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1 Exercises

Exercise 1 [To be handed in November 21, 2023]

a) (4 pts) Show that N can be written as a disjoint union
⋃

i∈N Ci with all Ci

infinite (here, “disjoint union” means that Ci ∩ Cj = ∅ whenever i 6= j).

b) (6 pts) We write ∆(X,Y ) (the “symmetric difference”) for the set

(X − Y ) ∪ (Y −X).

Show that for every sequence (An |n ∈ N) of subsets of N, there is a subset
B of N such that for all n, ∆(B,An) is infinite.

Exercise 2 [To be handed in November 28,2023] By P(R) we denote, as usual,
the power set of R. Let P be the poset of all pairs (A, g) such that A ⊆ R and
g : A→ P(R) is a function and the following conditions hold:

i) If a1, a2 ∈ A and a1 6= a2 then g(a1) ∩ g(a2) = ∅.

ii) 0 ∈ A and 0 ∈ g(0).

iii) If a1, a2 ∈ A, r1 ∈ g(a1) and r2 ∈ g(a2), then a1 + a2 ∈ A and r1 + r2 ∈
g(a1 + a2).

The set P is preordered by: (A, g) ≤ (B, h) if A ⊆ B and for all a ∈ A,
g(a) ⊆ h(a).

a) (4 pts) Show that the poset P satisfies the condition of Zorn’s Lemma,
that is: every chain in P has an upper bound. Conclude that P has a
maximal element.

b) (4 pts) Let (A, g) be a maximal element of P . Prove that the set A is
closed under addition and that, if r ∈ A, also −r ∈ A.

c) (2 pts) Let (A, g) be a maximal element of P . Show that
⋃

a∈A g(a) = R
and there is a function f : R→ R such that f(0) = 0, f(x+y) = f(x)+f(y)
and for all x ∈ R, x ∈ g(f(x)).
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Exercise 3 [To be handed in December 5, 2023] This is Exercise 45 from the
book:

Let L be a set. Write P∗(L) for the set of nonempty subsets of L. Suppose
that h : P∗(L) → L is a function such that the following two conditions are
satisfied:

i) For each nonempty family {Ai | i ∈ I} of elements of P∗(L), we have

h(
⋃
i∈I

Ai) = h({h(Ai) | i ∈ I})

ii) For each A ∈ P∗(L), h(A) ∈ A.

Show that there is a unique relation ≤ on L , which well-orders L, and is such
that for each nonempty subset A of L the element h(A) is the least element of
A.

Exercise 4 [To be handed in December 12, 2023] Two L-structures M and N
are said to be elementarily equivalent (notation: M ≡ N) if they satisfy the
same L-sentences: for any L-sentence φ we have M |= φ if and only if N |= φ.

Let L = {<} be the language of (strict) posets. Let P be a poset such that
for every n ∈ N there is an ascending sequence p1 < p2 < · · · < pn of length n.
Show that there is a poset Q with the properties:

i) P ≡ Q.

ii) In Q there is an infinite ascending sequence q1 < q2 < · · · .

Exercise 5 [To be handed in January 16, 2024] Demonstrate by constructing
proof trees:

i) (5 pts) (φ → ∃xψ) ` ∃x(φ → ψ) (here it is assumed that the variable x
does not occur in φ.

ii) (5 pts) (φ→ ψ) ∨ (ψ → φ).

Exercise 6 [To be handed in January 23, 2024] This is Exercise 129 from the
book:
Let L be a language, T an L-theory and L′ an extension of the language L.

a) (4 pts) Show that the poset of all L′-theories which are conservative exten-
sions of T , ordered by inclusion, satisfies the hypothesis of Zorn’s Lemma.

b) (6 pts) By Zorn’s Lemma, there is a maximal L′-theory U which is con-
servative over T . Show that for every L′-sentence ψ 6∈ U , there are an
L-sentence φ and an L′-sentence γ ∈ U such that γ ∧ ψ |= φ and T 6|= φ.
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2 Solutions

Exercise 1 a): according to the proof of Proposition 1.1.4ii) there is a bijective
function ψ : N→ N× N. Let π0 : N× N→ N be the first projection. Define Ci

to be {n ∈ N |π0(ψ(n)) = i}. Clearly, Ci is infinite, Ci ∩ Cj = ∅ for i 6= j and⋃
i∈N Ci = N.

b): Given the sequence (An |n ∈ N), let χn be the characteristic function of
An. We use the sequence (Cn |n ∈ N) from part a). We define the set B by its
characteristic function χ:

χ(k) = 1− χn(k)

where n is the unique number such that k ∈ Cn. We see that Cn ⊆ ∆(B,An)
(note that x ∈ ∆(B,An) if and only if exactly one of {χ(x), χn(x)} equals 1),
so this set is infinite for all n.

Exercise 2 a): First we observe that the pair (A, g) with A = {0} and g(0) =
{0} is an element of P , which is therefore nonempty; so the empty chain has
an upper bound. Now suppose C = (Ai, gi)i∈I is a nonempty chain in P . We
define:

A−
⋃

i∈I Ai g(a) =
⋃

a∈Ai
gi(a) for a ∈ A

We check that (A, g) satisfies conditions i)–iii), for then it will be an upper
bound for C, as is immediate.

i) Suppose a1, a2 ∈ A, a1 6= a2. Then

g(a1) ∩ g(a2) = (
⋃

a1∈Ai
gi(a1)) ∩ (

⋃
a2∈Aj

gj(a2))

=
⋃

a1∈Ai,a2∈Aj
gi(a1) ∩ gj(a2)

Since C is a chain, we may suppose (Ai, gi) ≤ (Aj , gj). Then gi(a1) ∩
gj(a2) ⊆ gj(a1) ∩ gj(a2) = ∅. So condition i) holds.

ii) this condition holds by nonemptiness of C.

iii) If a1, a2 ∈ A, r1 ∈ g(a1), r2 ∈ g(a2) then again by the chain property
of C, we have a1, a2 ∈ Ai, r1 ∈ gi(a1), r2 ∈ gi(a2) for some i ∈ I, so
r1 + r2 ∈ gi(a1 + a2) ⊆ g(a1 + a2) and on the way we have checked that
a1 + a2 ∈ A. We conclude that (A, g) ∈ P .

We conclude by Zorn’s Lemma that P has a maximal element.

b): Suppose a1, a2 ∈ A but a1 + a2 6∈ A. Then by condition iii) for A, g(a1)
and g(a2) cannot both be nonempty. This means that if we define (A′, g′) as
follows:

A′ = A ∪ {a1 + a2} g′(a) =

{
g(a) if a ∈ A
∅ if a = a1 + a2

then conditions i)–iii) are satisfied, so (A′, g′) is an element of P and a proper
extension of (A, g), which violates the maximailty of the latter. We conclude
that a1 + a2 ∈ A.
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The second statement is proved by a similar trick: suppose a0 ∈ A but
−a0 6∈ A. Let A′ = A ∪ {−a0}, g′(a) = g(a) for a ∈ A and g(−a0) = ∅. Again,
conditions i)–iii) hold, so (A′, g′) ∈ P and (A′, g′) extends (A, g); again violating
maximality.

In fact, we could have shown directly that A = R, from which the two
statements to be proved, follow at once. Indeed, if (R, g′) is such that g′(a) =
g(a) for a ∈ A, and g′(a) = ∅ otherwise, then it is easy to see that (R, g′) is
an element of P which extends (A, g). By maximality we must have equality,
whence A = R.

c) This part of the exercise turned out to be far more laborious than usual for a
hand-in exercise; which is why we decided to award 5 points to parts a) and b)
each, and give up to 2 bonus points for the students who had done (a substantial
part of) c).

Assume (A, g) is a maximal element of P . Let us first see that if Z =⋃
a∈A g(a) is equal to R, then there is a function f : R→ R such that f(0) = 0,

f(x + y) = f(x) + f(y) and for all x ∈ R, x ∈ g(f(x)). This is almost trivial:
define, for x ∈ Z, f(x) to be the unique a such that x ∈ g(a) (unicity of a
follows from condition i) of elements of P ). Conditions ii) and iii) now imply
the required properties of the function f . Note that we always have such a
function f : Z → R satisfying f(0) = 0 and f(x+y) = f(x) +f(y), by the same
definition.

Now for the proof that Z = R. First we prove:
Claim 1 The set Z is closed under the function x 7→ −x.
Proof: Assume x0 ∈ Z but −x0 6∈ Z. Let a0 be such that x0 ∈ g(a0). Define
the function g′ : A→ R by

g′(a) = {x− x0 |x ∈ g(a+ a0)}

We check that (A, g′) is an element of P which satisfies (A, g) ≤ (A, g′). Since
−x0 ∈ g′(−a0) (because 0 ∈ g(0)) we then have (A, g) < (A, g′), which violates
the maximality of (A, g). We check conditions i)–iii) for (A, g′), as well as

iv): g(a) ⊆ g′(a), for all a ∈ A.
i): Suppose x− x0 ∈ g′(a)∩ g′(a′). Then x ∈ g(a+ a0) and x ∈ g(a′+ a0) so by
i) for (A, g), a = a′. We see that (A, g′) satisfies i).
ii): g′(0) = {x−x0 |x ∈ g(a0)}. Since x0 ∈ g(a0) we have 0 = x0+(−x0) ∈ g′(0),
so this checks ii).
iii): Suppose x−x0 ∈ g′(a), x′−x0 ∈ g′(a′). We need to see that x+x′−2x0 ∈
g′(a+ a′). We have x ∈ g(a+ a0), x′ ∈ g(a′ + a0). By iii) for (A, g) this gives

x+ x′ ∈ g(a+ a′ + 2a0)

Applying the definition of g′ twice, we get: x+x′−x0 ∈ g′(a+a′+a0), whence
x+ x′ − 2x0 ∈ g′(a+ a′). Which is what we set out to show.
iv): If x−x0 ∈ g(a), then x = (x−x0) +x0 ∈ g(a+ a0), so x−x0 ∈ g′(a). This
shows g(a) ⊆ g′(a).
This proves Claim 1. Now we turn to the full result:
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Claim 2: Z = R.
Proof: By maximality of (A, g) we may assume that Z =

⋃
a∈A g(a) is closed

under addition and the function x 7→ −x. Now suppose x0 ∈ R−Z. We consider
two cases:
Case 1: For no natural number k > 0 we have kx0 ∈ Z. We consider the set

Z ′ = {x+ kx0 |x ∈ Z, k ∈ Z}

Note that every element of Z ′ can be uniquely expressed as x + kx0, for if
x+kx0 = x′+k′x0 then we would have (k−k′)x0 ∈ Z, which by our assumption
can only happen if k = k′ and therefore x = x′. Note, that here we use the fact,
previously proved, that Z is closed under the function x 7→ −x.

Choose α ∈ R arbitrary, let A′ = {a + kα | a ∈ A} and define g′(a + kα) =
{x+ kx0 |x ∈ g(a)}. We see that (A′, g′) extends (A, g) in P , and arrive at the
familiar contradiction.
Case 2: For some m ∈ N>0 we have mx0 ∈ Z, let m be minimal with this
property. Define

Z ′ = {x+ kx0 |x ∈ Z, k ∈ N, 0 < k < m}

Again, every element of Z ′ can be uniquely written as x + kx0 for x ∈ Z and
0 < k < m. Pick a0 such that mx0 ∈ g(a0). Let

A′ = {a+
k

m
a0 | a ∈ A, 0 < k < m}

Define g′ : A′ → R by g′(a + k
ma0) = {x + kx0 |x ∈ g(a)}. Again, (A, g) <

(A′, g′).

Exercise 3. The relation ≤ is completely determined by the condition that
h(A) be the least element of A: for x ≤ y if and only if x is the least element
of {x, y}, if and only if x = h({x, y}). So, let us define x ≤ y by x = h({x, y}),
and show that ≤ is a well-order.

First we show that ≤ is a partial order:
Since h(A) ∈ A always (condition ii)), we have h({x, x}) = h({x}) = x, so x ≤ x
and ≤ is reflexive.
Suppose x ≤ y and y ≤ z, so h({x, y}) = x and h({y, z}) = y. Then

h({x, z}) = h({h({x, y}), h({z})})
= h({h({x, y, z})})
= h({h({x}), h({y, z})})
= h({x, y})
= x

(using condition i) twice) so x ≤ z and ≤ is transitive.
Finally, if x ≤ y and y ≤ x then x = h({x, y}) = h({y, x}) = y, so ≤ is
antisymmetric. We conclude that ≤ is a partial order.
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For the well-order property, we show that indeed, h(A) is the least element of
A, if A ⊆ L is nonempty. For a ∈ A we have

h({h(A), a}) = h({h(A), h({a})}) = h(A ∪ {a}) = h(A)

so h(A) ≤ a and h(A) is the least element of A.

Exercise 4. The theory of strict posets, in the language Lspos = {<}, has the
axioms:

∀xyz(x < y ∧ y < z → x < z)
∀x¬(x < x)

Call this theory Tspos.
Consider the language L = Lspos ∪ {c0, c1, . . .}, where the ci are new con-

stants. Let T be the L-theory which has the following axioms:

i) the axioms of Tspos

ii) the axioms ci < ci+1 for all i ∈ N

iii) all Lspos-sentences which are true in P .

I claim that T is consistent. For this, in view of the Compactness Theorem,
we look at a finite subtheory of T . Such a theory is contained in the theory
which has the axioms of i) and iii), and finitely many axioms of ii), say {ci <
ci+1 | 0 ≤ i ≤ n} for some n ∈ N. Call this theory Tn; it is a theory in the
language Lspos ∪ {ci | 0 ≤ i ≤ n+ 1}.

Now we can make P into a model of Tn by picking an ascending sequence
p0 < · · · < pn+1 in P and defining cPi = pi. So every theory Tn is consistent;
by the Compactness Theorem we conclude that the theory T is consistent. Let
Q be a model of T . Then Q is a poset by i), which has an infinite ascending

sequence cQ0 < cQ1 < · · · by ii), and which satisfies the same Lspos-sentences as
P , by iii).

Exercise 5
a)

†¬∃x(φ→ ψ)3

†¬∃x(φ→ ψ)3

†¬φ1 †φ2
¬E⊥ ⊥E

ψ → I, 2
φ→ ψ

∃I∃x(φ→ ψ)
¬E⊥ ⊥E, 1

φ φ→ ∃xψ5

→ E∃xψ

†ψ(u)4
→ I

φ→ ψ(u)
∃I∃x(φ→ ψ)
∃E, 4

∃x(φ→ ψ)
¬E⊥ ⊥E, 3

∃x(φ→ ψ)
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b)

†φ1
→ I

ψ → φ
∨I

(φ→ ψ) ∨ (ψ → φ) †¬((φ→ ψ) ∨ (ψ → φ))2
¬E⊥ ¬I, 1¬φ †φ3

¬E⊥ ⊥E
ψ → I, 3

φ→ ψ
∨I

(φ→ ψ) ∨ (ψ → φ) †¬((φ→ ψ) ∨ (ψ → φ))2
¬E⊥ ⊥E, 2

(φ→ ψ) ∨ (ψ → φ)

Exercise 6
a) Call this poset P . Let C ⊆ P be a chain of L′-theories which are conservative
extensions of T . We consider

⋃
C. If for some L-sentence φ we have

⋃
C ` φ

then since proof trees are finite, there is a finite subset U of
⋃
C such that

U ` φ. By the chain property, there is T ′′ ∈ C such that U ⊆ T ′′. Since T ′′ is
conservative over T , we see T ` φ. We conclude that

⋃
C is conservative over

T , hence an element of P and therefore an upper bound of C in P . The poset P
satisfies the hypothesis of Zorn’s Lemma and has therefore a maximal element.

b) Let U be a maximal element of the poset P of part a). If ψ is an L′-
sentence outside U , then by maximality of U the L′-theory U ∪{ψ} is no longer
conservative over T : there is an L-sentence φ such that U ∪{ψ} ` φ and T 6` φ.
Again, there is a finite subset U ′ ⊆ U such that U ′ ∪ {ψ} ` φ; if γ is the
conjunction of all elements of U ′, then γ ∧ ψ ` φ and T 6` φ.
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