C Alp]) = (M, C Ma,); hence A/N, is superspecial. Hence this shows
A is supersingular.
Proof of the claim. We start by giving two examples; then we give the general
argument.

For g = 4,r = 2 the property ¢(r) = 0 implies that the related final sequence
is of the form

w = {Oa07'7'; 'a27374}'
We see, using notation as in [104], 9.1, that D(A[p]) = Ms, has a basis
{Y4,Y3,Z3724; Z57Z6 - Zg+T7X3;X4}7

where {Ys,Y1, X1, X2} = {Z3,Z4,Z5,Zs}, the identification depending on the
further structure of ¢. We see that M, /M, has a basis given by {Z3, Z4, Z5, Zs }.
As (g +r) = 2 we see that F(Myy,) C M,. Note that Yy, Y5, Z3, Z4 span the
image of F, hence the kernel of V. The elements Zs, Zg, X3, X4 under V map to
+Y7, £Y5, £Y3, £Y) in this ordering. Thus V(My4,) C M,. Hence the claim for
g=4.

For g = 5,7 = 3 and ¢(r) = 0 we obtain

7# = {Oa 07 07 IR 27 37 47 5}7
and
Y5, Y4, Y3, Z4, Z5; Zs, Z7, Zs = X3, X4, X5},
and we prove by an analogous computation that 7 and V map Zy, - -- , Z7, X3 into
N, = N3.
Here is the proof in the general case. By ¢(r) = 0 we see
Y =A0,-- (r)=0,-- ;- W29 —r)=9g -1 ,¥(29) =g}

and a basis for Ny is:
{Yga e Yg7r+17 Zr+1: T 7ngr+17 e ;Xg}~

Here we use that g < 2r. As {Zgqr41, -+, Zog} = {Xg—rt1, -+, Xy} we conclude
Y(Zg4r) = g — (9 — 1) = r. This shows that F(Myy,) C My. As Zgyri1, -+, Zog
under ¥V map to £Y;, g —r > ¢ > 1, we see that all elements in Mg, under V
map into the span of Yy, -+ ,Y,_,41. Hence V(My4,) C M,. =0
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Proof («<=). Choose g. Let u be the “almost supersingular symmetric Newton
polygon”. This is the (unique) highest symmetric Newton polygon which is not
supersingular. To be concrete, if g = 2r — 1, then p = (r,r — 1) + (r — 1,7). If
g =2rthen p= (r,r—1)4+(1,1)4+ (r—1,7). We compute the elementary sequence
T = ¢, related to the minimal p-divisible group H(u), see Section 12 below. Note
that a(H(p)) = g — 1. Using [104], 8.3 we compute that

op={1,---71(r—1)=0,7(r)=1,---1}.

Using material in 12, in particular 12.5, we conclude that S, C W,,; in particular
no point of S; is supersingular. Consider any ¢ with ¢(r) # 1. Then 7 < ¢, in
the notation of [104], see 10.10. By [104], Section 11, we conclude that the Zariski
closure (S,)%* contains S,. Hence S, ¢ W,,. ad

This lemma was used in several papers by Harashita, and later generalized
in [39], 4.1 and 4.2. Using this lemma we deduce:

Theorem 10.14 (Ekedahl - Van der Geer). Let ¢ be an elementary sequence such
that S, & W,. Then S, is geometrically irreducible. m|

In fact, 10.13 shows how to translate the property S, ¢ W, into ¢(r) # 0.
This is equivalent to the condition given in [28], Th. 11.5, and hence that theorem
gives this result.

The result of this theorem was conjectured in [104], 14.1. On the other hand
I also conjectured that any S, contained in the supersingular locus is reducible
for p > 0. This was proved to be true by Harashita, and see [40], 3.5 for an even
more general result.

Theorem 10.15 (Faltings, Chai, Ekedahl — Oort; [29], Korollar on page 364; see
[6] for the case p > 2; also see [30], Chap. IV, Coroll. 6.8; see [104], Coroll. 1.4).
For every prime number p the moduli space Ay @, is geometrically irreducible.
O

10.16. Using the theory of EO strata we have given a new proof of this theorem
(purely in characteristic p). We sketch this proof. There is a unique 1-dimensional
EO stratum: S, with ¢ = {0,---0,1}. We show that L := (S,)%* (a union
of rational curves) is geometrically connected, see [104], §7; this proof is purely
algebraic, it treats lattices in the supersingular locus; I like to mention that this
result and its proof are entirely due to Ekedahl, and it was one of our first bits of
evidence that this technique might have applications. Using 10.11 (1) and studying
EO strata at the boundary of a toroidal compactification of A, we prove that
for every elementary sequence ¢ we have Sig..013 C L C S’gar. Hence A, is
geometrically connected. As A, , for any prime-to-p level structure n > 3 is
regular, this proves the theorem.
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10.17. More information and more material about EO strata can be found in:
(621, [104], [14], [49], [77], [34], (28], [39], [40], [41], [43], [141], [72], [74], [146], [39],
[40], [41], [43).

11. Foliations

11.1. Consider a set inside the moduli space characterized by the property that
any two points z = [(A4, A)]and y = [(B, p)] give geometrically isomorphic quasi-
polarized p-divisible groups (A, A)a[p™] = (B, 1)a[p>]. Such a locus is called a
leaf, or a central leaf, see [111]. These parts of the moduli space have properties
very similar to characteristic zero moduli spaces; for example, Hecke correspon-
dences are finite-to-finite on central leaves. Newton polygon strata are, up to a
finite morphism, isomorphic to a product of a central leaf and of an isogeny leaf.
The theory of leaves is crucial in the Hecke orbit conjecture, see § 13.

Definition 11.2. Central leaves. For a polarized abelian variety (A, u) we define
type®) (1) as the isomorphism class of y restricted to [1rsp Te(A) ® 2, where Q is
an algebraically closed field. We see that type® (1) is given by elementary divisors
of the form

(di,...,dy), where di,...,d,

are positive integers such that

g
dy|do|---|dy and d =[] di = /deg()®,
1=1

where deg(u)® is the largest factor of deg(y) prime to p.
Work over a perfect field K D F,. For a given [(4, u)] = « we write

C(x) = {[(B,v)] € Ag | (B,n)[p™]@Q = (A, 1n)[p>]@9Q, type® (1) = type® (v)}.

This is called the central leaf passing through [(A, p)] = 2. We see that on a leaf the
prime-to-p and the p-adic invariants are constant, by definition. The prime-to-p
part is discrete, but, as we shall soon see, the p-adic invariant, i.e. the isomorphism
class of the p-divisible group, is far from discrete in general. This definition is a
refinement given in [14], 2.2 of definitions to be found in [111]. We will shorten
“central leaf” to “leaf” if confusion (with “isogeny leaf”) is unlikely. One can also
take into account in the definition the notion of a level structure.

Note that for § :== N(A) we have C(xz) C We(Ay), as all points on C(x) define
the same p-divisible group (over an algebraically closed field), and hence the same
Newton polygon.

Definition 11.3. Leaves also can be defined for families of p-divisible groups. Let
Y — S over a base scheme K D F, be a p-divisible group and let X be a p-divisible
group over a field. We write

Cx(9)={zefS V.02 X ®0}
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Theorem 11.4 ([111], 3.3). For every x € Ay(K) the central leaf C(z) C Ay @ K
is a locally closed subset. Moreover C(x) C WQ(A,® K), with § = N'(A), is closed
in this open Newton polygon stratum. O

In a proof a this theorem we make use of the notion of a slope filtration of a
p-divisible group over any field, as initiated by Grothendieck, written up by Zink,
see [155]. For the case of a constant Newton polygon over a normal base, see [120].
This is an important tool for the study of p-divisible groups over an arbitrary base
scheme. Here are some details:

Definition 11.5 ([111], 1.1). Let S be a scheme, and let X — S be a p-divisible
group. We say that X/S is geometrically fiberwise constant, abbreviated gfc , if
there exist a field K, a p-divisible group Xo over K, a morphism S — Spec(K),
and for every s € S an algebraically closed field k D k(s) D K containing the
residue class field of s and an isomorphism Xg ® k =, X5 ® k. An analogous
terminology will be used for quasi-polarized p-divisible groups and for (polarized)
abelian schemes.

Theorem 11.6 (Zink & Oort, [155], [120], 2.1, and [111], 1.8). Let S be an integral,
normal noetherian scheme. Let X — S be a p-divisible group with constant Newton
polygon. Then there exists a p-divisible Y — S and an S-isogeny ¢ : Y — X such
that /S is gfc. o

Theorem 11.7 ( [111], 1.3). Let S be a scheme which is integral, and such that
the normalization 8" — S gives a noetherian scheme. Let X — S be a p-divisible
group; let n € Z>q. Suppose that X — S is gfc. Then there exists a finite surjective
morphism T,, =T — S, such that X[p"] xs T is constant over T. O

11.8. Note that we gave a “point-wise” definition of Cx(S); we can consider
Cx(S) C S as a closed set, or as a subscheme with induced reduced structure;
however is this last definition “invariant under base change”? It would be much
better to have a “functorial definition” and a nature-given scheme structure on
Cx(9).

A proof of this theorem is quite involved. One of the ingredients is the
notion of “completely slope divisible p-divisible groups” introduced by T. Zink,
and theorems on p-divisible groups over a normal base, see [155] and [120].

Considering the situation in the moduli space with enough level structure in
order to obtain a fine moduli scheme, we see that C(4,x)[p~](Ay ® F;,) is regular.

Theorem 11.9 ([111], 3.14, 3.16). Suppose [(A,p)] = z and [(C,v)] = z admit
an isogeny A — C which respects the polarizations up to a rational multiple. Then
there exists a finite-to-finite correspondence

Clz) «— T — C(z).
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Using this theorem we can prove: central leaves belonging to the same Newton
polygon have the same dimension.

Notation: we write ¢(€) for the dimension of a central leaf in Wg (Ag)

Isogeny correspondences in characteristic p may blow up and down sub-
schemes, while in characteristic zero isogeny correspondences are finite-to-finite.
However we see that on central leaves such correspondences behave as in charac-
teristic zero. In this way we sort out where this blowing up and down does happen,
or does not happen. We pin down the cause of this.

Definition 11.10 (Hecke-a-orbits; [111], 4.1). We study isogeny correspondences
where all isogenies involved geometrically are a sequence of isogenies with o, —
kernel; we call such « — correspondences. Consider [(4, )] = z € A4(K). Consider
all diagrams

(4,0 @ Q < (C,0) % (B, ),

where:

Q) is an algebraically closed field containing K,

(C,() is a polarized abelian variety over €2,

¢:C — A®Q is an isogeny such that ¢*(\) = ¢,

(B, i) is a principally polarized abelian variety over €, and

1 : C' — B is an isogeny such that ¢¥*(u) = (;

Ker(yp) and Ker(1)) are geometrically successive extensions of the finite group
scheme ap;

in this case we write [(B, )] € Ho(z). Note that H, () need not be a closed
set; however we can show it is a union of closed sets. We define I(z) the union of
all irreducible components of H, (x) containing x.

Theorem 11.11 ([111], 4.11). For any [(A,n)] = « € Ay the isogeny leaf I(x)
exists. It is a closed subset of Ag. m|

This notion was earlier studied in the theory of Rapoport-Zink spaces in
mixed characteristic, see [123]. Consider x € A, defined over a perfect field. Any
component of I(z) is the reduced scheme underlying a component of the reduction
mod p of a Rapoport-Zink space passing through =x.

Note that for different points in the same Newton polygon stratum their
isogeny leaves can look very different. Here is an easy, though instructive example.

Example 11.12. Consider [(4,\)] =z € Aj 1, where N(4) =& = (2,1) + (1,2).
We shall see that We = We(Asg,1) is irreducible, of dimension equal to three. All
central leaves have dimension two, every leaf is regular, and (a general property of
central leaves:) any two different leaves do not meet inside We. By the way, their
closures inside A3 ; do meet, a phenomenon not yet understood in the general case.
In case a(A) = 1, the isogeny leaf I(x) is an irreducible rational curve. In case
a(A) = 2, the isogeny leaf I(x) has two irreducible components, both a rational



Frans Oort 45

curve. For a(A) = 2 the set H, () is closed in case x € A3 1(Fp2), and it has an
infinite number of components in the general case.

Theorem 11.13 (Construction: the product structure; [111], Th. 5.3). (“Central
leaves and isogeny leaves almost give a product structure on an irreducible com-
ponent of a Newton polygon stratum.”) Work over an algebraically closed field k.
Choose a symmetric Newton polygon &, an irreducible component W of Wg(Ag),
an irreducible component C' of a central leaf, and an irreducible component I of
an isogeny leaf. There exist finite surjective morphisms f: T - C, g:J -1, a
finite surjective morphism

o:TxJ — W
and a polarization-preserving quasi-isogeny
O: [ (AN — & (B, p).

such that for every u € J,
O(T x {u}) is a component of a central leaf,
and for everyt €T,
O({t} x J) is a component of an isogeny leaf.
O

11.14. Isogenous polarized abelian varieties define leaves between which there is
a finite-to-finite correspondence, see 11.9. Using moreover 11.13 we conclude that
any two leaves in the same Newton polygon stratum have the same dimension.
Note that the degree of the respective polarizations plays no role for such questions
in the theory of central leaves, while in the study of EO strata, Newton polygon
strata and isogeny leaves this aspect is very different. Hence for = € Wg (Ay) and
for W an irreducible component of this Newton polygon passing through = we see
that a component of I(x) inside W its dimension equals dim(W) — ¢(&).
How can we compute the dimension of a central leaf?

Definition 11.15. Let £ be a symmetric Newton polygon. Write £ =Y, (m;,n;)
with ¢ < j = m;/(m; +n;) > m;/(m; +n;). To this lower convex polygon we
associate the upper convex polygon £* where the slopes of £ are used in reversed
order, the largest slope first, etc., the smallest slope last. We define

A(ﬁaf*) = {(xvy) €EZ | (I,y) <&, (Ivy) ; 5*7 x < g}v

’cdp(f) = # (A& C));

“cdp” = dimension of central leaf, polarized case. See [119] for explanation, and

also for definitions in the unpolarized case.
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Theorem 11.16. For every [(A,p)] = x € Ay with N(A) = & we have

dim(C(x)) = cdp(§).
O

See [119] for a proof, for other properties, also in the unpolarized case, and
for applications. We gave three different proofs, one using combinatorics, and [74],
[72], [117] and a result by Wedhorn, see [146] and also [147]; one proof uses a
beautiful generalization by Chai of Serre-Tate coordinates, see [10]; one proof uses
Rapoport-Zink spaces, and a result by Eva Viehmann, see [141], computing this
way the dimension of an isogeny leaf inside Ay 1, and hence by 11.13 and 11.9 the
dimension of any central leaf follows. See [140], 5.4.

By this theorem we see that the dimension of a central leaf can be easily
computed once we know the Newton polygon.
Originally the structure of foliations of Newton polygon strata was developed
in order to understand the Hecke orbit problem. But soon other applications
appeared, as e.g. the PhD-thesis by Elena Mantovan, see [69].

Theorem 11.17 (Chai — Oort, [14], Th. 4.4). Let [(A,p)] =« € Ay. Suppose
that A is not supersingular. In this case C(x) is geometrically irreducible. a

11.18. As an illustration we record for g = 4 the various data considered:

NP ¢ flsdim(&)]c(§) |i(€) |[ES(H (£))
p [(4,0)+(0,4) 4] 10 [10] 0 [(1,2,3,4)
£=3(3,0) + (1,1) + (0,3) 3 9 [9]0]@1,23,3)
f=2[(2,0) + (2,2) + (0,2) 2 8 [ 711,222
g lLo+@n+@2+0,0] 7 [6]1]11,22
v 1(1,0) + (3,3) + (0,1) 1 6 [4|2]11,1,1)
5 [(3,1)+(1,3) of 6 [5]1]0,1,22)
v [(2,1) + (1,1) + (1,2) of 5 [3]2][011,1)
o |(4,4) of 4 [o0]4][0,000)

Here p = (f=3) = (f=2) >8>~ >v > o and § > 6 > v. The notation ES,
encoding the isomorphism type of a BT group scheme, is as in [104]; the number
f indicates the p-rank. We write ¢(£) for the dimension of a central leaf related to
the Newton polygon £. We write i(§) for the dimension of an isogeny leaf inside
Wg.
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11.19. For ¢ = 5 and f = 0 we obtain 5 possible Newton polygons (a totally
ordered set in this case):

3 sdim(§) |c(&)|i(§)| ES(H (€))
(4,1) + (1,4) 10 [ 9]1]01,23,3)
GO+ 1D+ @3)] 9 [ 72012272
2,1+ (2,2 +(1,2)] 8 |4 [4]01,1,1,1)
(3,2) + (2,3) 7 | 3] 410,01,1,1)
(5,5) 6 | 0] 60,0000

Theorem 11.20. A geometrically fiberwise constant p-divisible group X/S over
an (excellent) integral normal base has a natural slope filtration. O

Corollary 11.21. Let X — C be a p-divisible group over a central leaf. Then
X/S admits a slope filtration. O

This is the starting point for a generalization of Serre-Tate coordinates, see
[10].

For the proof of the theorem one uses first [120], in order to have an isogeny
¥ : Z — X/S from a completely slope divisible p-divisible group , called Z, to the
given one X/S. Let Ker(¢)) = N — S. By induction on the isoclinic parts of the
filtration Z; C Zy C --- C Z, it suffices to show that N N Z; is flat over S.

Going to a finite cover T' — S, using [111], Theorem 1.3, further using that
completely slope divisible implies geometrically fiberwise constant (or using di-
rectly [111], Lemma 1.4), and using [111], Lemma 1.10, and [111], Lemma 1.9
we see that the fibers of Ny N Z; v have constant rank, hence the same for the
fibers of N N Zy, hence this is flat. This proves the layer Z; C Z descends to a
sub-p-divisible X; C X, which is the lowest isoclinic part; finish by induction. O

Example 11.22. Here is an example where there does not exist a slope filtration
(over a non-normal base scheme). Choose g = 3, and £ = (2,1) + (1,2). Choose
a principally polarized abelian variety (A, \) with A’ (4) = ¢ and a(A) = 2. For
[(A, X)] = = we see that I(x) is a curve, which locally at = consists of two branches;
over one branch there does exist a slope filtration of the deformed p-divisible group;
over the other branch the natural slope filtration does not exist.

In most cases: over an open Newton polygon stratum the natural slope fil-
tration does not exist.

11.23. Historical remark on the dimension of leaves. In summer 2000
I gave a talk in Oberwolfach on foliations in moduli spaces of abelian varieties.
After my talk, in the evening of Friday 4-VIII-2000 Bjorn Poonen asked me several
questions, especially related to the problem I raised to determine the dimensions
of central leaves. Our discussion resulted in Problem 21 in [26]. His expectations
coincided with computations I had made of these dimensions for small values of
g. Then I jumped to the conclusion what those dimensions for general g could
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be; that is what was proved later, and reported on here, see 11.16. I thank Bjorn
Poonen for his interesting questions; our discussion was valuable for me.

11.24. Discussions and more material on the concept of central leaves can be
found in: [111], [14], [73]. [119], [123], [107], [116], [117], [155], [120], [42).

12. Minimal p-divisible groups

12.1. One might wonder whether X[p] = Y[p] implies X = Y; this question is
answered by the theory of “minimal p-divisible groups”, see [114].

We have seen central leaves in a foliation, and EO strata. It is an interesting
question in which way these subspaces intersect. In particular, does it happen that
a central leaf and an EO stratum are equal? This question has been completely
settled, and in this section we record the result.

In a letter on January 5, 1970 Grothendieck asked Mumford: “I wonder if
the following might be true: assume k algebraically closed. Let G and H be BT
groups, and assume G(1) and H(1) are isomorphic. Are G and H isomorphic?’
See [81]. Grothendieck observes this is the case according to Lazard, if these are
formal p-divisible groups on one parameter. Mumford replied that already for
formal groups on two parameters there are examples where this property does not
hold, as we see using results in [68]. See 12.6.

We shall see in 12.3 this question whether X [p] 2 Y'[p] implies that X and Y’
are isomorphic has a positive answer if (and in fact only if) X, or Y, is minimal; one
parameter formal groups are automatically minimal; for more parameters there do
exist non-minimal ones; for precise statements see 12.6.

Historical remark. The correspondence between Grothendieck and Mumford
only became known and available to me in 2010; I did not know this question by
Grothendieck and the answer by Mumford when I worked many years ago on the
result to be found in [114].

12.2. Definition of minimal p-divisible groups. Given a prime number p,
and coprime, non-negative integers m, n we define the p-divisible group H,, ,, over
F,, by the covariant Dieudonné module

i=m+n—1
D(Hm,n) = Z W~ei
i=0
with the structure of a Dieudonné module defined by:
Veej =€jim, F-€j=¢€jin, D€ =€Cjtmin, Vj=0;

in particular F™-e; = V"-e; for all j > 0. We write H1 9 = G1,0 = G, [p™] and
HO,l = GO,l = Qp/Zp-
We see that H,, ,, is isogenous with G, . In particular N'(H,, ;) is isoclinic

of slope equal to m/(m + n) and heigth h = m + n.
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Here is another description of D(H,, ) over IF,,. Choose integers a,b € Z with
am +bn = 1. Write 7 = V*F°, as an element of End(G,,.,,) = End®(H,,.,); in
fact m € End(H,,,n). We see that e; = 7/-¢p and the elements {e; | 0 < j < m+n}
form a W-bases for D(H,, ).

We see: Hy,p, = Gy if and only if m < 1 or n < 1. Taking into ac-
count Theorem 12.3 below, this explains the correspondence on this point between
Grothendieck and Mumford cited above.

Here is a property which characterizes H,, , ® k for any algebraically closed field
EDTF,:

A p-divisible group X ~ H,, , ® k over k is isomorphic with H,, , ® k if and
only if End(X) is the mazimal order in the division algebra End® (G, @ k).

Note that Endg, (Hy,») is commutative and much smaller than End(H,, , ®
k) if m > 0 and n > 0. From now on we write H,, , instead of H,, , x S for any
scheme S over I, if no confusion can arrive.

Let ¢ =) ,(mj,n;) be a Newton polygon, with ged(m;,n;) =1 for all i. We
define

H(C) = Z Hmhni'

Definition. We say that H(() is the minimal p-divisible group with Newton poly-
gon equal to C.

Theorem 12.3 ([114], 1.2). Let k be an algebraically closed field, and let X be a
p-divisible group over k such that

X[p] = H(Qpl; then X = H(C).

O
Note that a priori we have no information about the Newton polygon of X.
12.4. Here is another way of phrasing the results. Starting from a p-divisible

group X we obtain by truncating at level one a BT; group scheme:
[p] : {X | a p—divisible group}/ =, — {G|a BT1}/=; X +— G:=X]p|.
This map is known to be surjective; see [49], 1.7, see [104], 9.10; it is not difficult
to construct a section for this map, e.g. see [117], 2.5. It is the main theorem of

[114] that the fiber of this map over (G up to ) is precisely one p-divisible group
X if G is minimal.

For a minimal p-divisible group H(¢) with symmetric Newton polygon over an
algebraically closed field k& there is, up to isomorphism, precisely one principal
quasi polarization; see [111], 3.7. We define the central stream

Zg C Wgo C .Ag71
as the central leaf passing through any (A, ) with A[p>] = H(E).
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Corollary 12.5. For any symmetric £ the central stream Z¢ is an EO stratum.
O

Example 12.6. For m > 1 and n > 1 and ged(m,n) = 1 there exist non-minimal
p-divisible groups isogenous with G, ,. For such groups we can find X and Y
with X[p] 2 Y[p] and X Y.

We treat the example m = 2 and n = 3. We choose a perfect field K;
in order to get infinitely many examples one can take for example K = k, an
algebraically closed field. Denote the Dieudonné module D(Hz 3) = M. For any
a € W =Wy (K) we define the Dieudonné submodule M(® as the one generated
over the Dieudonné ring by z(®) := ey + a-e; in the notation as in 12.2. We
define X(@ by D(X(®) = M(®). We see that M(®) contains z(*) and all e; for
j > 2. It follows that X(®) = X©®) if and only if a — b € p-W. Moreover we see
that F22(®) — V32(@ ¢ p.M(@ . This shows that X (@ [p] = X®)[p] for all choices
of a,b € W. This finishes the construction of examples with X[p] = Y[p] and
X 2 Y. Note that X(@ ~ Hy 3 but X(@ £ Hy 5 for a & pW.

The structure of the catalog constructed in 5.6 — 5.11 in [52] explains the
general nature of this example.

We say that a finite group scheme is BT1-simple if it is a BT group scheme and
there is no smaller non-zero BT group scheme contained in it. Note that that in
general a BT;-simple is not a simple group scheme.

12.7. Work over an algebraically closed field £ D F,,. Consider BT group schemes.
Can we classify the simple ones (in the category of BT} group schemes)? In [117]
we find:

G is BTy-simple <= G is indecomposable and minimal.

12.8. Some references: [114], [104], [52], [111], [15], [143].

Instead of truncation at level one we can study truncations at an arbitrary
level. Fixing the heigth h there exists an integer N = N(h) such that for for
p-divisible groups X; and X3 and n < N the condition X;[p"] & Xo[p™] implies
X1 =2 X, see [111], 1.7. For more information what N(h) can be, see [83], [84],
[139]

13. Hecke orbits

13.1. In this section we define Hecke orbits, and we discuss the Zariski closure
of one Hecke orbit. In characteristic zero any Hecke orbit is everywhere dense in
the moduli space (in the classical topology and in the Zariski topology). Chai
proved that the Hecke orbit of an ordinary point x € Agrd is everywhere dense in
Ay; see [7]. However this is certainly not true for every moduli point in positive
characteristic. E.g. the supersingular locus for any g > 1 is properly contained in
Ay, and hence the Zariski closure of a supersingular point is lower dimensional.
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So what is the Zariski closure of a Hecke orbit? In [101], 15.A we find a conjecture
what the Zariski closure of a Hecke orbit in positive characteristic should be; see
Theorem 13.3; in [16] a proof will appear.

13.2. Consider [(A4,u)] =z € A;. We write H(z) for the set of points [(B,v)] =
y € A, such that there exists an isogeny v : B® Q — A ® Q, where (2 is some
field, and a positive integer n € Zsq such that v*(u) = n-v. Notation y € H(x).
See [15], § 1 for other definitions and a discussion.

We write y € Hy(x), where ¢ # p is a prime number, if moreover the degree
of v and n are a power of /.

Theorem 13.3 (Chai-Oort). Consider [(A,p)] =z € Ay. Write § = N(A), for
the Newton polygon of A. Then
H(x) is dense in W (A,y).
O

In case A is ordinary this was proved in [7]; also see [15], §9. The general
case was conjectured in [101], 15.A. A proof will be published in [16]. For a survey
see [9].

13.4. We discuss one aspect of the line of thought. For a supersingular [(4, u)] = «
the result of the theorem is easy to show; hence suppose A is not supersingular.
Using the product structure in the theory of foliations, see 11.13, it suffices to
show that H(xz) N C(x) is dense in C(x). This problem has a “discrete part” and
a “continuous part”. The discrete part is solved by showing that C(z) is geomet-
rically irreducible, see 11.17. Choose any prime number £ # p. The continuous
part follows by showing that H(z) N C(z) is dense in C(x). This is the heart, the
difficult, non-trivial part, of the proof.

13.5. Some details about Newton polygon strata, Hecke orbits, and the main
theorem of this section can be found in: [56], [25], [121], [7] , [101], [50], [9], [10],
[13], [15], [108], [110], [16], [11].

14. Complete subvarieties of A,

14.1. Although the moduli space of polarized abelian varieties is not complete, it
may contain complete subvarieties. E.g. any component of A in any characteristic
contains a complete subvariety of dimension g—1. There is a complete subvariety of
codimension ¢ inside A, ® k for g > 2 and for any field k of positive characteristic.

Van der Geer proved that in any characteristic the codimension of a complete
subvariety of A, is at least g; see [34], 2.7. In [101], 15.B we find the conjecture
that over C a complete subvariety of codimension g should not exist if g > 3. This
was proved in [59]. For a further discussion see [100].

In positive characteristic the stratum of abelian varieties of p-rank equal to
zero is complete and has codimension g, see [93]; actually for g > 2 this stratum
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inside Ay 1 ® I}, is also irreducible, as follows from 7.12. Are these the only pos-
sibilities for a complete subvariety of codimension ¢ in case g > 3, as conjectured
in [105], 5.2 7 We show this conjecture is not correct for g = 3.

Theorem 14.2 (Example). For g = 3 and any prime number p there are infinitely
many complete subvarieties S C A3 ® F of dimension 3, where F :=F,,.

Actually, for the examples we are going to construct, the generic point cor-
responds with an abelian variety of p-rank equal to one.

Proof. Choose the Newton polygon ¢ = (1,0) + 2(1,1) + (0,1). The closure of
We C A:= A31®F equals V3 1, the p-rank one locus. Both are of dimension equal
to four. We are going to construct a complete subvariety of Vs 1 of dimension three.

The central stream Z¢ inside We equals Z°0 := Z¢ = We(a = 2); it is of

dimension 3. Note, however, that Z; is not complete. Write Z := Z?ar for
its Zariski closure inside A and Z* for the Zariski closure inside the minimal
compactification A*.
Claim. The set Z* — Z is of pure dimension zero. Indeed, under specialization
the a-number remains the same, or gets bigger. Hence a boundary point of Z, i.e.
a point in Z* — Z, corresponds with a semi-abelian variety, with abelian part a
superspecial abelian variety of dimension two. Hence there are only finitely many
boundary points in 4*. This proves the claim.

In any projective embedding of Z C Z* we choose a hyperplane H defined
over F meeting Z; and not containing any of the points in Z* — Z. Write U :=
HNZ; write U° := HN Z¢; note that the dimension of U and of U° equals 2. In
11.13 we constructed a finite, surjective morphism

. TxJ— W,

here we consider this for W = W, (which we know is irreducible, see 11.17, but we
do not need that); dim(7T") = dim(Z) = 3 and dim(J) = 1 . Choose the projection
q:T x J — T on the first factor. There is a point j € J(F) such that ® gives a
finite map
T x{j} — 2° = 2.

Let U’ C T x {j} be an irreducible closed subset mapping onto U ¢ Z° = Ze.
Define

T := ‘I)(U/ x J) C We, and T := (TO)Zar CWe C ./43,717
the Zariski closure inside A. Clearly U’ x J, and T°, and T are of dimension 3.
Write T* for the closure of T inside A*.
Claim. T is complete, i.e. = T*. Consider a regular curve A C T* with
0 € A(F) and A° = A — {0} C T°. We show that 0 € A. After taking a finite cover
there is an abelian scheme A — A?; there is N* C A — A® such that the abelian
scheme A/NV, with an appropriate choice of polarization, gives a moduli map
landing into U® C Z°. Specialization of A/N° to any point in U gives an abelian
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variety (because U C A is complete). Hence A — A extends to an abelian scheme

over A. This proves the claim. Hence this finishes the proof of the theorem. O

Question 14.3. Suppose g > 4. Let T' C A, ® F,, be a complete subvariety with
dim(T) = (g(g+1)/2) — g. Does this imply that T is inside the p-rank zero locus?

This was formulated as a conjecture in [105], 5.2 for g > 3. We have seen

here that this is not correct for ¢ = 3. But it may still be correct for g > 3. Using

the method of the proof above we were not able to construct any counterexamples
for g > 3.

References

[1]
2]

Y. André, G-functions and geometry. Aspects Math. E.13, Vieweg 1989. 15
Y. André, Shimura varieties, subvarieties, and CM points. Six lectures August
- September 2001 (with an appendix by C-L. Chai). 15

A. Borevich & 1. Shafarevich, Number theory. Pure and Applied Mathematics,
Vol. 20, Academic Press, 1966. 26

P. Cartier, Groupes formels associés aux anneauzx de Witt géneralisés. Compt.
Rend. Acad. Sc. Paris 265 (1967), 50 — 52. 27

P. Cartier — Modules associés a un groupe formel commutatif. Compt. Rend.
Acad. Sc. Paris 265 (1967), 129 — 132. 27

C.-L. Chai — Compactification of Siegel moduli schemes. London Math. Soc.
Lecture Note Series 107, 1985. 41

C.-L. Chai, Every ordinary symplectic isogeny class in positive characteristic
is dense in the moduli space. Invent. Math. 121 (1995), 439 — 479. 50, 51
C.-L. Chai, Monodromy of Hecke-invariant subvarieties. Pure Appl. Math.
Quarterly 1 (2005) (Special issue: in memory of Armand Borel), 291 — 303.
31

C.-L. Chai, Hecke orbits on Siegel modular varieties. Progress in Mathematics
235, Birkhauser, 2004, pp. 71-107. 51

C.-L. Chai, Canonical coordinates on leaves of p-divisible groups: the two-
slope case. Manuscript 10-1-2005. [Submitted for publication.] 46, 47, 51
C.-L. Chai — Methods for p-adic monodromy. J. Inst. Math. Jussieu 7 (2008),
247-268. 51

C.-L. Chai, B. Conrad & F. Oort, CM liftings of abelian varieties. [To appear]
2,8,9,11, 12,13, 14

C.-L. Chai & F. Oort, Hypersymmetric abelian varieties. Pure Appl. Math.
Q. 2 (2006), no. 1, part 1, 1-27. 27, 51



54
[14]

[15]

[29]

Moduli of abelian varieties in mixed and in positive characteristic

C.-L. Chai & F. Oort, Monodromy and irreducibility of leaves. Ann. of Math.
173 (2011), 1359 — 1396. 30, 31, 39, 42, 46, 48

C.-L. Chai & F. Oort, Moduli of abelian varieties and p-divisible groups: den-
sity of Hecke orbits, and a conjecture of Grothendieck. Arithmetic Geometry,
Proceeding of Clay Mathematics Institute 2006 Summer School on Arithmetic
Geometry, Clay Mathematics Proceedings 8, eds. H. Darmon, D. Ellwood, B.
Hassett, Y. Tschinkel, 2009, 441-536. 7, 23, 32, 34, 50, 51

C.-L. Chai & F. Oort, Hecke orbits. [In preparation] 51

C.-L. Chai & F. Oort, Abelian varieties isogenous to a Jacobian. [Submitted]
14, 15, 16, 17

N. Chavdarov, The generic irreducibility of the numerator of the zeta function
in a family of curves with large monodromy. Duke Math. J. 87 1997, 151-180.
16

R. Coleman, Torsion points on curves. In: Galois representations and arith-
metic algebraic geometry (Editor: Y. Ihara), Adv. Stud. Pure Math. 12
(1987); pp. 235-247. 17

B. Conrad, Gross-Zagier revisited. Heegner points and Rankin L-series, MSRI
Publ. 49, Cambridge Univ. Press, Cambridge, 2004. 11

B. Conrad, Main theorem of complex multiplication. In: [144]. http://math.
stanford.edu/~conrad/vigregroup/vigre04/mainthm.pdf 12

P. Deligne & G. D. Mostov, Monodromy of hypergeometric functions and non-
lattice integral monodromy. Publ. Math THES 63 (1986), 5 — 89. 20

M. Demazure, Lectures on p-divisible groups. Lecture Notes Math. 302,
Springer — Verlag, Berlin 1972. 23

M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktio-
nenkérper. Abh. Math. Sem. Hamburg 14 (1941), 197 — 272. 22, 25, 26,
27

V. G. Drinfeld, Coverings of p-adic symmetric domains. [Funkcional. Anal. i
Prilozen. 10 (1976), no. 2, 29-40.] Functional Analysis and its Applications,
10 (1976), 107-115. 51

S. J. Edixhoven, B. J. J. Moonen & F. Oort (Editors), Open problems in
algebraic geometry. Bull. Sci. Math. 125 (2001), 1 - 22. 47

T. Ekedahl, On supersingular curves and abelian varieties. Math. Scand. 60
(1987), 151 — 178. 27

T. Ekedahl & G. van der Geer, Cycle classes of the E-O stratification on the
moduli of abelian varieties. Algebra, Arithmetic and Geometry - Volume I:
In Honor of Yu. I. Manin (Manin Festschrift; Editors:Y. Tschinkel and Yu.
Zarhin), Progress in Mathematics Vol. 269, Birkh&user, (2009); pp. 567 — 636.
35, 37, 39, 41, 42

G. Faltings — Arithmetische Kompaktifizierung des Modulraums der Abelschen
Varietdten. Arbeitstagung Bonn 1984, Proceedings. Lecture Notes Math.


 http://math.stanford.edu/~conrad/vigregroup/vigre04/mainthm.pdf
 http://math.stanford.edu/~conrad/vigregroup/vigre04/mainthm.pdf

Frans Oort 55

1111, Springer-Verlag 1984. 41

G. Faltings & C.-L. Chai, Degeneration of abelian varieties. With an appendix
by David Mumford. Ergebnisse Bd 22, Springer - Verlag, 1990. 41

L. Fargues & E. Mantovan, Variétés de Shimura, espaces de Rapoport-Zink et
correspondances de Langlands locales. Astérisque 291, Société Mathématique
de France, 2004. 57

J.-M. Fontaine, Groupes p-divisibles sur les corps locauzr. Astérisque 47 — 48.
Société Mathématique de France, 1977. 23, 27

A. Garcia & H. Stichtenoth, On tame towers over finite fields. With an ap-
pendix by H.-G. Riick. J. Reine Angew. Math. 557 (2003), 53 -— 80. 27

G. van der Geer, Cycles on the moduli space of abelian varieties. In: Moduli
of curves and abelian varieties. Editors: C. Faber & E. Looijenga. Aspects
Math., E33, Vieweg, Braunschweig, 1999; pp 65-89. 31, 42, 51

| G. van der Geer, a paper in this volume. 35
| G. van der Geer, & B. Moonen, Abelian varieties. [In preparation.] 12
] L. Gerritzen, On multiplications of Riemann matrices. Math. Ann. 194

(1971), 109 — 122. 7

A. Grothendieck, Groupes de Barsotti-Tate et cristauz de Dieudonné. Sém.
Math. Sup. 45, Presses de I’Univ. de Montreal, 1970. 28, 31

S. Harashita, Fkedahl-Oort strata and the first Newton slope strata. J. Alge-
braic Geom. 16 (2007), 171-199. 41, 42

S. Harashita, FEkedahl-Oort strata contained in the supersingular locus and
Deligne-Lusztig varieties. J. Algebraic Geom. 19 (2010) 419-438. 41, 42

S. Harashita, Fkedahl-Oort strata and the first Newton polygon strata. Man-
uscript 2005. 42

S. Harashita, Configuration of the central streams in the moduli of abelian
varieties. The Asian J. Math. 13 (2009), no. 2, 215-250. 48

S. Harashita, Generic Newton polygons of Ekedahl-Oort strata: Qort’s con-
jecture. Annales de I'Inst. Fourier, 60 (2010), pp. 1787-1830 42

K. Hashimoto & T. Ibukiyama, On the class numbers of positive definite
binary quaternion hermitian forms (I). J. Fac. Sci. Univ. Tokyo TA 27 (1980),
549 — 601; (IT) ibid. 28 (1981), 695 — 699. 27

K. Hashimoto & T. Ibukiyama, On the class numbers of positive definite
binary quaternion hermitian forms (I). J. Fac. Sci. Univ. Tokyo IA 27 (1980),
549 — 601; (IT) ibid. 28 (1981), 695 — 699. 27

T. Honda, Isogeny classes of abelian varieties over finite fields. J. Math. Soc.
Japan 20 (1968), 83 — 95. 12, 13

T. Ibukiyama, T. Katsura & F. Oort, Supersingular curves of genus two and
class numbers. Compos. Math. 57 (1986), 127 - 152. 27

J.-1. Igusa, Class number of a definite quaternion with prime discriminant.
Proc. Nat. Acad. Sci. USA 44 (1985), 312 — 314. 26, 27



56

[49]

[50]

[51]

[52]

[53]

[62]

[63]

[64]

Moduli of abelian varieties in mixed and in positive characteristic

L. Tlusie, Déformations de groupes de Barsotti-Tate. Exp.VI in: Séminaire sur
les pinceaux arithmétiques: la conjecture de Mordell (L. Szpiro), Astérisque
127, Société Mathématique de France, 1985. 35, 42, 49

A. J. de Jong, Homomorphisms of Barsotti-Tate groups and crystals in pos-
itive characteristics. Invent. Math. 134 (1998) 301-333, Erratum 138 (1999)
225. 51

A.J.de Jong & R. Noot, Jacobians with complex multiplication. In Arithmetic
Algebraic Geometry (Editors: G. van der Geer, F. Oort and J. Steenbrink),
Progr. Math. 89, Birhauser Boston, 1991, 177-192. 17, 20, 21

A. J. de Jong & F. Oort, Purity of the stratification by Newton polygons. J.
Amer. Math. Soc. 13 (2000), 209 - 241. 31, 33, 34, 50

A. J. de Jong & S. Zhang, Generic abelian varieties with real multiplication
are not Jacobians. In: Diophantine Geometry, Proceedings ( Editor: Umberto
Zannier), CRM Series 4, Scuola Normale Pisa, 2007. 18, 19

T. Katsura & F. Oort, Families of supersingular abelian surfaces. Compos.
Math. 62 (1987), 107 - 167. 26, 27

T. Katsura & F. Oort, Supersingular abelian varieties of dimension two or
three and class numbers. Algebraic geometry, Sendai 1985 (Editor: T. Oda).
Adv. Stud. in Pure Math. 10 (1987), Kinokuniya Cy Tokyo and North-
Holland Cy Amsterdam, 1987 ; pp. 253 - 281. 27, 29, 32

N. M. Katz, Appendiz to Expose V. In: Surfaces algébriques (Editors: J.
Giraud, L. Tllusie, M. Raynaud). Lecture Notes Math. 868, Springer — Verlag,
Berlin 1981; pp. 127 — 137. 13, 51

N. Katz, Slope filtration of F—crystals. Journées de Géométrie Algébrique
de Rennes (Rennes, 1978), Vol. I, Astérisque 63, Société Mathématique de
France, 1979, pp. 113 - 164. 28, 31

N. M. Katz, Serre-Tate local moduli. Lecture Notes Math. 868, Springer —
Verlag, Berlin 1981, 138-202. 13

S. Keel & L. Sadun, Oort’s conjecture for Ay @ C. J. Amer. Math. Soc. 16
(2003), 887900 51

B. Klingler & A. Yafaev, The André — Oort conjecture. [In preparation] 16
N. Koblitz, p-adic variation of the zeta-function over families of varieties over
finite fields. Compos. Math. 31 (1975), 119 — 218. 31

H.-P. Kraft, Kommutative algebraische p-Gruppen (mit Anwendungen auf p-
divisible Gruppen und abelsche Varietdten). Sonderforsch. Bereich Bonn, Sep-
tember 1975. Ms. 86 pp. 35, 42

S. Lang, Compler multiplication. Grundlehren mathematischen Wis-
senschaften 255, Springer — Verlag, 1983. 7, 9, 14

H. Lange & Ch. Birkenhake, Complez abelian varieties. Grundlehren Math.
Wissensch. 302, Springer—Verlag 1992. 7, 9



[65]
[66]

[67]

Frans Oort 57

H. W. Lenstra jr & F. Oort, Simple abelian varieties having a prescribed
formal isogeny type. J. Pure Appl. Algebra 4 (1974), 47 — 53. 27

K.-Z. Li & F. Oort, Moduli of supersingular abelian varieties. Lecture Notes
Math. 1680, Springer — Verlag 1998; 116 pp. 22, 27, 28, 29, 31, 32

J. Lubin, J-P. Serre and J. Tate, Elliptic curves and formal groups. In: Lecture
notes prepared in connection with the seminars held at the Summer Institute
on Algebraic Geometry, Whitney Estate, Woods Hole, Massachusetts, July
6-July 31, 1964. Mimeographed notes.
http://www.ma.utexas.edu/users/voloch/lst.html 13

Yu. I. Manin, The theory of commutative formal groups over fields of finite
characteristic. Usp. Math. 18 (1963), 3-90; Russ. Math. Surveys 18 (1963),
1-80. 23, 24, 30, 31, 48

E. Mantovan, On certain unitary group Shimura varieties. Harvard PhD-
thesis, April 2002. See [31]. 46

J. Milne, Abelian varieties. Chapter V in: G. Cornell and J. Silverman (Edi-
tors) — Arithmetic Geometry, Springer-Verlag, 1986, pp. 103 — 150.

J. Milne, Jacobian varieties. Chapter VII in: G. Cornell and J. Silverman
(Editors) — Arithmetic Geometry, Springer-Verlag, 1986, pp. 167-212.

B. Moonen, Group schemes with additional structures and Weyl group cosets.
In: Moduli of abelian varieties. (Editors: C. Faber, G. van der Geer, F. Oort).
Progress Math. 195, Birkhauser Verlag 2001; pp. 255-298. 37, 42, 46

B. Moonen, Serre-Tate theory for moduli spaces of PEL type. Ann. Scient. Ec.
Norm. Sup. 4¢ Série 37 (2004), 223 — 269. 48

B. Moonen, A dimension formula for Ekedahl - Qort strata. Ann. de 1'Inst.
Fourier 54 (2004), 666 — 698. 42, 46

B. Moonen, Special subvarieties arising from families of cyclic covers of the
projective line. Documenta Math. 15 (2010), 793-819. 21

B. Moonen & F. Oort, The Torelli locus and special subvarieties. This volume.
15, 19, 20, 21, 22

L. Moret-Bailly, Pinceaux de variétés abéliennes, Astérisque 129, Société
Mathématique de France, 1985. 11, 22, 27, 42

D. Mumford, Abelian varieties. Tata Institute of Fundamental Research Stud-
ies in Mathematics, No. 5 , Oxford Univ. Press, 1970. 7, 9

D. Mumford, Geometric invariant theory (3rd ed.). Springer — Verlag, 1965,
1982, (3rd ed. with J. Fogarthy and F. Kirwan:) 1994. 3

D. Mumford, A note of Shimura’s paper “Discontinuous groups and abelian
varieties”. Math. Ann. 181 (1969), 345-351. 22

D. Mumford, Selected papers. Vol. II. On algebraic geometry, including cor-
respondence with Grothendieck. Editors: C.-L. Chai, A. Neeman, T. Shiota.
Springer, 2010. 48


http://www.ma.utexas.edu/users/voloch/lst.html

58

[82]
[83]
[84]
[85]

[86]
[87]

(3]

(98]

[99]

Moduli of abelian varieties in mixed and in positive characteristic

M. S. Narasimhan & M. V. Nori, Polarisations on an abelian variety. Proc.
Indian Acad. Sci. Math. Sci. 90 (1981), 125 — 128. 12

M.-H. Nicole & A. Vasiu, Minimal truncations of supersingular p-divisible
groups. Indiana Univ. Math. J. 56 (2007), 2887-2897. 50

M.-H. Nicole & A. Vasiu, Traverso’s isogeny conjecture for p-divisible groups.
Rend. Semin. Mat. U. Padova 118 (2008), 73 — 83. 50

M.-H. Nicole, A. Vasiu & T. Wedhorn, Purity of level m stratifications. Ann.
Sci. Ec. Norm. Sup. 43 (2010), pp.925-955 34

P. Norman, Lifting abelian varieties. Invent. Math. 64 (1981), 431 - 443. 33
P. Norman & F. Oort, Moduli of abelian varieties. Ann. of Math. 112 (1980),
413 - 439. 32, 33

T. Oda & F. Oort, Supersingular abelian varieties. Itl. Sympos. Algebr. Geom.
Kyoto 1977 (Editor: M. Nagata). Kinokuniya Book-store 1978, pp. 595 - 621.
27

A. Ogus, Supersingular K3 crystals. Journées de Géométrie Algébrique de
Rennes (Rennes, 1978), Vol. II, Astérisque 64, Société Mathématique de
France, 1979, pp. 3 - 86. 27

F. Oort, Commutative group schemes. Lecture Notes Math. 15, Springer -
Verlag 1966. 24, 35

F. Oort, Finite group schemes, local moduli for abelian varieties and lifting
problems. Compos. Math.23 (1971), 265 - 296. Also in: Algebraic geometry
Oslo 1970 (F. Oort, Editor). Wolters - Noordhoff 1972; pp. 223 - 254. 33

F. Oort, The isogeny class of a CM-type abelian variety is defined over a finite
extension of the prime field. J. Pure Appl. Algebra 3 (1973), 399 — 408. 2
F. Oort, Subvarieties of moduli spaces. Invent. Math. 24 (1974), 95 — 119. 11,
25, 51

F. Oort, Which abelian surfaces are products of elliptic curves? Math. Ann.
214 (1975), 35 — 47. 12, 27

F. Oort, Isogenies of formal groups. Indag. Math., 37 (1975) 391-400. 10

F. Oort, Lifting algebraic curves, abelian varieties and their endomorphisms to
characteristic zero. Algebraic Geometry, Bowdoin 1985 (Editor: S. J. Bloch).
Proceed. Sympos. Pure Math. 46 Part 2, AMS 1987; pp. 165 -195. 13

F. Oort, Endomorphism algebras of abelian varieties. Algebraic Geometry
and Commut. Algebra in honor of M. Nagata (Editors: H. Hijikata et al),
Kinokuniya Cy Tokyo, Japan, 1988, Vol. II; pp. 469-502. 7, 9

F. Oort, Moduli of abelian varieties and Newton polygons. Compt. Rend.
Acad. Sc. Paris 312 Sér. T (1991), 385 - 389. 31

F. Oort, CM-liftings of abelian varieties. J. Alg. Geom. 1, 1992, 131-146. 12,
13

[100] F. Oort, Complete subvarieties of moduli spaces. Abelian varieties. Proceed.

Internal. Conf. Egloffstein 1993 (Editors: W. Barth, K. Hulek, H. Lange). De



Frans Oort 59

Gruyter 1995; pp. 225 - 235. 51

[101] F. Oort, Some questions in algebraic geometry. [preliminary version. Manu-
script, June 1995.] 15, 30, 31, 51

[102] F. Oort, Canonical liftings and dense sets of CM-points. Sympos. arithmetic
geometry. In: Arithmetic Geometry, Cortona, Italy October 1994 (Editor: F.
Catanese). Ist. Naz. Alta Mat. F. Severi 1997, Cambridge Univ. Press; pp.
228 - 234. 15, 22

[103] F. Oort, Newton polygons and formal groups: conjectures by Manin and
Grothendieck. Ann. of Math. 152 (2000), 183 - 206. 29, 30, 31, 32, 33

[104] F. Oort, A stratification of a moduli space of polarized abelian varieties. In:
Moduli of abelian varieties. (Texel Island, 1999, Editors: C. Faber, G. van der
Geer, F. Oort). Progress Math. 195, Birkhauser Verlag 2001; pp. 345 - 416.
4, 23, 35, 36, 37, 38, 39, 40, 41, 42, 46, 49, 50

[105] F. Oort, Newton polygon strata in the moduli space of abelian varieties. In:
Moduli of abelian varieties. (Editors: C. Faber, G. van der Geer, F. Oort).
Progress Math. 195, Birkhauser Verlag 2001; pp. 417 - 440. 28, 29, 31, 32,
34, 52, 53

[106] F. Oort, Purity reconsidered. Conference “The cohomology of moduli spaces”
organized by G. van der Geer and C. Faber. Amsterdam 16 - 20/ XII / 2002.
Manuscript 9 pp. 34

[107] F. Oort, Monodromy, Hecke orbits and Newton polygon strata. Talk Bonn
24 - 1I - 2003. Manuscript 9 pp. 30, 31, 48

[108] F. Oort, Hecke orbits and stratifications in moduli spaces of abelian varieties.
Talk at the Orsay / SAGA, 14 - X - 2003, 10 pp. 51

[109] F. Oort, Special points in Shimura varieties, an introduction. Intercity Sem-
inar, Nov. 14, 2003. Manuscript, 16 pp. 15, 20, 21

[110] F. Oort, Hecke orbits in moduli spaces of abelian varieties and foliations.
Talk at the ETH in Ziirich, 2 - IV - 2004, 12 pp. 51

[111] F. Oort, Foliations in moduli spaces of abelian varieties. J. Amer. Math. Soc.
17 (2004), 267-296. 4, 11, 42, 43, 44, 45, 47, 48, 49, 50

[112] F. Oort, Abelian varieties isogenous to a Jacobian. In: Problems from the
workshop on “Automorphisms of Curves” (Leiden, August, 2004). Editors:
G. Cornelissen and F. Oort. Rendiconti del Seminario Matematico, Padova,
113 (2005), 129 — 177. 14

[113] F. Oort, Newton polygons and p-divisible groups: a conjecture by
Grothendieck. In: Formes automorphes (I) (Semestre printemps 2000, cen-
ter Emile Borel) (Editors: J. Tilouine et al). Astérisque 298, Société
Mathématique de France, 2005; pp. 255 — 269. 31

[114] F. Oort, Minimal p-divisible groups. Ann. of Math. 161 (2005), 1 — 16. 48,
49, 50



60 Moduli of abelian varieties in mixed and in positive characteristic

[115] F. Oort, Abelian varieties and p-divisible groups. Yuri Manin’s Emeritierungs
Conference, 24/26-11-2005. Manuscript 10 pp. 31

[116] F. Oort, Foliations in moduli spaces of abelian varieties and dimension of
leaves. Felix-Klein-Kolloquium, Diisseldorf 2-VII-2005. Manuscript 20 pp. 48

[117] F. Oort, Simple p-kernels of p-divisible groups. Advances in Mathematics
198 (2005), 275 - 310. Special volume in honor of Michael Artin: Part I -
Edited by Aise Johan De Jong, Eric M. Friedlander, Lance W. Small, John
Tate, Angelo Vistoli , James Jian Zhang. 46, 48, 49, 50

[118] F. Oort, Abelian varieties over finite fields. Summer School on “Varieties over
finite fields”, Gottingen, 25-VI — 6-VII-2007. Higher-dimensional geometry
over finite fields. Proceedings of the NATO Advanced Study Institute 2007
(Editors: Dmitry Kaledin, Yuri Tschinkel). IOS Press, 2008, pp. 123 — 188.
7,9,12, 14

[119] F. Oort, Foliations in moduli spaces of abelian varieties and dimension of
leaves. Algebra, Arithmetic and Geometry - Volume II: In Honor of Yu. I.
Manin (Manin Festschrift; Editors: Y. Tschinkel and Yu. Zarhin), Progress
in Mathematics Vol. 270, Birkh&user, (2009); pp. 465 — 502. 11, 29, 31, 32,
45, 46, 48

[120] F. Oort & T. Zink, Families of p-divisible groups with constant Newton poly-
gon. Documenta Math. 7 (2002), 183 — 201. 5, 43, 47, 48

[121] V. Platonov & A. Rapinchuk, Algebraic groups and number theory. Academic
Press 1994. 51

[122] M. Rapoport, On the Newton stratification. Sém. Bourbaki 54 (2001-2002),
n® 903, March 2003. 31

[123] M. Rapoport & Th. Zink, Period spaces for p-divisible groups. Ann. Math.
Studies 141, Princeton University Press, 1996. 44, 48

[124] C. Reid, Hilbert. Springer-Verlag, 1996. 2

[125] B. Riemann, Theorie der Abel’schen Functionen. Journ. reine angew. Math.
54 (1857). 101 — 155. 2

[126] C. Rohde, Cyclic coverings, Calabi-Yau manifolds and complex multiplica-
tion. Lecture Notes Math. 1975, Springer - Verlag 2010. 20, 21

[127] C.-G. Schmidt, Arithmetik abelscher Varietiten mit komplexer Multiplika-
tion. Lecture Notes Math. 1082, Springer — Verlag, Berlin, 1984. 19

[128] G. Shimura, On analytic families of polarized abelian varieties and automor-
phic functions. Ann. of Math. 78 (1963), 149 — 193. 7, 9, 21

[129] G. Shimura, On purely transcendental fields of automorphisms of several
variables. Osaka J. Math. 1 (1964), 1 — 14. 17, 20

[130] G. Shimura & Y. Taniyama, Complex multiplication of abelian varieties and
Its applications to number theory. Publ. Math. Soc. Japan, Vol. 6, 1961. 7, 9,
10, 14, 26



Frans Oort 61

[131] T. Shioda, Supersingular K3 surfaces. In: Algebraic Geometry, Copenhagen
1978 (Editor: K. Lgnsted). Lecture Notes Math. 732, Springer - Verlag (1979),
564 - 591. 27

[132] J. Tate, Endomorphisms of abelian varieties over finite fields. Invent. Math.
2, 1966, 134-144. 2,7, 9, 12, 13, 25

[133] J. Tate, Class d’isogenie des variétés abéliennes sur un corps fini (d’apres
T. Honda). Séminaire Bourbaki, 1968/69, no. 352. Lecture Notes Math. 179,
Springer-Verlag, 1971, 95-110. 9, 12, 13, 14, 26, 30

[134] J. Tate & F. Oort, Group schemes of prime order. Ann. Sci. Ecole Norm.
Sup. (4) 3 1970, 1-21. 35

[135] J. Tsimerman, The existence of an abelian variety over the algebraic numbers
isogenous to no Jacobian. [In preparation.] 14, 17

[136] E. Ullmo & A. Yafaev, Galois orbits of special Shimura varieties. [In
preparation.] 16

[137] D. Ulmer & Y. Zarhin, Ranks of jacobians in towers of function fields.
arXiv:1002.3318 20

[138] A. Vasiu, Crystaline boundedness principle. Ann. Sci. Ecole Norm. Sup. (4)
39 (2006), no. 2, 245-300. 34

[139] A. Vasiu, Reconstructing p-divisible groups from their truncation of small
level. Comment. Math. Helv. 85 (2010), no. 1, 165-202. 34, 50

[140] A. Vasiu, Deformation subspaces of p-divisible groups as formal Lie groups
associated to p-divisible groups. arXiv:math/0607508 46

[141] E. Viehmann, Moduli spaces of p-divisible groups. J. Algebr. Geom. 17
(2008). 341 — 374. 42, 46

[142] E. Viehmann, The global structure of moduli spaces of polarized p-divisible
groups. Documenta Math. 13 (2008), 825 — 852.

[143] E. Viehmann, Truncations of level 1 of elements in the loop group of a re-
ductive group. arXiv:0907.2331, July 2009. 50

[144] 2005-05 VIGRE number theory working group. Organized by Brian Conrad
and Chris Skinner. 14, 54

[145] W. Waterhouse & J. Milne — Abelian varieties over finite fields. Proc. Sym-
pos. pure math. Vol. XX, 1969 Number Theory Institute (Stony Brook), AMS
1971, pp. 53 — 64. 23

[146] T. Wedhorn, The dimension of Oort strata of Shimura varieties of PEL-type.
Moduli of abelian varieties. (Editors: C. Faber, G. van der Geer, F. Oort).
Progress Math. 195, Birkhauser Verlag 2001; pp. 441 — 471. 42, 46

[147] T. Wedhorn, Specializations of F-Zips. Ms. 22 pp., 20-VI-2005. 46

[148] A. Weil, Sur les périodes des intégrales. Comm. on Pure and Appl. Math.
29 (1976), 813 — 819. 19

A. Weil — Collected papers, Vol. ITI, [1976D)].



62 Moduli of abelian varieties in mixed and in positive characteristic

[149] Y. Yang, An improvement of the De Jong-Oort Purity theorem. To appear
in Miinster Journal of Math. 34

[150] C.-F. Yu, Lifting abelian varieties with additional structures. Math. Zeitschr.
242, 2002, 427-441. 12

[151] C.-F. Yu, The isomorphism classes of abelian varieties of CM-type. J. Pure
Appl. Algebra 187, 2004, 305-319. 10, 12

[152] T. Zink, Cartiertheorie kommutativer formaler Gruppen. Teubner-Texte Bd
68, Teubner 1984. 27

[153] T. Zink, The display of a formal p-divisible group. Cohomologies p-adiques
et applications arithmétiques, I. Astérisque No. 278, Société Mathématique
de France, 2002, pp. 127-248. 27

[154] T. Zink, A Dieudonné theory for p-divisible groups. Manuscript, 23 pp.,
September 1998. Class field theory—its centenary and prospect (Tokyo, 1998),
139-160, Adv. Stud. Pure Math., 30, Math. Soc. Japan, Tokyo, 2001. 27

[155] T. Zink, On the slope filtration. Duke Math. J. 109 (2001), 79 - 95. 5, 43,
48

[156] T. Zink, De Jong-Oort purity for p-divisible groups. Algebra, Arithmetic and
Geometry - Volume II: In Honor of Yu. I. Manin (Manin Festschrift; Editors:
Y. Tschinkel and Yu. Zarhin), Progress in Mathematics Vol. 270, Birkhiuser,
(2009); pp. 693 — 701 . 34

UNIVERSITY OF UTRECHT, P.O. Box. 80.010, NL - 3508 TA UTRECHT, THE NETHERLANDS
E-mail address: f.oort@uu.nl



