Seminar on Constructible Sets

Exercises Session 7

4th April 2018

Exercises

Exercise 1 (a). Let X be a subset of an interval $I \subset \mathbb{R}$, such that for every $q \in I \cap \mathbb{Q}$ and every $k \in \mathbb{N}$, there is an $x(q,k) \in X \cap (q-2^{-k},q+2^{-k})$. Show that there is a countable subset of X that is dense in I.

Answer: The subset $X' = \{x(q,k) \mid q \in \mathbb{Q}, k \in \mathbb{N}\}$ is countable, being an image of $\mathbb{Q} \times \mathbb{N}$. It is also dense: let $a,b \in I$ with a < b and let $k = \lceil -\log(b-a)/\log(2) \rceil + 1$ if b-a < 1 and 1 otherwise. Let $q = \frac{a+b}{2}$. Clearly, $a \le q - 2^{-k} < q + 2^{-k} \le b$ hence a < x(q,k)b <, as desired.

Exercise 1 (b). Show that if X is a dense subset of an interval $I \subset \mathbb{R}$, then it is contains a countable subset dense in I.

Answer: Since I is an interval, for every $q \in I$ and $k \in \mathbb{N}$, the set $I \cap (q-2^{-k}, q+2^{-k})$ is a non-empty interval and thus contains some element $x(q,k) \in X$. The result then follows by Exercise 1(a).

Exercise 2. Prove that the set $\langle X, <_X \rangle$ defined in the proof of the left-to-right implication of Theorem 1.4 of Devlin is a densely ordered set of cardinality 2^{ω} .

Answer: Given any two maximal branches $b,d\in X$, there is α such that $b(\alpha)\neq d(\alpha)$ and $b(\beta)=d(\beta)$ for all $\beta<\alpha$. Since T_α is linearly ordered, we have that either $b(\alpha)<_\alpha d(\alpha)$, and so $b<_X d$, or $d(\alpha)<_\alpha b(\alpha)$ and then $d<_X b$. Hence X is linearly ordered. Now, consider the successors of $b(\alpha)$ in $T_{\alpha+1}$, which are order-isomorphic to the rationals. Then we can find some $c(\alpha+1)\in T_{\alpha+1}$ satisfying $b(\alpha+1)<_{\alpha+1}c(\alpha+1)$. We can now consider a maximal branch c such that $b(\beta)=c(\beta)$ for all $\beta\leqslant\alpha$ and $c(\alpha+1)$ is the element of $T_{\alpha+1}$ we just picked, and this branch satisfies that $b<_X c<_X d$, so X is densely ordered.

For the cardinality, note that X has at least 2^{ω} elements, since we can easily find 2^{ω} different ω -branches by starting at 0 and picking a different successor at each level up to ω , and then each of these branches can be extended to a maximal branch. So this gives $2^{\omega} \leq |X|$. On the other hand, we are working with a Souslin tree, so every maximal branch is countable. Given any level of a maximal branch, there are ω possible successors to pick from in the next level. Hence, for any $\alpha < \omega_1$, we have at most $\omega^{\omega} = 2^{\omega}$ different branches with order type α . Hence there are at most $\sum_{\alpha < \omega_1} 2^{\omega} = \omega_1 \cdot 2^{\omega} = 2^{\omega}$ maximal branches, which gives $|X| \leq 2^{\omega}$.