Hand-in exercises for the course Foundations of
Mathematics

Jaap van Oosten

November 2023-January 2024

1 Exercises

Exercise 1 [To be handed in November 21, 2023]

a) (4 pts) Show that N can be written as a disjoint union (J; .y C; with all C;
infinite (here, “disjoint union” means that C; N C; = () whenever i # j).

b) (6 pts) We write A(X,Y) (the “symmetric difference”) for the set
(X -Y)u(Y - X).

Show that for every sequence (A, | n € N) of subsets of N, there is a subset
B of N such that for all n, A(B, A,,) is infinite.

Exercise 2 [To be handed in November 28,2023] By P(R) we denote, as usual,
the power set of R. Let P be the poset of all pairs (A, g) such that A C R and
g: A— P(R) is a function and the following conditions hold:

i) Ifaj,az € A and ay # as then g(a1) Ng(as) = 0.
ii) 0€ AandO0 e g(0).
iii) If ay,a2 € A, r1 € g(a1) and r9 € g(asz), then a1 + a2 € A and r1 + 19 €
g(ar + az).
The set P is preordered by: (A,g) < (B,h) if A C B and for all a € A,
g9(a) C h(a).

a) (4 pts) Show that the poset P satisfies the condition of Zorn’s Lemma,
that is: every chain in P has an upper bound. Conclude that P has a
maximal element.

b) (4 pts) Let (4, g) be a maximal element of P. Prove that the set A is
closed under addition and that, if r € A, also —r € A.

c) (2 pts) Let (A, g) be a maximal element of P. Show that (J, 4 g(a) =R
and there is a function f : R — Rsuch that f(0) =0, f(z+y) = f(z)+f(y)
and for all z € R, x € g(f(x)).



Exercise 3 [To be handed in December 5, 2023] This is Exercise 45 from the
book:

Let L be a set. Write P*(L) for the set of nonempty subsets of L. Suppose
that h : P*(L) — L is a function such that the following two conditions are
satisfied:

i) For each nonempty family {4, |i € I} of elements of P*(L), we have

h(U Ai) = h({h(A;)|i € I})

icl
ii) For each A € P*(L), h(A) € A.

Show that there is a unique relation < on L , which well-orders L, and is such
that for each nonempty subset A of L the element h(A) is the least element of
A.

Exercise 4 [To be handed in December 12, 2023] Two L-structures M and N
are said to be elementarily equivalent (notation: M = N) if they satisfy the
same L-sentences: for any L-sentence ¢ we have M = ¢ if and only if N | ¢.

Let L = {<} be the language of (strict) posets. Let P be a poset such that
for every n € N there is an ascending sequence p; < p2 < --- < p, of length n.
Show that there is a poset () with the properties:

i) P=Q.

ii) In @ there is an infinite ascending sequence q; < gg < - -.

Exercise 5 [To be handed in January 16, 2024] Demonstrate by constructing
proof trees:

i) (5 pts) (¢ — ) F 3a(¢p — ) (here it is assumed that the variable x
does not occur in ¢.

i) (5 pts) (0 =)V (Y —9)

Exercise 6 [To be handed in January 23, 2024] This is Exercise 129 from the
book:
Let L be a language, T an L-theory and L’ an extension of the language L.

a) (4 pts) Show that the poset of all L’-theories which are conservative exten-
sions of T, ordered by inclusion, satisfies the hypothesis of Zorn’s Lemma.

b) (6 pts) By Zorn’s Lemma, there is a maximal L’-theory U which is con-
servative over T. Show that for every L’-sentence 1 € U, there are an
L-sentence ¢ and an L’-sentence v € U such that y Ay = ¢ and T £~ ¢.



2 Solutions

Exercise 1 a): according to the proof of Proposition 1.1.4ii) there is a bijective
function ¢ : N = N x N. Let mp : N X N — N be the first projection. Define C;
to be {n € N|my(¢»(n)) = i}. Clearly, C; is infinite, C; N C; = 0 for i # j and
Uien Ci = N.

b): Given the sequence (A, |n € N), let x, be the characteristic function of
A,,. We use the sequence (C), |n € N) from part a). We define the set B by its
characteristic function x:

x(k) = 1—xn(k)

where n is the unique number such that k € C,,. We see that C,, C A(B, A,,)
(note that z € A(B, A,,) if and only if exactly one of {x(z), xn(z)} equals 1),
so this set is infinite for all n.

Exercise 2 a): First we observe that the pair (4, g) with A = {0} and ¢(0) =
{0} is an element of P, which is therefore nonempty; so the empty chain has
an upper bound. Now suppose C' = (A;, g;)ics is a nonempty chain in P. We

define:
A=UierAi gla) =U,eq, gila) forac A

We check that (A, g) satisfies conditions i)-iii), for then it will be an upper
bound for C, as is immediate.

i)  Suppose a1,a2 € A, a; # as. Then

g9la1) Nglaz) = (Ua ea, 9i(01)) N (Uayea, 95(az2))
= UaleAi,ageAj gi(al) n gj (a’2)

Since C is a chain, we may suppose (4;,¢;) < (4;,9;). Then g;(a1) N
gj(az2) € gj(a1) Ngj(az) = 0. So condition i) holds.

ii) this condition holds by nonemptiness of C.

iii) If a1,a2 € A, r1 € g(a1),r2 € g(az) then again by the chain property
of C, we have aj,as € A;, 11 € g;(a1), r2 € gi(az) for some i € I, so
r1+ 72 € gi(a1 + az2) C g(ag + az) and on the way we have checked that
ay + az € A. We conclude that (A, g) € P.

We conclude by Zorn’s Lemma that P has a maximal element.

b): Suppose a1,a2 € A but a1 + ag ¢ A. Then by condition iii) for A, g(ay)
and g(ay) cannot both be nonempty. This means that if we define (4’,¢') as

follows: (@
;L iy ) gla) ifacA
A'=AU{a; +az} g(a){ 0 ifa=ay+a
then conditions i)-iii) are satisfied, so (A’ g’) is an element of P and a proper
extension of (A, g), which violates the maximailty of the latter. We conclude

that a; + ag € A.



The second statement is proved by a similar trick: suppose ay € A but
—ag € A. Let A’ = AU{—ap}, ¢'(a) = g(a) for a € A and g(—ap) = 0. Again,
conditions i)-iii) hold, so (4’,¢") € P and (A4’, ¢’) extends (4, g); again violating
maximality.

In fact, we could have shown directly that A = R, from which the two
statements to be proved, follow at once. Indeed, if (R, g’) is such that ¢’'(a) =
g(a) for a € A, and g'(a) = 0 otherwise, then it is easy to see that (R,g’) is
an element of P which extends (4, g). By maximality we must have equality,
whence A = R.

c¢) This part of the exercise turned out to be far more laborious than usual for a
hand-in exercise; which is why we decided to award 5 points to parts a) and b)
each, and give up to 2 bonus points for the students who had done (a substantial
part of) ¢).

Assume (A, g) is a maximal element of P. Let us first see that if Z =
U,ea 9(a) is equal to R, then there is a function f : R — R such that f(0) =0,
flz+y) = f(x)+ f(y) and for all z € R, = € g(f(z)). This is almost trivial:
define, for € Z, f(x) to be the unique a such that x € g(a) (unicity of a
follows from condition i) of elements of P). Conditions ii) and iii) now imply
the required properties of the function f. Note that we always have such a
function f : Z — R satisfying f(0) = 0 and f(z+y) = f(x)+ f(y), by the same
definition.

Now for the proof that Z = R. First we prove:

Claim 1 The set Z is closed under the function x — —z.
Proof: Assume zg € Z but —zg &€ Z. Let ag be such that z¢ € g(ag). Define
the function ¢’ : A — R by

g'(a) = {z —xo|x € glatag)}

We check that (A, ¢’) is an element of P which satisfies (A4, g) < (A4,¢’). Since
—xg € ¢'(—ap) (because 0 € g(0)) we then have (4, g) < (A, g"), which violates
the maximality of (A, g). We check conditions i)iii) for (A4, ¢’), as well as

iv): g(a) C ¢'(a), for all a € A.
i): Suppose z —xp € ¢'(a)Ng'(a’). Then x € g(a+ ag) and = € g(a’ + ag) so by
i) for (4,9), a = a’. We see that (4, ¢) satisfies i).
ii): ¢'(0) = {z—x0 |z € g(ag)}. Since zg € g(ap) we have 0 = zo+(—xz0) € ¢'(0),
so this checks ii).
iii): Suppose x —xq € ¢'(a), ' —xo € ¢g'(a’). We need to see that .+’ — 2z €
g (a+a’). We have x € g(a + ag), 2’ € g(a’ + ap). By iii) for (A, g) this gives

41’ € gla+d +2ap)

Applying the definition of ¢’ twice, we get: x +a' —x¢ € ¢'(a+a’ +agp), whence
x+ a2 — 2z € ¢’(a+ a'). Which is what we set out to show.

iv): If x —xg € g(a), then x = (z — x¢) + 29 € gla+ag), s0 . —x¢ € ¢’(a). This
shows g(a) C ¢'(a).

This proves Claim 1. Now we turn to the full result:



Claim 2: Z =R.

Proof: By maximality of (4, g) we may assume that Z = (J,. 4 g(a) is closed
under addition and the function  — —x. Now suppose xg € R—Z. We consider
two cases:

Case 1: For no natural number k£ > 0 we have kxg € Z. We consider the set

Z' = {z+kxo|lxe€Zkel}

Note that every element of Z’ can be uniquely expressed as x + kxg, for if
x+kxo = &' +k'xo then we would have (k—k')zy € Z, which by our assumption
can only happen if kK = k’ and therefore z = /. Note, that here we use the fact,
previously proved, that Z is closed under the function x — —z.

Choose « € R arbitrary, let A’ = {a + ka|a € A} and define ¢'(a + ka) =
{z +kzo|z € g(a)}. We see that (A’,¢’) extends (A, g) in P, and arrive at the
familiar contradiction.
Case 2: For some m € Nsg we have mxy € Z, let m be minimal with this
property. Define

Z'={x+kxo|lz e Z keNO0<k<m}

Again, every element of Z’ can be uniquely written as x + kxg for z € Z and
0 < k < m. Pick ag such that maxy € g(ag). Let

k
A = {a+Ea0|a€A,0<k<m}

Define ¢ : A’ — R by ¢'(a + £ag) = {z + kao|z € g(a)}. Again, (4,9) <
(A, ¢").
Exercise 3. The relation < is completely determined by the condition that
h(A) be the least element of A: for x < y if and only if x is the least element
of {z,y}, if and only if z = h({z,y}). So, let us define x <y by x = h({z,y}),
and show that < is a well-order.

First we show that < is a partial order:
Since h(A) € A always (condition ii)), we have h({z,2}) = h({z}) = z,s0z <z
and < is reflexive.

h({z,z}) = ({z,y}), h({z})})
({z,y,21)})
({z}), h({y, 2}1)})

z,y})

h
h
h

I
8 >
e e

(using condition i) twice) so z < z and < is transitive.
Finally, if < y and y < z then z = h({z,y}) = h({y,z}) = y, so < is
antisymmetric. We conclude that < is a partial order.



For the well-order property, we show that indeed, h(A) is the least element of
A, if A C L is nonempty. For a € A we have

h({h(A),a}) = h({h(A),h({a})}) = M(AU{a}) = h(A)
so h(A) < a and h(A) is the least element of A.
Exercise 4. The theory of strict posets, in the language L,s = {<}, has the

axioms:
Vaeyz(z <yAy<z— 2z <z)
Ve—(x < x)

Call this theory Tspos-
Consider the language L = Lgpos U {co,c1,. ..}, where the
stants. Let T" be the L-theory which has the following axioms:

i)
ii)

iii)

C; are new con-

the axioms of Tspos
the axioms ¢; < ¢;41 for all i € N
all Lgpos-sentences which are true in P.

I claim that T is consistent. For this, in view of the Compactness Theorem,
we look at a finite subtheory of T. Such a theory is contained in the theory
which has the axioms of i) and iii), and finitely many axioms of ii), say {¢; <
¢i+1]0 < i < n} for some n € N. Call this theory T,; it is a theory in the
language Lgpos U {c; |0 <i<n+1}.

Now we can make P into a model of T, by picking an ascending sequence
po < +++ < ppy1 in P and defining ¢’ = p;. So every theory T,, is consistent;
by the Compactness Theorem we conclude that the theory T is consistent. Let
Q@ be a model of T. Then @ is a poset by i), which has an infinite ascending

sequence ch < C? < --- by ii), and which satisfies the same Lgp,s-sentences as
P, by iii).

Exercise 5

a)
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Exercise 6

a) Call this poset P. Let C C P be a chain of L’-theories which are conservative
extensions of T. We consider | JC. If for some L-sentence ¢ we have |JC F ¢
then since proof trees are finite, there is a finite subset U of |JC such that
U t ¢. By the chain property, there is T € C such that U C T"”. Since T” is
conservative over T, we see T F ¢. We conclude that | JC is conservative over
T, hence an element of P and therefore an upper bound of C in P. The poset P
satisfies the hypothesis of Zorn’s Lemma and has therefore a maximal element.

b) Let U be a maximal element of the poset P of part a). If ¢ is an L'-
sentence outside U, then by maximality of U the L'-theory U U{%} is no longer
conservative over T': there is an L-sentence ¢ such that UU{¢} F ¢ and T V/ ¢.
Again, there is a finite subset U’ C U such that U’ U {4} F ¢; if v is the
conjunction of all elements of U’, then y A ¢ and T / ¢.

-E



