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Abstract

We show that every abstract Krivine structure in the sense of Streicher can
be obtained, up to equivalence of the resulting tripos, from a filtered opca
(A,A′) and a subobject of 1 in the relative realizability topos RT(A′, A);
the topos is always a Boolean subtopos of RT(A′, A). We exhibit a range
of non-localic Boolean subtoposes of the Kleene-Vesley topos.

Keywords: realizability toposes, partial combinatory algebras, geometric mor-
phisms, local operators, abstract Krivine structures, non-localic Boolean topo-
ses.

Introduction

In an impressive series of papers, Jean-Louis Krivine has been emplying ex-
tensions of the untyped λ-calculus to create “realizability interpretations” for
classical ZF set theory. He has been working on this project for roughly the last
20 years.

For a long time, this work seemed to have no connections with other inter-
pretations, also called ‘realizability’, in the Kleene-Troelstra-Hyland tradition
(for an overview of which, see e.g. [23]). And disjoint research groups worked
either in ‘Krivine realizability’ or with notions of realizability related to the
effective topos or similar toposes.

This situation has recently undergone a drastic change: the series of ‘realiz-
ability’ meetings at Chambéry has brought researchers from different traditions
together, and in particular Thomas Streicher, who published [21], has built an
important bridge.

After reformulating Krivine’s ‘abstract machine’ as an ‘abstract Krivine
structure’ (aks), Streicher proves that from each aks one may construct a so-
called filtered order-pca (a structure for what is called “relative realizability” in
Birkedal’s thesis [2] and in [3]), and hence a topos; the special features of the
filtered opca constructed from an aks ensure that this will be a Boolean topos.
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In a series of papers from 2013–2015 ([5, 4, 6]) Walter Ferrer Santos, Jonas
Frey, Mauricio Guillermo, Octavio Malherbe and Alexandre Miquel develop
theory of ordered pcas whose associated Set-indexed preorders are Boolean tri-
poses. Frey, moreover, investigated variations corresponding to different flavours
of Krivine realizability ([7]).

All this work is, however, essentially syntactic. The focus of the present
paper is on a mathematical construction of abstract Krivine structures.

We start with the concept of a Basic Combinatorial Object from Pieter
Hofstra’s elegant paper [9]. BCOs form a preorder-enriched category with a
KZ-monad D (we rehearse the material we need in section 1.1). Every BCO Σ
induces a Set-indexed preorder [−,Σ].

Among BCOs, filtered opcas are characterized as those BCOs for which the
Set-indexed preorder [−,DΣ] is a tripos. What then might be termed (à la
[8]) a “lex cocomplete filtered opca”, a BCO Σ such that [−,Σ] is a tripos, is
characterized (by our proposition 1.13 and theorem 1.15) as a D-algebra whose
algebra structure (which is left adjoint to the unit) preserves finite meets. This
generalizes the characterization of locales among meet-semilattices. We also
give a characterization in terms of one of the definitions of Ferrer Santos et al,
sharpening their result (theorem 1.21). Moreover we descrive ‘dense’ morphisms
of filtered opcas, and recover a suitable analogue of Peter Johnstone’s simple
criterion in [12].

Then, we embark on classical realizability. We prove that for every filtered
opca (A,A′) and downwards closed subset U ⊂ A such that U ∩ A′ = ∅, we
have an abstract Krivine structure. Moreover, the tripos arising from this aks
(by Streicher’s construction) represents a topos which is the Booleanization of
a closed subtopos of the standard realizability topos RT(A′, A): that is, for a
subobject U of 1 in RT(A′, A) we get the sheaf subtopos corresponding to the
local operator ((−) → U) → U . And, every tripos resulting from an aks is of
this form.

Finally, we investigate when our Boolean triposes are localic. We compare
criteria independently given by Hofstra and Krivine, and find them, reassuringly,
to be equivalent.

Our final theorem specializes to the filtered pca K2 of functions N→ N with
as filter the set of recursive functions. We exhibit a range of non-localic Boolean
subtoposes of the Kleene-Vesley topos (theorem 2.12).

Acknowledgements. We gratefully acknowledge fruitful discussions with Thomas
Streicher and Jonas Frey; also, the anonymous referee contributed with a num-
ber of suggested improvements and a speculation, which we return to in the
‘epilogue’ at the end of the paper.

1 BCOs, Filtered OPCAs and Triposes

1.1 BCOs

This section rehearses what we shall need from Hofstra’s paper [9].
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Definition 1.1 A Basic Combinatorial Object (BCO) consists of a poset (Σ,≤)
and a set FΣ of partial endofunctions on Σ, which structure satisfies the following
requirements:

i) Every f ∈ FΣ has downwards closed domain, and is order-preserving on
its domain.

ii) There is a total map i ∈ FΣ such that i(a) ≤ a for all a ∈ Σ.

iii) For every pair f, g ∈ FΣ there is some h ∈ FΣ such that whenever g(f(a))
is defined, h(a) ≤ g(f(a)).

Definition 1.2 Let (Σ,≤,FΣ) and (Θ,≤,FΘ) be BCOs. A morphism from
(Σ,≤,FΣ) to (Θ,≤,FΘ) is a total function φ : Σ→ Θ satisfying the conditions:

i) There is an element u ∈ FΘ such that for every inequality a ≤ a′ in Σ we
have u(φ(a)) ≤ φ(a′) in Θ (in particular, u is defined on all elements in
the image of φ).

ii) For every f ∈ FΣ there is a g ∈ FΘ such that for all a in the domain of f ,
φ(a) is in the domain of g, and g(φ(a)) ≤ φ(f(a)).

Given two morphisms φ, ψ : Σ→ Θ we say φ ≤ ψ if there is an element g ∈ FΘ

satisfying g(φ(a)) ≤ ψ(a) for all a ∈ Σ.

It is readily verified that with these definitions, we have a preorder-enriched
category BCO. This category has a terminal object 1 and binary products.
Therefore, as in any cartesian 2-category, one can speak of objects which have
finite internal products: a BCO has internal terminal object (or: internal top
element) if the BCO-morphism Σ→ 1 has a right adjoint (denoted >); and Σ
has internal binary products (binary meets) if the diagonal map Σ→ Σ×Σ has
a right adjoint. Such a right adjoint, if it exists, will be denoted (−) ∧ (−).

If a BCO has finite internal meets, we define the set TV(Σ) of designated
truth-values as

TV(Σ) = {a ∈ Σ | for some f ∈ FΣ, f(>) ≤ a}

Clearly, TV(Σ) is an upwards closed subset of Σ, and one can show that for
all a, b ∈ TV(Σ), also a ∧ b ∈ TV(Σ). Therefore we think of TV(Σ) as a filter.
However, bear in mind that a ∧ b is in general not the meet of a and b in the
poset (Σ,≤).

Definition 1.3 An order-pca or opca is a poset (A,≤) with a partial binary
function (called application) A × A → A, written a, b 7→ ab, which has the
following properties:

i) Whenever ab is defined and a′ ≤ a, b′ ≤ b, then a′b′ is defined and a′b′ ≤ ab.

ii) There are elements k and s in A such that for all x, y ∈ A we have (kx)y ≤
x, and for all x, y, z ∈ A, whenever (xz)(yz) is defined, so is ((sx)y)z, and
((sx)y)z ≤ (xz)(yz).
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From now on, when we work in an order-pca, we associate to the left and write
abc instead of (ab)c.

Opcas were defined in [10], and Longley’s definition of applicative morphism
for pcas ([18]) was extended there to opcas. For more theory of opcas and
unexplained notions and notations, the reader is referred to [24].

Every opca (A,≤) is a BCO (A,≤,FA) where FA consists of the partial
maps φa : b 7→ ab given by the opca structure. Moreover, as BCO every opca
has finite internal meets (for the map a∧ b we can take pab, where p is a pairing
combinator in A; every element of A can serve as top element, and TV(A) = A).

Theorem 1.4 (Hofstra, 5.1) Let A and B be opcas. A function f : A → B
is an applicative morphism of opcas precisely when it is a finite internal meet-
preserving morphism of BCOs.

Definition 1.5 A filtered opca is an opca A together with a subset A′ which
is closed under application of A and contains choices for k and s (for A). The
subset A′ is called the filter.

It is immediate that, in definition 1.5, A′ itself is an opca; however, not every
subset of an opca A which is closed under the application of A and is an opca
with this restricted application, is a filter: see [25], 5.4 for a counterexample.

Every filtered opca (A,A′) is a BCO (A,A′,FA′) where FA′ consists of the
partial maps φa : b 7→ ab with a ∈ A′. Every opca A is of course trivially
a filtered opca with A′ = A. Another example of filtered opcas are meet-
semilattices (with top element >): application is the meet operation, and the
filter is {>}. Many pcas, considered as opcas with the discrete order, contain
nontrivial filters: Scott’s graph model with the filter of r.e. (or, more generally,
Σn) subsets of N; Kleene’s second model K2 of functions N→ N, with the filter
consisting of the total recursive functions (or, more generally, ∆n-functions).

We need two further notions about BCOs: the downset monad D, and the
Set-indexed preorder [−,Σ] (for a BCO Σ).

For any BCO (Σ,≤,FΣ) we can consider the poset DΣ of downwards closed
subsets of Σ, ordered by inclusion, and system of maps FDΣ which consists of
those partial maps F : DΣ→ DΣ for which there is some f ∈ FΣ such that, for
all U ∈ DΣ, FU is defined if and only if U is a subset of the domain of f , in
which case FU is the downwards closure of {f(a) | a ∈ U}.

The operation D is the object part of a 2-monad on BCO: the unit Σ→ DΣ
is given by the principal downset map ↓(−) sending a ∈ Σ to {b | b ≤ a}, and
multiplication is union. The monad D is a so-called KZ-monad; this means that
any object carries at most one algebra structure DΣ → Σ, and this structure,
when it exists, is left adjoint to the unit map.

We note that if Σ is a filtered opca, so is DΣ: if Σ = (A,A′) then DΣ =
(DA,Φ) where Φ consists of those downsets of A that meet the filter A′.

Every BCO Σ gives rise to a Set-indexed preorder [−,Σ]: for a set X, we
have the set of (total) functions X → Σ, and for two such functions φ, ψ we
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have φ ≤ ψ if and only if there exists f ∈ FΣ such that for all x ∈ X, f(φ(x))
is defined and f(φ(x)) ≤ ψ(x). If Σ is a filtered opca (A,A′), we shall abuse
language and write [−, A] for the induced Set-indexed preorder, even though
one should be aware that the preorder involves A′.

We shall be interested in conditions under which the preorder [−,Σ] is a
tripos.

We note that the assignment Σ 7→ [−,Σ] gives a full 2-embedding of BCO
into the 2-category of Set-indexed preorders. We also note, that the indexed
preorder [−,Σ] has indexed finite meets if and only if the BCO Σ has internal
finite meets. Moreover, a map h between BCOs with internal finite meets pre-
serves those meets if and only if the corresponding transformation between the
indexed preorders preserves indexed finite meets.

The following pretty theorem characterizes the filtered opcas among BCOs,
in terms of the two notions just discussed:

Theorem 1.6 (Hofstra, 6.9) A BCO Σ is (equivalent to) a filtered opca, pre-
cisely when the indexed preorder [−,DΣ] is a tripos.

Theorem 1.7 (Hofstra, 6.13) Let Σ be a BCO with internal finite meets.
Then [−,Σ] is a tripos, precisely when Σ is a filtered opca (A,A′) which has a
pseudo-D-algebra structure

∨
: DΣ→ Σ which satisfies the following condition:

(∗) There is an element v ∈ A′ such that whenever we have an α ∈ DA and
b, c ∈ A for which, for each a ∈ α, ab is defined and ≤ c, then v(

∨
α)b is

defined and ≤ c.

See our theorem 1.15 for a more elegant formulation of the condition (∗).

We conclude this overview of Hofstra’s results with some material on geometric
morphisms.

Definition 1.8 (Hofstra, 7.1) A morphism φ : Σ → Θ of BCOs is called
(computationally) dense if there is some h ∈ FΘ and a function H : FΘ → FΣ

satisfying the following property: for a ∈ Σ and g ∈ FΘ, if φ(a) is in the domain
of g then H(g)(a) and h(φ(H(g)(a))) are defined, and h(φ(H(g)(a))) ≤ g(φ(a)).

Theorem 1.9 (Hofstra, 7.2) BCOs with dense maps form a sub-preorder-
enriched category of BCO, to which the monad D restricts.

Theorem 1.10 i) [Hofstra, 7.3] For a morphism φ of BCOs we have: φ
is dense precisely when Dφ has a right adjoint.

ii) [Hofstra, 7.8] If φ is a map between D-algebras, then φ is dense if and
only if it has a right adjoint.

Our wording of 1.10ii) seems stronger than Hofstra’s (in the quoted paper), who
speaks ambiguously of “a map of algebras”. However, his proof makes clear that
he does not require an algebra homomorphism.
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Theorem 1.11 (Hofstra, 7.9) Let Σ be a BCO such that [−,Σ] is a tripos.
Then the following three statements are equivalent:

i) the tripos [−,Σ] is localic

ii) the topos Set[Σ] represented by [−,Σ] is Grothendieck

iii) the preorder TV(Σ) has a least element.

1.2 Filtered opcas, triposes and dense morphisms

In this section we present some notions Hofstra did not explicitly give in his
paper. In particular, we need an appropriate definition of morphism between
filtered opcas, as well as a characterization of the dense ones among these.
Moreover, we have some refinements and generalizations.

Definition 1.12 Let (A,A′) , (B,B′) be filtered opcas. An applicative mor-
phism (A,A′) → (B,B′) is a function f : A → B satisfying the following
conditions:

i) For all a ∈ A′ there is a b ∈ B′ with b ≤ f(a) (so, f maps A′ into the
upwards closure of B′).

ii) There is an element r ∈ B′ such that for all a′ ∈ A′ and a ∈ A, whenever
a′a is defined in A, rf(a′)f(a) is defined in B and rf(a′)f(a) ≤ f(a′a).

iii) There is an element u ∈ B′ such that for every inequality x ≤ y in A,
uf(x) is defined and uf(x) ≤ f(y).

The following result corresponds to theorem 1.4:

Proposition 1.13 For filtered opcas (A,A′) and (B,B′), a function f : A→ B
is an applicative morphism precisely when it is a finite-meet preserving map of
BCOs.

Proof. Let φ : (A,A′) → (B,B′) be an applicative morphism. Then φ is a
map of BCOs: requirement i) of definition 1.2 is identical to requirement iii) of
1.12, and for ii) of 1.2, given f ∈ A′, pick b ∈ B′ such that b ≤ φ(f) (by i) of
1.12) and let g ≡ 〈y〉rby, where r is from ii) of 1.12. If fa is defined in A, then
rφ(f)φ(a) ≤ φ(fa), so gφ(a) ≤ rbφ(a) ≤ rφ(f)φ(a) ≤ φ(fa).

We need to show that φ preserves internal finite meets. Since φ maps A′

into the upwards closure of B′, φ preserves the terminal object. Binary internal
meets are given by the pairing combinators in the respective opcas. If we denote
pairing and unpairing in A by p, p0, p1 and in B by q, q0, q1, then for

t = 〈x〉q(rφ(p0)x)(rφ(p1)x)

we have tφ(paa′) ≤ qφ(a)φ(a′) for all a, a′ ∈ A; for

u = 〈x〉r(rφ(p)(q0x))(q1x)
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we have u(qφ(a)φ(a′)) ≤ φ(paa′) for all a, a′ ∈ A. So φ preserves internal finite
meets.

Conversely, suppose φ : (A,A′) → (B,B′) is a morphism of BCOs which
preserves internal finite meets. Requirement i) of 1.12 is satisfied because φ
preserves top elements. Requirement iii) is satisfied because φ is a map of
BCOs. As for requirement ii), let α ∈ B′ be such that for all a, a′ ∈ A,

α(qφ(a)φ(a′)) ≤ φ(paa′)

(since φ preserves finite meets). There is an element d ∈ A′ such that whenever
aa′ is defined in A, d(paa′) ≤ aa′. Since φ is a map of BCOs, there is e ∈ B′
such that when aa′ is defined in A, eφ(paa′) ≤ φ(aa′). Combining, we have for
a, a′ ∈ A such that aa′ is defined,

eα(qφ(a)φ(a′)) ≤ φ(aa′)

so if r = 〈xy〉eα(qxy) then r satisfies requirement ii) of 1.12.

Next, we look at filtered opcas (A,A′) for which the indexed preorder [−, A] is
a tripos. By Hofstra’s theorem 1.7, (A,A′) carries the structure of a pseudo D-
algebra satisfying the condition (∗). In order to be explicit and to fix notation,
let us define what we mean by “pseudo D-algebra”:

Definition 1.14 A pseudo D-algebra structure on a BCO Σ is a function∨
: DΣ → Σ satisfying the following conditions, where we write ↓α for the

downwards closure of α, and ↓a for ↓{a}:

1) There is u ∈ FΣ such that for every inclusion α ⊆ α′ in DΣ, u(
∨
α) is

defined and u(
∨
α) ≤

∨
α′.

2) For all f ∈ FΣ there is some g2 ∈ FΣ such that for all α ∈ DΣ: if
for all x ∈ α f(x) is defined, then g2(

∨
α) is defined and g2(

∨
α) ≤∨

(↓{f(x) |x ∈ α}).

3) There are elements g3, h3 ∈ FΣ such that for all A ∈ D2Σ:

g3(
∨

(↓{
∨
α |α ∈ A})) ≤

∨
(
⋃
A)

h3(
∨

(
⋃
A)) ≤

∨
(↓{
∨
α |α ∈ A})

4) There are elements g4, h4 ∈ FΣ such that for all a ∈ Σ, g4(
∨

(↓a)) ≤ a
and h4(a) ≤

∨
(↓a).

Theorem 1.15 A filtered opca (A,A′) with pseudo D-algebra structure
∨

satis-
fies condition (∗) of 1.7, precisely when

∨
is an applicative morphism of filtered

opcas. That is, (by 1.13), if and only if
∨

preserves internal finite meets.

Proof. First suppose
∨

is an applicative morphism. So, we have r ∈ A′ such
that whenever αβ is defined inD(A,A′), r(

∨
α)(
∨
β) is defined and r(

∨
α)(
∨
β) ≤∨

↓{ab | a ∈ α, b ∈ β}.
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Now suppose for all a ∈ α that ab is defined and ab ≤ c. Then α(↓b) is
defined and

α(↓b) ⊆ ↓{ab | a ∈ α, b ∈ β} ⊆ ↓c

We have r(
∨
α)(
∨
↓b) ≤

∨
(α(↓b)). We have u ∈ A′ such that

u(r(
∨
α)(
∨
↓b)) ≤ u(

∨
(α(↓b))) ≤

∨
↓c

Let g4, h4 ∈ A′ be as given by definition 1.14 4). Then since h4b ≤
∨
↓b,

g4(u(r(
∨
α)(
∨
↓b))) ≤ g4(

∨
↓c) ≤ c

g4(u(r(
∨
α)(h4b))) ≤ g4(

∨
↓c) ≤ c

Now let v = 〈xy〉g4(u(rx(h4y))). It is easy to verify that v ∈ A′ and that v
satisfies the condition (∗).

Conversely, suppose v satisfies (∗). We have to prove that
∨

is an applicative
morphism. For i) of 1.12, we have to prove that for α in the filter ofD(A,A′),

∨
α

is in the upwards closure of A′. The filter of D(A,A′) consists of those downsets
of A which intersect A′. Pick a ∈ α∩A′. Then ↓a ⊆ α so u(

∨
↓a) ≤

∨
α (where

u is from 1) of 1.14). And h4a ≤
∨
↓a, so

u(h4a) ≤ u(
∨
↓a) ≤

∨
α

Since u and h4 are in A′, we see that i) is satisfied.
Condition iii) of 1.12 holds because

∨
is supposed to be a map of BCOs.

For 1.12 ii), suppose αβ is defined, so for all a ∈ α, b ∈ β, ab is defined in A.
Note that u(

∨
↓ab) ≤

∨
αβ for a ∈ α, b ∈ β. Also, h4(ab) ≤

∨
↓(ab), so

u(h4(ab)) ≤ u(
∨
↓(ab)) ≤

∨
(αβ)

Let ξ = 〈xy〉u(h4(xy)), then ξ ∈ A′ and for a fixed b ∈ β we have for all a ∈ α,
ξab ≤

∨
(αβ). By (∗) we have that v(

∨
{ξa | a ∈ α})b is defined and

v(
∨
{ξa | a ∈ α})b ≤

∨
(αβ)

Let η = 〈yx〉vxy. Then η ∈ A′ and

ηb(
∨
{ξa | a ∈ α}) ≤ v(

∨
{ξa | a ∈ α})b ≤

∨
(αβ)

This holds for all b ∈ β, so by (∗) we have

v(
∨
{ηb | b ∈ β})(

∨
{ξa | a ∈ α}) ≤

∨
(αβ)

Hence,

η(
∨
{ξa | a ∈ α})(

∨
{ηb | b ∈ β}) ≤

∨
(αβ)
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By 2) of 1.14, choose ξ′, η′ ∈ A′ such that for all α, β,

ξ′(
∨
α) ≤

∨
{ξa | a ∈ α}

η′(
∨
β) ≤

∨
{ηb | b ∈ β}

and let z = 〈xy〉η(ξ′x)(η′y). Then z ∈ A′ and

z(
∨
α)(
∨
β) ≤ η(ξ′(

∨
α))(η′(

∨
β))

≤ η(
∨
{ξa | a ∈ α})(

∨
{ηb | b ∈ β}) ≤

∨
(αβ)

so z realizes condition ii) of 1.12.

Remark 1.16 1. Note that one may reformulate theorem 1.15 thus: for a
filtered opca (A,A′), the Set-indexed preorder [−, A] is a tripos precisely when
(A,A′) is a pseudo D-algebra in the subcategory (of BCO) of filtered opcas and
applicative morphisms.
2. Theorem 1.15 is, in view of proposition 1.13, the generalization to the context
of filtered opcas, of the condition of infinite distributivity for locales. Indeed, a
suplattice L is a locale precisely when the supremum map

∨
: DL→ L preserves

finite meets:
∨

(α ∩ β) = (
∨
α) ∧ (

∨
β).

3. Jonas Frey pointed out to us that one might use the term “lex cocomplete-
ness” for the condition that the unit has a finite-meet preserving left adjoint;
this phenomenon is studied extensively in [8]. Seeing the inclusion Σ→ DΣ as
some sort of “mini-Yoneda”, one might also draw a parallel with Street’s result
([20]) that under some size condition, a cocomplete category is a Grothendieck
topos if and only if its Yoneda embedding has a left exact left adjoint.

Let us draw an immediate inference from theorem 1.15:

Corollary 1.17 Suppose Σ is a BCO such that [−,Σ] is a tripos. Then [−,Σ]
is a subtripos of [−,DΣ].

Proof. The assumption implies, by 1.7, that Σ is a filtered opca, and, by 1.15
and 1.13, that the transformation of indexed preorders [−,DΣ]→ [−,Σ] induced
by
∨

, preserves finite meets. Hence the pair
∨
a ↓(−) defines a geometric

inclusion of [−,Σ] into [−,DΣ].

At this point we would like to relate our notion of filtered opcas satisfying the
condition of 1.7, to the notion of implicative oca discussed in [4].

Definition 1.18 (Ferrer Santos et al) An implicative ordered combinatory
algebra (ioca) is a filtered opca (A,A′) satisfying the following conditions:

a) The application map is total.

b) The poset (A,≤) has infima of arbitrary subsets.

c) There is an operation called implication, a, b 7→ (a ⇒ b), order-reversing
in the first argument and order-preserving in the second, such that for all
a, b, c ∈ A we have: a ≤ (b⇒ c) if and only if ab ≤ c.
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d) There is an element e ∈ A′ such that for all a, b, c ∈ A: if ab ≤ c then
ea ≤ (b⇒ c).

Ferrer Santos et al prove the following result:

Theorem 1.19 (Ferrer Santos et al, 5.8) If (A,A′) is an implicative oca,
then [−, A] is a tripos.

However, the requirements for an ioca are too strong for the conclusion. We
reformulate the notion so that we obtain an equivalence.

Definition 1.20 A pre-implicative opca is a filtered opca (A,A′) satisfying the
following conditions:

i) There is a map
∧

: P(A)→ A and there are constants i, i′ ∈ A′ such that
for all α ⊆ A:

for all a ∈ α, i(
∧
α) ≤ a

for all b ∈ A, if b ≤ a for all a ∈ α, then i′b ≤
∧
α

ii) There is a binary implication a, b 7→ (a⇒ b) on A and there are constants
e, e′ ∈ A′ satisfying, for all a, b, c ∈ A:

if ab ≤ c then ea ≤ (b⇒ c)
if a ≤ (b⇒ c) then e′ab ≤ c

Note that in particular, the application on A need not be total.

Theorem 1.21 Let Σ be a BCO. Then [−,Σ] is a tripos if and only if Σ is a
pre-implicative opca.

Proof. First, suppose that [−,Σ] is a tripos. By Hofstra’s theorem 1.7, we
know that Σ is a filtered opca (A,A′) which carries a pseudo D-algebra structure∨

: DA→ A, which satisfies condition (∗).
For α, β ∈ DA we define I(α, β) as

I(α, β) = {a ∈ A | for all a′ ∈ α, aa′ is defined and an element of β}

Clearly, I(α, β) ∈ DA. Define the operation ⇒ by

(b⇒ c) =
∨
I(↓b, ↓c)

Now if ab ≤ c then clearly a ∈ I(↓b, ↓c), so ↓a ⊆ I(↓b, ↓c) so with u as in 1)
of 1.14 we have u(

∨
↓a) ≤ (b ⇒ c) and since with h4 from 4) in 1.14 we have

h4a ≤
∨
↓a, we find

u(h4a) ≤ (b⇒ c)

So if e is defined as 〈x〉u(h4x) then e satisfies the first condition in ii) of defini-
tion 1.20.
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For the second condition of 1.20 ii), we note that for a ∈ I(↓b, ↓c) we have
ab defined and ab ≤ c; by (∗) we see that v(b ⇒ c)b is defined and ≤ c; so if
a ≤ (b⇒ c) then vab ≤ c. Hence we can take v as our e′, and we conclude that
the operation ⇒ and the constants e, e′ satisfy 1.20 ii).

For the map
∧

, defined on arbitrary subsets α ⊆ A, let O(α) be the set of
lower bounds of α (then O(α) ∈ DA) and put∧

α =
∨
O(α)

If a ∈ α is arbitrary, then for all b ∈ O(α), skkb ≤ a. So if g2 is as in 1.14 2) for
skk, then g2(

∧
α) ≤ a. Hence we can take g2 as our i.

The second condition reads: for all b ∈ O(α), i′b ≤
∧
α =

∨
O(α). But we

have a combinator w ∈ A′ such that whenever β ∈ DA and a ∈ β, wa ≤
∨
β.

So it is clear how to pick i′. We conclude that (A,A′) has the structure of a
pre-implicative opca.

Conversely, suppose (A,A′) is a filtered opca endowed with operations
∧

and⇒
and elements i, i′, e, e′ satisfying the conditions for a pre-implicative opca. For
an indexed family {Φx |x ∈ X} of elements of A, we shall also write

∧
x∈X Φx

for
∧
{Φx |x ∈ X}.

Define
∨

: DA→ A by∨
α =

∧
b∈A

(
∧
a∈α

(a⇒ b)⇒ b)

We prove that this map
∨

provides (A,A′) with a pseudo D-algebra structure
which satisfies condition (∗) of theorem 1.7.

We define a number of elements of A′:

η = 〈x〉i′(ix)
ξ = 〈x〉e(e′x)
H = 〈xy〉e′(ξx)(ηy)
K = 〈x〉i′(e(H(ix)))
P = 〈uv〉e′(iv)(i′(eu))

And we note the following facts concerning these elements:

a) For α ∈ DA, a family {Φa | a ∈ α} and α′ ⊆ α, we have

η(
∧
a∈α

Φa) ≤
∧
a∈α′

Φa

b) For inequalities b ≤ b′, c ≤ c′ in A we have

ξ(b′ ⇒ c) ≤ (b⇒ c)
ξ(b⇒ c) ≤ (b⇒ c′)

c) For α ⊆ α′ in DA we have

K(
∨
α) ≤

∨
α′

11



d) If f ∈ A, α ∈ DA and fa ≤ b for every a ∈ α, then

Pf(
∨
α) ≤ b

By way of example, we spell out the proofs of c)and d); the other statements
are left to the reader.
For c), assume α ⊆ α′. Then by a), η(

∧
a∈α′(a ⇒ b)) ≤

∧
a∈α(a ⇒ b), so

by b), ξ(
∧
a∈α(a ⇒ b) ⇒ b) ≤ η(

∧
a∈α′(a ⇒ b)) ⇒ b, hence e′(ξ(

∧
a∈α(a ⇒

b) ⇒ b))(η(
∧
a∈α′(a ⇒ b))) ≤ b. Therefore, by definition of H, H(

∧
a∈α(a ⇒

b) ⇒ b)(
∧
a∈α′(a ⇒ b)) ≤ b, hence e(H(

∧
a∈α(a ⇒ b) ⇒ b)) ≤

∧
a∈α′(a ⇒

b) ⇒ b. Since i(
∨
α) ≤

∧
a∈α(a ⇒ b) ⇒ b and application is downwards

closed and order-preserving, we get e(H(i(
∨
α))) ≤

∧
a∈α′(a ⇒ b) ⇒ b, so

i′(e(H(i(
∨
α)))) ≤

∨
α′, which is K(

∨
α) ≤

∨
α′ as desired.

For d), suppose for all a ∈ α we have fa ≤ b; hence for all a ∈ α we have
ef ≤ a ⇒ b. By definition of i and i′ then, we have i′(ef) ≤

∧
a∈α(a ⇒ b) and

i(
∨
α) ≤ (

∧
a∈α(a⇒ b))⇒ b. Therefore

Pf(
∨
α) ≤ e′(i(

∨
α))(i′(ef)) ≤ b

Now to prove that
∨

is a pseudo D-algebra map, requirement 1) of defini-
tion 1.14 follows at once from property c). For requirement 4) we define the
element

Q = 〈x〉i′(e(〈uv〉e′(iv)u)x)

and we claim that whenever a ∈ α, Qa ≤
∨
α. Indeed,

i(
∧
a′∈α(a′ ⇒ b)) ≤ (a⇒ b), so e′(i(

∧
a′∈α(a′ ⇒ b)))a ≤ b, hence

(〈uv〉e′(iv)u)a(
∧
a′∈α(a′ ⇒ b)) ≤ b, i.e.

e(〈uv〉e′(iv)u)a ≤
∧
a′∈α(a′ ⇒ b)⇒ b, hence

i′(e(〈uv〉e′(iv)u)a) ≤
∨
α, from which we get

Qa ≤
∨
α

For the other inequality of 1.14 4), we claim that for R = 〈x〉e′(ix)(i′(e(skk)))
we have R(

∨
↓a) ≤ a; the verification is easy.

For requirement 2) we use statement d). Suppose fa is defined for all a ∈
α. Then Q(fa) ≤

∨
↓{fa | a ∈ α} for all a ∈ α, hence P (〈x〉Q(fx))(

∨
α) ≤∨

↓{fa | a ∈ α} as desired.
For requirement 3), let A ∈ D2A, α ∈ A. Since α ⊆

⋃
A we have

K(
∨
α) ≤

∨
(
⋃
A) by c). Hence Kx ≤

∨
(
⋃
A) for all x ∈ ↓{

∨
α |α ∈ A},

so PK(
∨
↓{
∨
α |α ∈ A} ≤

∨
(
⋃
A). The other inequality of 3) is realized by

the element P (〈x〉Q(Qx)): for a ∈
⋃
A, there is α ∈ A such that a ∈ α. Then

Qa ≤
∨
α, so Qa ∈ ↓{

∨
α |α ∈ A} whence Q(Qa) ≤

∨
↓{
∨
α |α ∈ A}. By d),

we have P (〈x〉Q(Qx))(
∨⋃

A) ≤
∨
↓{
∨
α |α ∈ A}. We conclude that

∨
is a

pseudo D-algebra structure on (A,A′).

It remains to show that the map
∨

satisfies condition (∗) of 1.7. This also
readily follows from statement d) above. Suppose for all a ∈ α, ab is defined
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and ab ≤ c. Then for all a ∈ α, (〈x〉xb)a ≤ c, whence P (〈x〉xb)(
∨
α) ≤ c. Hence

if v = 〈uw〉P (〈x〉xw)u, then v(
∨
α)b ≤ c as required. And obviously, v ∈ A′.

We now turn to computationally dense maps between filtered opcas. The fol-
lowing definition is a direct translation of Hofstra’s general notion of a dense
map between BCOs (1.8).

Definition 1.22 Suppose f : (A,A′) → (B,B′) is an applicative morphism of
filtered opcas. Then f is called computationally dense if there is an element
m ∈ B′ with the following property:

(cd)
For every b′ ∈ B′ there is an a′ ∈ A′ such that for all a ∈ A,
if b′f(a) is defined then so is a′a, and mf(a′a) ≤ b′f(a)

In Skolemized form, condition (cd) reads:

(cd− sk)
There is a function g : B′ → A′ such that for all b′ ∈ B′ and a ∈ A,
if b′f(a) is defined then so is g(b′)a, and mf(g(b′)a) ≤ b′f(a)

Peter Johnstone, in [12], has given a simplification of the definition of a com-
putationally dense applicative morphism for pcas. A similar simplification can
also be obtained here:

Proposition 1.23 Let f : (A,A′)→ (B,B′) be an applicative morphism. Then
f is computationally dense if and only if there is a function h : B′ → A′ and an
element t ∈ B′ such that for all b′ ∈ B′,

tf(h(b′)) ≤ b′

Proof. Suppose f is applicative, with elements r, u ∈ B′ satisfying ii) and iii)
of definition 1.12, respectively.

For the ‘only if’ part, assume g : B′ → A′ and m ∈ B′ satisfy (cd-sk). Pick
a′ ∈ A′ arbitrary, and fix some v ∈ B′ with v ≤ f(a′) (by i) of 1.12). Define
h(b′) = g(kb′), then h maps B′ into A′. Let t = 〈x〉m(rxv), then t ∈ B′.

Now for an arbitrary b′ ∈ B′, we have kb′f(a′) defined, so by (cd-sk) we
have mf(g(kb′)a′) ≤ kb′f(a′) ≤ b′. In other words, mf(h(b′)a′) ≤ b′. Since in
particular h(b′)a′ is defined, we have rf(h(b′))f(a′) defined and rf(h(b′))f(a′) ≤
f(h(b′)a′), so m(rf(h(b′))v) is defined and m(rf(h(b′))v) ≤ mf(h(b′)a′) ≤ b′.
We see that tf(h(b′)) is defined and tf(h(b′)) ≤ b′, as desired.

For the ‘if’ part, assume h : B′ → A′ and t ∈ B′ satisfy tf(h(b′)) ≤ b′ for
all b′ ∈ B′. Let p, p0, p1 be pairing and unpairing operators in A′. Choose
q0, q1 ∈ B′ with qi ≤ f(pi) (by 1.12 i)). Suppose b′ ∈ B′, b′f(a) defined. Then
tf(h(b′))f(a) ≤ b′f(a). Since p0(ph(b′)a) ≤ h(b′) we have

rf(p0)f(ph(b′)a) ≤ f(p0(ph(b′)a))

and hence
u(rq0f(ph(b′)a)) ≤ uf(p0(ph(b′)a)) ≤ f(h(b′))

13



Let N = 〈x〉u(rq0x), so Nf(ph(b′)a) ≤ f(h(b′)). Then

t(Nf(ph(b′)a))f(a) ≤ tf(h(b′))f(a) ≤ b′f(a)

Also, since p1(ph(b′)a) ≤ a we have, in a similar way,

u(rq1f(ph(b′)a)) ≤ uf(p1(ph(b′)a)) ≤ f(a)

Let M = 〈x〉u(rq1x). We see that for m = 〈x〉t(Nx)(Mx), we have

mf(ph(b′)a) ≤ b′f(a)

So if we define g(b′) as ph(b′) then mf(g(b′)a) ≤ b′f(a), as desired.

Now suppose Σ and Θ are BCOs such that [−,Σ] and [−,Θ] are triposes. Then
by 1.7, Σ and Θ are filtered opcas which are also pseudo D-algebras.

Every geometric morphism [−,Σ]→ [−,Θ] arises (by fullness of the embed-
ding of BCO into the 2-category of Set-indexed preorders) from an adjoint pair
of maps between Σ and Θ which preserve internal finite meets; that is, by 1.13,
an adjoint pair of applicative morphisms. Since a map between D-algebras is
dense precisely when it has a right adjoint (1.10ii)), we see that such geomet-
ric morphisms are uniquely determined by computationally dense applicative
morphisms Θ→ Σ.

2 Krivine structures and triposes, and filtered
opcas

Thomas Streicher ([21]) has reformulated Krivine’s classical realizability (as
presented in, e.g., [15, 16]) in a style reminiscent of combinatory logic, and
therefore susceptible to an analysis with notions from the theory of pcas. He
formulates the notion of an abstract Krivine structure. Out of an abstract
Krivine structure one constructs a filtered opca Σ (in fact, an implicative oca
in the terminology of Ferrer Santos et al–see1.18) such that the tripos [−,Σ] is
Boolean. This provides a link between Krivine’s interpretations of Set Theory
and Topos Theory. It is an interesting question whether in the topos resulting
from [−,Σ] one can build (using the ideas of algebraic set theory, for which see
[13]) internal models which would faithfully reflect Krivine’s interpretations; as
was done, for example, in Hyland’s effective topos, for the Friedman-McCarty
realizability interpretation for IZF, in [14].

The first author discovered that, given a filtered opca (A,A′) and a nontriv-
ial subterminal object in the relative realizability topos RT(A,A′), one can con-
struct an abstract Krivine structure ([22]). A similar idea appeared in Wouter
Stekelenburg’s PhD thesis ([19]). This section provides the details and also
shows that, up to equivalence of the resulting toposes, every abstract Krivine
structure arises in this way.

This means we have a pretty concrete way to present toposes arising out of
abstract Krivine structures; but we still have to filter out the non-localic toposes.
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These are the ones of interest, as the set theory of Boolean localic toposes is
basically forcing (see [1] for an exposition). It turns out that Hofstra’s condition
1.11 (which we shall compare with a criterion given by Krivine) gives rise to
some recursion-theoretic calculations in our pet example: Kleene’s second model
of functions N→ N, with the total recursive functions as filter.

Definition 2.1 (Streicher) An abstract Krivine structure (aks) consists of the
following data:

i) A set Λ of terms, together with a binary operation t, s 7→ t·s : Λ×Λ→ Λ,
and distinguished elements K,S, cc.

ii) A subset QP of Λ (the set of quasi-proofs), which contains K,S and cc, and
is closed under the binary operation of i).

iii) A set Π of stacks together with a ‘push’ operation

t, π 7→ t.π : Λ×Π→ Π

(when we iterate this operation, we associate to the right, and write t.s.π
for t.(s.π)), as well as an operation

π 7→ kπ : Π→ Λ

iv) A subset ⊥⊥ (the pole) of Λ×Π, which satisfies the following requirements:

(S1) If (t, s.π) ∈⊥⊥ then (t·s, π) ∈⊥⊥
(S2) If (t, π) ∈⊥⊥ then (K, t.s.π) ∈⊥⊥ (for any term s)

(S3) If ((t·u)·(s·u), π) ∈⊥⊥ then (S, t.s.u.π) ∈⊥⊥
(S4) If (t, kπ.π) ∈⊥⊥ then (cc, t.π) ∈⊥⊥
(S5) If (t, π) ∈⊥⊥ then (kπ, t.π

′) ∈⊥⊥ (for any π′)

Given a set U of terms and a set α of stacks, we define

U⊥⊥ = {π ∈ Π | for all t ∈ U , (t, π) ∈⊥⊥}
α⊥⊥ = {t ∈ Λ | for all π ∈ α, (t, π) ∈⊥⊥}

Clearly, we have closure operators (−)⊥⊥⊥⊥ on both P(Λ) and P(Π). For α ⊆ Π,
we also write |α| for α⊥⊥.

Let P⊥⊥(Π) be {β ⊆ Π |β⊥⊥⊥⊥ = β}, ordered by reverse inclusion. We define
an application • on P⊥⊥(Π) by putting

α•β = {π ∈ Π | for all t ∈ |α| and s ∈ |β|, (t, s.π) ∈⊥⊥}⊥⊥⊥⊥

Moreover, let Φ ⊆ P⊥⊥(Π) be the set

Φ = {α ∈ P⊥⊥(Π) | |α| ∩ QP 6= ∅}
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Theorem 2.2 (Streicher) The set P⊥⊥(Π) forms, together with the given ap-
plication, a total order-ca, and Φ is a filter in it. The Set-indexed preorder
[−,P⊥⊥(Π)] is a Boolean tripos.

Ferrer Santos et al ([4]) observe that, in fact, the order-ca P⊥⊥(Π) is an implica-
tive order-ca (see definition 1.18), with implication defined by

α⇒ β = {t.π | t ∈ |α|, π ∈ β}⊥⊥⊥⊥

and that the element {cc}⊥⊥ realizes ‘Pierce’s Law’:

{cc}⊥⊥ ≤ ((α⇒ β)⇒ α)⇒ α

Consequently, they define a Krivine order-ca as an implicative order-ca with a
distinguished element in the filter, which realizes Pierce’s Law.

They give a recipe for constructing, from each Krivine order-ca A, an ab-
stract Krivine structure KA. And it turns out that the tripos constructed from
KA in Streicher’s way, is equivalent to the tripos [−,A] (theorem 5.15 in [4]).
We call such triposes Krivine triposes.

We follow a different approach, which in our view leads to a simpler represen-
tation of Krivine triposes. Let us recall (see [24] for details) that in any opca one
has a representation of the natural numbers {n̄ |n ∈ N}; since n̄ is ks-definable,
it will be in any filter. Moreover, we have a coding of sequences [a0, . . . , an−1]
(which, again, is k, s-definable so in the filter whenever a0, . . . , an−1 are). Let
us summarize the properties we need in the following lemma:

Lemma 2.3 Let (A,A′) be a filtered opca. Then for a standard coding of natural
numbers and sequences from A, there are elements b, c, d, t ∈ A′ which satisfy:

i) For all n ∈ N and k ≥ n, bn̄[a0, . . . , ak] ≤ an

ii) For all n ∈ N and k ≥ n, cn̄[a0, . . . , ak] ≤ [an, . . . , ak]

iii) For all a ∈ A, da[a0, . . . , an−1] ≤ [a, a0, . . . , an−1]

iv) For all a ∈ A, ta ≤ [a]

We can now define an aks out of a filtered opca (A,A′) together with a down-
wards closed subset U ⊆ A which does not meet the filter: U ∩A′ = ∅.

Definition 2.4 Given (A,A′) and U as above, we define an aks K(A,A′, U) as
follows:

1) Λ = A, QP = A′, Π is the set of coded sequences [a0, . . . , an−1] of A.

2) The push operation Λ×Π→ Π sends a, π to daπ where d is as in 2.3 iii).
We write a.π for this.

3) The total binary operation Λ × Λ → Λ sends a, b to 〈π〉a(b.π). We write
a·b for this. Note, that the operation a, b 7→ a·b is total and should not
be confounded with the partial operation on A which forms the opca
structure; the latter is written a, b 7→ ab, as we have been doing all along.
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4) Using the elements b and c from 2.3 i),ii), and writing πi for b̄iπ and π≥j
for c̄jπ, we put:

K = 〈π〉π0π≥2

S = 〈π〉((π0·π2)·(π1·π2))π≥3

kπ = 〈ρ〉ρ0π
cc = 〈π〉π0(kπ≥1

.π≥1)

5) Finally, the pole ⊥⊥ is defined by

⊥⊥ = {(t, π) | tπ is defined and tπ ∈ U}

Theorem 2.5 The structure defined in 2.4 is indeed an abstract Krivine struc-
ture.

Proof. We have to check that the pole satisfies properties (S1)–(S5) from
definition 2.1.

For (S1), suppose (t, s.π) ∈⊥⊥, so t(s.π) ∈ U . Then (t·s)π ∈ U since (t·s)π ≤
t(s.π); hence (t·s, π) ∈⊥⊥.

For (S2), suppose (t, π) ∈⊥⊥ so tπ ∈ U . Note that (t.s.π)0 ≤ t and (t.s.π)≥2 ≤
π, hence

K(t.s.π) ≤ (t.s.π)0((t.s.π)≥2) ≤ tπ

so K(t.s.π) ∈ U and therefore (K, t.s.π) ∈⊥⊥.
For (S3), suppose ((t·u)·(s·u), π) ∈⊥⊥, so ((t·u)·(s·u))π ∈ U . Now

S(t.s.u.π) ≤ ((t·u)·(s·u))π

so S(t.s.u.π) ∈ U , hence (S, t.s.u.π) ∈⊥⊥.
For (S4), suppose (t, kπ.π) ∈⊥⊥ so t(kπ.π) ∈ U . Then cc(t.π) ∈ U since

cc(t.π) ≤ t(kπ.π). Therefore (cc, t.π) ∈⊥⊥.
For (S5), suppose (t, π) ∈⊥⊥ so tπ ∈ U . We have kπ(t.π′) ≤ tπ; hence

kπ(t.π′) ∈ U , so (kπ, t.π
′) ∈⊥⊥.

Let us denote the aks constructed from A,A′, U by KUA,A′ and let us call the

filtered opca constructed from KUA,A′ by Streicher’s construction, P(Π)UA,A′ . We

wish to compare the tripos [−,P(Π)UA,A′ ] to the tripos [−,D(A,A′)]. First we
recall a standard topos-theoretic construction.

For a subset α of A we write α→ U for the set

{a ∈ A | for all b ∈ α, ab is defined and ab ∈ U}

Note that since U ∈ DA, (α→ U) ∈ DA. For φ : I → DA we write φ→ U for
the function taking i ∈ I to φ(i)→ U .

Definition 2.6 The Booleanization of the tripos [−,D(A,A′)] with respect to
U is the Boolean subtripos of [−,D(A,A′)] which can be defined in any of the
following three equivalent ways:
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1) For any set I, we have the set of functions φ : I → DA which are isomor-
phic in [−,D(A,A′)] to (φ→ U)→ U (as sub-preorder of [I,D(A,A′)]);

2) For any set I, all functions φ : I → DA but ordered by: φ ≤ ψ if and only
if φ ≤ ((ψ → U)→ U) in [I,D(A,A′)];

3) For any set I, all functions φ : I → DA but ordered by: φ ≤ ψ if and only
if (ψ → U) ≤ (φ→ U) in [I,D(A,A′)].

Theorem 2.7 The tripos [−,P(Π)UA,A′ ] is equivalent to the Booleanization of
[−,D(A,A′)] with respect to U .

Proof. Streicher has characterized the preorder in the tripos [−,P⊥⊥(Π)] arising
from an aks, as follows ([21], Lemma 5.5): for φ, ψ : I → P⊥⊥(Π), φ ≤ ψ if and
only if there is an element t ∈ QP satisfying:

for all i ∈ I, all u ∈ |φ(i)| and all π ∈ ψ(i), (t, u.π) ∈⊥⊥

The first thing to notice is that this preorder extends to [I,P(Π)] and that in
the latter preorder, every φ is isomorphic to φ⊥⊥⊥⊥ (both inequalities are realized
by (S·K)·K); therefore, the tripos [−,P⊥⊥(Π)] is equivalent to [−,P(Π)] (this was
also noticed by Ferrer Santos et al; see 5.15 of [4]). In our case of P(Π)UA,A′ we
can therefore consider all functions φ : I → P(Π), ordered as follows: φ ≤ ψ if
and only if for some a ∈ A′ we have

(◦) for all i ∈ I, all u ∈ φ(i)→ U and all π ∈ ψ(i), a(u.π) is defined and in U

Now if a ∈ A′ satisfies (◦) then for all i ∈ I, 〈uπ〉a(u.π) is an element of A′ which
is in (φ(i) → U) → (ψ(i) → U); hence a ∈ A′ realizes (φ → U) ≤ (ψ → U) in
[I,D(A,A′)]. Conversely, if a ∈ A′ realizes (φ→ U) ≤ (ψ → U) in [I,D(A,A′)],
then 〈ρ〉aρ0ρ≥1 is an element of A′ satisfying (◦).

Furthermore we notice that any element of [I,D(A,A′)] is isomorphic to a
function φ : I → D(A,A′) of the form i 7→ ↓Xi where Xi is a set of coded
sequences: this is easy.

We conclude that any φ ∈ [I,D(A,A′)] of the form φ′ → U is, up to isomor-
phism, in the image of the map

[I,P(Π)UA,A′ ]→ [I,D(A,A′)]

given by φ 7→ (φ→ U).
Hence, we see that [−,P(Π)UA,A′ ] is equivalent to the opposite of the Booleaniza-

tion of [−,D(A,A′)] with respect to U . However, since the latter is an indexed
pre-Boolean algebra and since every Boolean algebra is isomorphic to its oppo-
site (by the negation map), we have the claimed result.

Theorem 2.8 Every Krivine tripos is the Booleanization of [−,D(A,A′)] with
respect to U , for some filtered opca (A,A′) and a downset U of A which does
not meet A′.
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Proof. By Streicher’s result, a Krivine tripos is of the form [−, A] for some
filtered oca (A,A′). By 1.17, it is therefore a subtripos of [−,D(A,A′)], and in
particular a Boolean subtripos. But now by standard topos theory (see Lemma
A4.5.21 in [11]), it must be the Booleanization of [−,D(A,A′)] with respect to
some U , as required.

2.1 When is a Krivine tripos localic?

Recall that Hofstra had characterized, for a BCO Σ such that [−,Σ] is a tripos,
when this tripos is localic: TV(Σ) must have a least element (theorem 1.11).

Krivine ([17] formulated a condition for an aks to lead to an interpretation
of set theory which is a forcing interpretation: the set

|> → (⊥ → ⊥)| ∩ |⊥ → (> → ⊥)|

must contain an element of the set QP of quasi-proofs.
Taking into account the way logic is interpreted in an aks, this means the

following: for some a ∈ QP we have:

(Kr) ∀s ∈ Π⊥⊥∀t, π((a, t.s.π) ∈⊥⊥ and (a, s.t.π) ∈⊥⊥)

Theorem 2.9 Let K be an aks, and ΣK be the filtered oca resulting from K by
Streicher’s construction. Then K satisfies (Kr) if and only if TV(ΣK) has a
least element.

Proof. For the only if part, suppose K satisfies (Kr). Krivine proved already
(see p. 16 of [17] that there is a quasi-proof t with the property that for every
X ⊆ Π and every b ∈ QP: if b ∈ |X|, then t ∈ |X|. Since t ∈ QP, {t}⊥⊥ ∈ Φ
(where Φ is the filter of ΣK). And for every β ∈ Φ we have t ∈ |β|, so

β ⊆ β⊥⊥⊥⊥ ⊆ {t}⊥⊥

which, given that the order in Σ is reverse inclusion, tells us that TV(Σ) has a
least element.
Conversely, suppose α ∈ Φ is the least element of Φ. Then for all β ∈ Φ, β ⊆ α,
so for every b ∈ QP, {b}⊥⊥ ⊆ α. If a ∈ |α|∩QP, then α ⊆ {a}⊥⊥, so for all b ∈ QP
we have {b}⊥⊥ ⊆ {a}⊥⊥.

Let K′ be K·((S·K)·K); then it is easy to verify that if (t, π) ∈⊥⊥, then
(K′, s.t.π) ∈⊥⊥, for any term s.

Now for s ∈ Π⊥⊥, π ∈ Π we have (s, π) ∈⊥⊥ and hence, for any term t, we
have (K, s.t.π) ∈⊥⊥ and (K′, t.s.π) ∈⊥⊥, whence s.t.π ∈ {K}⊥⊥ and t.s.π ∈ {K′}⊥⊥.
Since both K and K′ are quasi-proofs, by the property of a we find that both
s.t.π and t.s.π are elements of {a}⊥⊥, i.e. (a, s.t.π) ∈⊥⊥ and (a, t.s.π) ∈⊥⊥, as
desired.

Let us spell out what it means for the tripos [−,P(Π)UA,A′ ] to be localic. The
filter consists of those α ⊆ A for which (α → U) ∩ A′ 6= ∅. We require that
there is a least such α; keeping in mind that the order on P(Π)UA,A′ is reverse
inclusion, we need an α such that
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i) (α→ U) ∩A′ 6= ∅

ii) Whenever (β → U) ∩ ∅, β ⊆ α

The following proposition simplifies this somewhat:

Proposition 2.10 The tripos [−,P(Π)UA,A′ ] is localic if and only if there exists
an element e ∈ A′ with the property that whenever b ∈ A′, a ∈ A and ba ∈ U ,
then ea ∈ U .

Proof. Obvious.

Example 2.11 1) For U = A−A′, the tripos [−,P(Π)UA,A′ ] is localic, since
e = skk satisfies criterion 2.10

2) Every filter A′ on an opca A induces a preorder≤T on A which is analogous
to Turing reducibility: a1 ≤T a2 if and only if for some b ∈ A′ we have
ba2 ≤ a1. Note, that a1 ≤ a2 implies a2 ≤T a1, so for any a ∈ A the set
{b ∈ A | a ≤T b} is downwards closed w.r.t. ≤.

Now suppose that the set U is upwards closed w.r.t. ≤T (hence downwards
closed w.r.t. ≤). Then whenever b ∈ A′ and ba ∈ U , we have ba ≤T a and
skka ≤ a hence a ≤T skka, so we get skka ∈ U , which means that again,
skk satisfies criterion 2.10 and [−,P(Π)UA,A′ ] is localic.

We conclude this paper with a family of examples where [−,P(Π)UA,A′ ] is non-
localic. We consider the pca K2, which is the set of functions N → N. Given
two such functions α, β, we define the relation αβ(n) = k as: there is a number
N ∈ N satisfying:

α([n, β(0), . . . , β(N − 1)]) = k + 1
for all l < N,α([n, β(0), . . . , β(l − 1)]) = 0

Here, [...] refers to some computable coding of sequences of natural numbers.
We then say: αβ is defined, if and only if for each n ∈ N there is some k such
that αβ(n) = k, and αβ is then the corresponding function N → N. This is a
partial combinatory algebra.

The pcaK2 has a filter: the set of total recursive (computable) functions N→
N. We write (K2,Rec) for the corresponding filtered opca. We are interested in
choices for U such that the tripos [−,P(Π)UK2,Rec] is non-localic.

We remind the reader of the natural topology on K2: basic open sets are of
the form

Vσ = {α ∈ K2 |α(0) = σ0, . . . , α(n) = σn}

for some finite sequence σ = (σ0, . . . , σn).

Theorem 2.12 Let U be a set of nonrecursive functions. If U is discrete as a
subspace of K2, then the tripos [−,P(Π)UK2,Rec] is non-localic.
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Proof. Suppose, for a contradiction, that α is some recursive function with the
property that for every recursive β and arbitrary γ, if βγ ∈ U then αγ ∈ U .
First we note that for τ ∈ U and skk ∈ K2, which is recursive, (skk)τ = τ ∈ U ,
so ατ ∈ U . Therefore we can fix some π ∈ K2 and some τ ∈ U such that
απ = τ .

Since U is discrete, there is some number N such that the basic neighbour-
hood

U(τ(0),...,τ(N))

contains no element of U except τ . Let N ′ be a natural number big enough so
that for every i, 0 ≤ i ≤ N , there is some k < N ′ such that α([i, π(0), . . . , π(k−
1)]) = τ(i) + 1.

Claim. Let π′ ∈ U(π(0),...,π(N ′)). Then for every j ∈ N, either απ′(j) = τ(j) or
there is no k such that απ′(j) = k.
Proof of Claim: suppose π′ as in the Claim, and j0 such that for some k 6= τ(j0)
we have απ′(j0) = k. Let t be least such that

α([j0, π
′(0), . . . , π′(t− 1)]) = k + 1

and let M = max(N ′, t). Define π′′ ∈ K2 as follows:

π′′(i) =

{
π′(i) if i ≤M

τ(i− (M + 1)) otherwise

Clearly, there is some recursive function β such that βπ′′ = τ ∈ U ; hence,
απ′′ ∈ U , but by construction we must have απ′′ = τ , but this contradicts the
fact that απ′′(j0) 6= τ(j0). This proves the claim.

But now, with α recursive and the finite sequence (π(0), . . . , π(N ′)) given, we
have a recipy to compute τ : for any input j, either there is some k ≤ N ′

such that α([j, π(0), . . . , π(k)] > 0 (and then for the least such k, this must be
τ(j) + 1); or there is some sequence (n0, . . . , nm) which is minimal such that

α([j, π(0), . . . , π(N ′), n0, . . . , nm]) > 0

and then, by the claim, the result must be τ(j) + 1. This algorithm contradicts
the assumption that τ ∈ U , and hence non-computable.

Epilogue We have constructed non-localic (and hence non-Grothendieck) boolean
subtoposes of the Kleene-Vesley topos. We have also seen that every classical
realizability topos à la Streicher comes from a filtered opca, and therefore is
localic if it is Grothendieck.

The referee has asked whether the implication: Grothendieck ⇒ localic,
also holds for arbitrary subtoposes of relative realizability toposes. We strongly
suspect that the answer is yes (and that the implication may hold for all toposes
coming from triposes), but have no proof at the moment.
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Available at
http://www.lama.univ-savoie.fr/∼hyvernat/Realisabilite2012/Files/

Krivine-slides.pdf, 2012.

[18] J. Longley. Realizability Toposes and Language Semantics. PhD thesis, Edinburgh
University, 1995.

22



[19] W. Stekelenburg. Realizability categories. PhD thesis, Utrecht University,
January 2013.
Available electronically at
http://www.staff.science.uu.nl/∼ooste110/realizability/wouterthesis.pdf.

[20] R. Street. Notions of topos. Bull. Austral. Math. Soc., 23:199–208, 1981.

[21] Thomas Streicher. Krivine’s Classical Realizability from a Categorical Perspec-
tive, 2012.
Mathematical Structures in Computer Science, to appear. Available electronially
at http://www.mathematik.tu-darmstadt.de/∼streicher/ClRe.pdf.

[22] J. van Oosten. Classical Realizability. Slides of invited talk at
Cambridge Category Seminar, March 2012. Available electronically at
http://www.staff.science.uu.nl/∼ooste110/talks/cambr060312.pdf.

[23] J. van Oosten. Realizability: a historical essay. Math. Struct. in Comp. Science,
12:239–263, 2002.

[24] J. van Oosten. Realizability: an Introduction to its Categorical Side, volume 152
of Studies in Logic. North-Holland, 2008.

[25] J. van Oosten. Partial Combinatory Algebras of Functions. Notre Dame Journ.
Formal Logic, 52(4):431–448, 2011.

23


