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AN ABSTRACT NOTION OF REALIZABILITY FOR WHICH
INTUITIONISTIC PREDICATE CALCULUS IS COMPLETE

H. LAUCHLI

To each formula 4 of predicate logic and each assignment %.o.. ‘proofs’ "w
the atomic parts of 4 we shall associale a set p[4], :ﬁ. set of *proofs of \._..
The prools of A — 8 are just the functions from p{4] into hﬁm_m the proofs
of JvA are the pairs {c, x) such that x is a proof of 4] (substitution of ¢ for
uu._nu.oma of 'proofs of A’ we could as well say .anm:.wim ?:n.mwaw_.m .won A
In contrast to Kleene's (second version of the) notion of realizability [3],
we consider arbitrary, not necessarily countable functionals. .

We shall show that A4 is derivable in Heyting’s predicate caiculus if and
only if there is an explicitly definable funclional & such .:Eﬂ @ e plA] h.mn
all p, i.e. il and only if there is a well defined .u_.oo_...o_. A which does not make
use of the internal structure of proofs of the atomic parts of A. o

The ‘only if* part will be clear from the known results nco.:. realizability.
For the proof of the ‘if* part we make use of the (ollowing analogy be-
tween Kripkes semantics for intuitionistic logic m.:. "::_. ::.w theory of 12.-
mutation groups. [n the former, we can assert the implication 4 — B in a
situation A iff in any later situation H* where we can assert 4, we also can
assert 8. In the latter, the following is true: Given sets A, m.nsn a group H
of permutations of the elements of 4 v B leaving 4 and 8 .sﬁ-:m:r Then
there is an H-invariant function from A into Biff any subgroup #’ witha fixed
element in A also has a fixed element in B. .

The theorem will be established classically, The corresponding resuit for

ropositional logic was announced in an abstract [5]. .

g mwam_“q :.:n_.uwﬁuzo:m have been considered by Dana mno_.. (derived from
Guodel's Dialectica interpretation) and by Goodman, Kreisel, Troelstra,
Scott (derived from the intuitionistic notion of ‘construction’; see [1]). To
my knowledge, completeness of intuitionistic predicate calculus has not been
established for any of these interpretations.
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1. We consider formulas containing n-place predicate letters, a proposi-
tional constant f (*false'), individual coanstants, variables u, v, w, ..., con-
nectives A, v, —, 3, V. We write — A for 4 —+f. F(I') denotes the set of
all closed formulas with individual constants from a set I

In the following I' and {7 are countably infinite sets, ¢, € I" is a designated
clement of I, Xx ¥ denotes the Cartesian product of the sets X and ¥,
X U Yis the disjoint union ({0} x X)u({1} x ¥), ¥* is the set of all functions
from X into ¥.

To each formula 4, not necessarily closed, we associate a set S(A4), the
set of “possible prools of A"

S(A4) = IT if A is atomic,

S(AAB) = 5(A)x S(B),

S(Av B) = S(A)S(B),

S(4 - B) = S(By,

S(¥v4) = S(4),

S(IvA) = I'x S(4).

Note that §(4;) = S(A) for all individual constants ¢. Thus S(YvA) can be
interpreted as the set of all choice functions which assign to each ce I an
element of S(4Z).

A proof assignment is any function P which assigns to every (closed) for-
mula A & F(I') a set p[A4) such that
pLf] S plA] € 1T if 4 is atomic,
plAAB] = pla]xp(8].
pldv B] = p[4)pl8),
PlA — B] = {xe S(4 - 8): xy € p[B] for all y e p(4]},
PlYvA] = {x e S(¥vAd): xce p[A®] for all c e r},
Plvd] = {{e,xd:celand x epi4l]}.
Note that p[A] < S(4) for all p and A. The elements of p(A — B] are func-

tions with domain S(4). Thus the identity function on S(A) belongs to
plA4 — A] for each p.

2. Let 2 be the least class containing the scts {0, 1}, I, 1, such that when-
cver Dy, D€ D, then DyxD,, D, uD,, D ecD. The elements of
D, x D, are viewed as functions with domain {0,1}. Let # =] 2.
The elements of F will be called Junctionals. Simple functionals are those
which can be defined explicitly. The following kind of explicit definition
will do: We consider terms built from constants 0, 1, e5 and variables, using
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the following formation rules: If ¢, s are terms and x is a variable and D e 2,
then #(s), {t, s), A°x(t) are terms. Terms are interpreted as _.o_._oim“

Let ¥ be an assignment of functionals Lo variables. Then ¥[r] is the follow-
ing functional:

V(o] = 0;
V1] = 1;
Fleg] = co3

V[x] is the functional assigned to x; .
F[t(5)] is the value of V[t] at ¥[s]if ¥[f]is a function and V[s] belongs to
its domain, Vt(s)] = 0 otherwise;
Vi1, s)] is the function with domain {0, 1} and values V[¢] and V[s]
at 0 and 1 respectively;
V[4%x(#)] is the function with domain D, taking the value ¥}[¢] for ae D;
V3 assigns a to x and agrees with ¥ otherwise. ]
If ¢ is closed (all variables bound by 1), then the ?:n.._oan_ V[¢] does not
depend on V. Simple functionals are by definition those given by closed terms.

ExaMPLE 1. Let A, B, C be ciosed formulas. Let

D= 5({4 - C)a(B - C)),
E = S(Av B).

Then the term
Ax(AEp(¢x0(p1), x1(1)(Y0))

defines a simple functional which belongs to
Plld = C)a(B~ C) = (AvE - ()]
for all proof assignments p.

EXAMPLE 2. Let
D = S(—VYo(R(v}v =~ R(v))).
Then
MPx(x(A (<1, Ax(x)))))

defines a simple functional which belongs to
S{——=Yo(R(v)v — R(v})).
3. Let o be a permutation on I" v IT {i.e. 8 one—one function from I"'u I7

onto jtself), which leaves invariant the sets I, IT and the designated n_nann.s
0. o extends in a natural way to a permutation on F: 60 =0, 01 = 1; il
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g is a function then (og)x = o(g(s~'x)). In particular a{a, by = {aa, ob>.
A functional @ € F is said to be invariont, if @ = O for all such g,
Simple functionals are invariant since g, 0, 1 and all sets De 2 are

invariant. On the other hand, there are uncountably many invariant
functionals in & that are not simple.

4. In the following A denotes a closed formula containing no individual

constants other than c,. The symbol  de derivability in the intuitio-
nistic predicate calculus,

THEOREM. (1). If b A, then there is a simple functional © such that © e pld]
for all proof assignments p.

(2). If not & A, then there is p such that plA) contains no invariant func-
tional.

f’
COROLLARY. The following are equivalent (classically):

(a). +4;

(b) 3 simple ©,¥p, O ep[A];
(c). Vp3simple®, B¢ plA);
(d) 3 invariant 8,¥p, 6 e rlA];
(¢)- ¥p 3 invariant ©, © € p[A).

The corollary indicates a certain stability of the property ‘A", For condi-
tions (b), (c), (d) and (e), which are quite different intensionally, turn out to
coincide with ‘k A’ extensionally.

If we drop the restrictions put on 8, then we get classical logic in one case
and an intermediate thing in the other: Vp I(arbitrary) @ with © ¢ plAliff
A is derivable in classical predicate calculus, On the other hand, the condition

©YVp holds for some intuitionistically invalid formuias, e.g. for

Vo(R(v)v @) —+ (YoR(v) v Q).
but not for all classically valid ones, e.g. not for Qv — Q.

Part (2) of the theorem is not true if only those P are considered with
plf1= A (empty). The formula —~— Yo(R(v) v —R(v)), call it ——5,
gives a counterexample. For if p[f] = A then P[— B] = A since p[B] # A,
8B being classically valid. Hence p[-—— 8) = §(—-B). But §(—-—2B8)
contzins invariant functionals, as was shown in example 2,

The proof of part (1) of the theorem is a routine variation on the proof of

theorem 62, [2] p. 504. The remainder of this paper is devoted to the proof
of part (2).

C XV AN ABSTAACT NOTION OF REALIZABILITY 131

5, Let N be the set of the natural numbers Q:n_z&.:m 0). Let I be the set of
all finite sequences of natural numbers ?._n__a.u.w the oam.Q unﬁ_:n:n”
A) together with an ‘ideal element’ U. Let R be :.:.u binary qn_w.c..un._ on X suc|
that sRs’ iff cither s’ is U/ or 5 is a (not necessarily proper) initial segment
of s'. Let ¥ be a function with domain I and countable sets as values, such
that whenever sRs’ and s # s', then ¥(s) m.i.q..u and ”_._o complement
¥(s')— P(s) is infinite. We also assume ¥(A) infinite. F(¥(s)} denotes the
class of all closed formulas with individual constants _._.m__.. w(s).

Everything introduced so far will remain fixed. In particular, we shall not

unction V.

<EN M_Mm“ is a binary funclion ®(4, s}, where A ranges over Fle(w)) u._:_
5 over L, whose range is the set {T, F}, and which satisfies the following
conditions:

(1). if ®(A, s) = T, then 4 € F(¥(s)); .

(2). if (A4, s) = T and sRs’, then &(4,5)=T;

(3). if ®(f, 5) = T, then &(4, s) = T for all £ F(¥(s)); ;

(4). ®(AAB,5s) =T if AnBeF(¥(s)), and ®(4,5}=T an

B,5)=T
(5). ®(AvB,s)=T iff AvReF(¥(s)), and ®(4,8)=T or
¢(B,5)=T,

(6). ®(A — B)=T iff A— BeF(¥(s)) and for all s* with sRs", il

(A, s’) = Tthen ®(B, 5"} =T} .
(7). D(VvA,s) =T iffl ®(4%,5) = T foralls withsRs'andall c e¥(s")
(8). $(3vA,5) =T iff ®(AZ,s) = T for some c e ¥(s).

Lemma 1. Let A € F(W(A)) with not kA, Then (and only then) there is a model
® such that (A, A) = F.

The proof is clear from Kripke's work [4]).
The element U is no bother: Any @ which is defined on Z— {U} can be ex-
tended to I by setting ®(4, U) = T for all 4 € F(¥(L)).

6. In this section we establish a relationship between modcls @ and proofl
assignments p. B .

Let ¢ be a one-one function from I into the set of positive prime numbers.
The function ¢ from I into N is defined by ¢(A) = 1, ¢(s*n) = ¢(s) -
*g(s*n), o(U) = 0 (s*n denotes adjunction of the last term n to the se-
quence s5). Let | denote the relation of divisibility. Each non-empty subsect
of I has a greatest lower bound (glb) with respect to R. For ne N let
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5, = glb{s: nlp(s)} (the set is non-empty since nlg(U)). For instance
Sy =4 and 5 =5, = U,

The following are simple consequences of the definitions:

(1). e(s)le(s") iff sRs',

(2). rlg(s,),

(3). nlo(s) iff s,Rs,

(4). nim implies s,Rs,,

Auv. Set= 5
Let 1 denote the set of all integers, including the negative ones. Let n* de-
note the set of residue classes of 7 modulo n: 1’ is a one clement set, 0" is /.
Wehaven' nm' = Aforn,meN, n# m.

We now define I' = 1T = |} {¥(s,)xn’ :ne N}. (More precisely: We
impose a certain structure on the given countable sets I" and I7. The struc-
ture on I is isomorphic to that on [7. Thus, as & notational convenience, we
identify I' with I1.)

The designated element ¢, of I is to belong to ¥(s,)x1". Let I, =
U {#(s)xKk": k|n}. Thus I = Iy and cserl and

(6). alm implies I, < I,

The elements of I" are ordered pairs. If ce T, et ¢~ denote its first component:
¢~ e ¥(s,) for some n. In virtue of (4), if k|n then ¥(s,) S ¥(s,). Hence

(7). cer, implies ¢~ e ¥(s,).

The converse is not true for ail c € I', but we have

(8). if de ¥(s,) then there is c € I, with e~ = d.

If Ae F(I"), let A~ denote the formula obtained by replacing each individual
constant ¢ by ¢

(9)- A eF(I,)implies A~ e F('¥(s,)).

Let @ be the following permutation on I'; If ¢ = {d, ifn) € ¥(s,)x n’, then
ac = (d, (i+1){n). Then, for all ceI" and ne N we have

(10). a"c = ¢ iff cer,.

In particular o¢, = ¢, since ¢, € r;.

To each model @ we associate a proof assignment p as follows. Let

A € F(I') be atomic. We define

PlA] = U (¥(s)xk': $(47,5) = T or #(f,5,) = T).

The requirement p[f) = p[4) € IT for atomic A is satisfied. piA4] only de-

pends on A~ This carries over to compound formulas. Hencs for all
A, Be K(I)

(11). 47 = B~ implies p[d] = plB].

~
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Furthermore it is easy to see that
{12). o(p[A]) = p[A]), for all 4 in FT).

Lemma 2. For all ne N and A € F(I',), 0" has fixed elements in p[A] if and
only if ®(A™,s5,)=T. .

(Thus we have a world constant  such that for all ¢ there is a p such that
lemma 2 is true.)

ProoF. The proof is by induction on the complexity of 4:

l. Let A be atomic, By (10), o” has fixed elements in p[4) iff I, n p[A]
# A, i.c.iflTthereisak, k|n, such that #{A4™,5,) = Tor &(f,s,) = T. By :s..:po
latter holds iff {47, 5,) = T or B(f.s,) = T. Since A& F(I',) (9) gives
A~ e F(¥(s,)). Thus &(f,5,) = T implies ®(47,s,) = T. Hence ¢” has
fixed elements in p[A] iff $#(4A™,s,) = T.

2. Let Abe BACor Bv C. The induction step is clear.

3. Let A be B—C. ‘only if": let xep{A] with ¢"x = x. Consider s with
s,Rs and ¢(B7,s) =T. Let m = op(s). Then njm by Am:. and hence
Be F(r,) by (6). By (5) sis 5,,. The induction hypothesis gives an element
yep[B) with ¢y = p. Now xyep[C] and o™(xp) = {¢"x)(c"y) = xp
and Ce F(I',). The induction hypothesis gives ®#(C—, 5) = T. Hence

‘P4, s,)=T.

*if": Let {4, 5,) = T.1f n|m then s,Rs,, (by (4)) and hence $#(B™, .q..u.H
= T implies #(C, s,)) = T. By the induction hypothesis for ann__.i with
nlm, if o™ has fixed clements in p[B], then it also has fixed elements in p[C].
Let H be the permutation group generated by ¢, and let EE. denote the
largest subgroup of H leaving y fixed. Since any subgroup of H is generated
by ¢™ for some m with am (at worst m = 0), we have that for each y € p[ 5]
H(y) has fixed elements in p[C]. .

Wesay y, isequivalentto y,, i Ay, = y,forsomehe H. Let Sbhea maxi-
mal set of pairwise non-equivalent elements of p[B). Let g be a function
from S into p[C] such that gy is fixed under H(y) for all y € S. Let x, =
= {Chy, h(gy)y: y€ S and he H}. x, represents a function: If hy = i'y,
then 4™ ' e H(y) = H(gy), whence h{gy) = #'(gy); dom(x,) = p[B] be-
cause of the maximality of § and the invariance of p[B] (see (12)). Also
rg(x,) < p[C]. Thus x, is an H-invariant function from p[8] into p[C].

Recall that the elements of p[8 — C] are functions with domain S{8),
the set of ‘possible proofs of 8'. Let x; be any invariant _.E..n:.o_._ .._Ho:_
§(8)-p[8] into S(C), for instance the constant function with an invariant
element of S(C) as value (which is easily seen to exist, since both I' and 7
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contain the o-invariant element ¢,). Then x = x,ux, belongs to p[8 — C]
and is invariant under o".

4. Let A be YuB. ‘only if": Let x € p[VvB), 6"x = x. Let 5,Rs, de ¥(s).
As before, we have njm and 5 = s, for m = ¢(s). By (8) there is c & I, such
that ¢~ = d. By (10) ¢™¢ = c. Therefore ¢™(xc) = xc. Also xc € p[B°] and
8Ze F(I',). Induction hypothesis gives ®((B2)",s)=T. (B2)  is (87).
Hence ¢(VYvF ™, s5,)=T.

‘if*: Let ®(VvB—, 5,) =T. ket cel. If H is the group generated by
", then H(c) is generated by o™ for sore m with #jm. By (10) ce I',. By
(7) ¢~ € ¥(s,.). By (4) 5,R5,. Therefore ®#((BZ)™, 5,.) = T. Also B! e F(I',).
By induction hypothesis H{c) has fixed elements in p[B’]. As before we
get an invariant function. There is no trouble with the range, since for alt
heH, k(p[B]]) = p[BZ]) = p[By.]in virtue of {12) and {i1). Therefore ¢® has
fixed elements in p[VvB].

5. Let A be 3v8. The proof is straightforward, using (7), (8) and (10).

This concludes the proof of the lemma.

Proof of part (2) of the theorem:

Let A be a closed formula containing no individual censtants other than
cg. Then A € F(I' yand 4™ e F(¥(s,)) = F{¥({A)). Assume not 4. Lemma
1 gives a model ¢ such that #(A4~, A) = F. Let p be the proof assignment
associated to P, Then by lemma 2, ¢ has no fixed element in p[A4]. Therefore
pPlA] contains no invariant functional.
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EXTENDING THE TOPOLOGICAL INTERPRETATION TO
INTUITIONISTIC ANALYSIS, II

DANA SCOTT*

This paper is a sequel to the paper [12] written for Professor Heyting
under the same title, Nearly all of the questions left open in [12] have been
answered. In particular the results of section 3 in [12] having (o do with
universal formulae of the theory of < in rhree variables have been extended
to arbitrary universal formulae in section 5. (Our numbering of sections con-
tinues that of [12].) We then discuss in section 6 the general metama-
thematicai implications of the method of section 5 for the theory of the
topological model of intuitionistic analysis. In section 7 the important step
is taken of enfarging the model to encompass arbitrary (extensional) real
functions, The main result is the verification in the model of Brouwer’s
theorem on continuity: all functions are uniformly continuous on closed in-
tervals. The proof is given in detail along with several related results. (The
reader will have to refer to (12] for notation and the definition of the model.)

The author was thus able to conclude this paper lecling that he had a
rather good grasp of the basic properties of the real numbers of the model.
Several further projects remain to be carried out, however. The next im-
portant step is to discuss the corresponding topological interpretation of
second-order arithmetic and the theory of free-choice sequences of integers.
This will make possible an exact comparison of the theory of the model and
the usual axiomatic theories of intuitionistic analysis (which will no doubt
be one of the main topics of part 111 of this series of papers.) Following such
work it is obvious that attention must be given 1o obtaining a constructive
version of the model. Kreisel has suggested that the theory of constructive
and lawless sequences (the system of [8]) may provide the proper framework
* Research on this paper has been supported by a grant from the National Science

Foundation, Special thanks are due to Professor G. Kreisel for the many hours of dis-

Cussion on intuitionism in general and the helpful criticisms of cattier drafis of this paper in
Particular.
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