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1 Exercises

Exercise 1 (Deadline: February 29) We consider a small category C and a
monoid M . An M -presheaf on C is a presheaf F on C endowed with, for every
object C ∈ C, a right M -action F (C) × M → F (C) (written: (x,m) 7→ xm)
which, besides the usual axioms for an M -action, also satisfies: f∗(xm) =
f∗(x)m for f : D → C, x ∈ F (C) and m ∈ M . A morphism of M -presheaves
F → G is a natural transformation µ : F ⇒ G such that µC(xm) = µC(x)m

for all C ∈ C, x ∈ F (C). Clearly, we have a category M -Ĉ of M -presheaves and
morphisms.

a) Let ∆ : Ĉ → M -Ĉ be the functor which endows each presheaf F with the
trivial (identity) M -action. Show that ∆ has a right adjoint, and describe
it explicitly.

b) Show that M -Ĉ is a topos.

Exercise 2 (Deadline: March 14) Recall the definition (before Proposition
3.14) of the map ∃f : ΩX → ΩY for any monomorphism f : X → Y .

a) (4 pts) Show that ∃f induces a function
∑

f : Sub(X) → Sub(Y ), and
describe this function explicitly.

b) (6 pts) Show that for any subobject A ofX, the inequality A ≤ f∗(
∑

f (A))
holds.

Exercise 3 (Deadline: March 28) Let T : E → F be a logical functor be-
tween toposes.

a) (4 pts) Let X be an object of E . Show that the functor T/X : E/X →
F/TX which sends (Y

f→ X) to (TY
Tf→ TX (with the straightforward

action on morphisms) is logical.

b) (3 pts) Suppose the functor T has a left adjoint F . Show that T/X has a
left adjoint.
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c) (3 pts) Under the assumption in b), show that T/X has a right adjoint.
Can you describe it explicitly?

Exercise 4 (Deadline: April 11) We consider a universal closure operation
c on a topos E .

a) (2 pts) Let

A′

m

��

f ′
// B′

n

��

A
f
// B

be a commutative square with m a dense mono and n a closed mono.
Prove that there is a unique “filler” g : A → B′ (i.e., a map such that
gm = f ′ and ng = f).

b) (2 pts) For a subobject A′ of A, show that cA(A
′) is the unique subobject

A′′ of A with the property that A′ → A′′ is dense and A′′ → A is closed.

c) (3 pts) Show that the composition of two dense monos is dense; and the
same for closed monos.

d) (3 pts) Show that for A′, A′′ ∈ Sub(A) we have: cA(A
′ ∩ A′′) = cA(A

′) ∩
cA(A

′′). [Hint: one inclusion is clear since c is order-preserving. For the
other, show that it suffices to prove that (A′ ∩ A′′) → (cA(A

′) ∩ cA(A
′′))

is dense and (cA(A
′) ∩ cA(A

′′)) → A is closed.]

Exercise 5 (Deadline: April 25) This exercise is about the Heyting algebra
structure of subobject lattices. Sub(X) denotes the lattice of subobjects of X.

a) Let i : X → Y be a monomorphism. Prove: if Sub(Y ) is a Boolean
algebra, then so is Sub(X).

b) Let p : X → Y be an epimorphism. Prove: if Sub(X) is a Boolean algebra,
then so is Sub(Y ).

Exercise 6 (Deadline: May 21) Let R be a commutative ring. Let I be the
poset of proper ideals of R (that is, ideals not equal to R), ordered by reverse
inclusion (so I ≤ J if and only if J ⊆ I) We define a presheaf R on I by putting

R(I) = R/I

(R/I is the quotient ring of R modulo I).

a) (4 pts) Complete the definition of R as a presheaf and show that it carries

the structure of an internal ring in Î.

b) (6 pts) Show that “R is a field”, that is:

R ⊩ ∀x(¬(x = 0) → ∃y(x·y = 1))
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2 Solutions

Exercise 1 a) Clearly, if µ : ∆(F ) → G is any morphism in M -Ĉ then by the
definition of such morphisms, for all C ∈ C, x ∈ F (C) and m ∈ M we have
(µC(x))m = µC(x), so µ lands in the part of G which is invariant under the

M -action. We have a functor from M -Ĉ to Ĉ which sends each M -presheaf to
its invariant part. This is right adjoint to ∆, the verification of which is left to
you.
b) This is most easily done by observing that M -Ĉ is equivalent to a presheaf
category: it is equivalent to the category of presheaves on the product category
C ×M .

Exercise 2 a) Elements of Sub(X) are in 1-1 correspondence with maps 1 →
ΩX : take the exponential transpose of the classifying map.

Define
∑

f as follows: for A ∈ Sub(X), corresponding to the map a : 1 →
ΩX , define

∑
f (A) ∈ Sub(Y ) as the subobject corresponding to the composition

∃f◦a : 1 → ΩY .

One can prove that this is simply the subobject A → X
f→ Y , although it is

hard to argue that this operation is induced by
∑

f .

b) Let ∃̃f be the exponential transpose of ∃f . Then
∑

f (A) is classified by the
composition

Y
⟨a,idY ⟩−→ ΩX × Y

∃̃f−→ Ω.

Then f∗(
∑

f (A)) is classified by

X
f→ Y

⟨a,idY ⟩−→ ΩX × Y
∃̃f−→ Ω.

and the inequality A ≤ f∗(
∑

f (A)) holds if and only if the composition

A → X
f→ Y

⟨a,idY ⟩−→ ΩX × Y
∃̃f−→ Ω

factors through the subobject classifier 1
t→ Ω.

This, however, follows from the commutative diagram:

A

��

// X

⟨a,id⟩
��

f
// Y

⟨a,idY ⟩
��

ΩX ×X

evX

��

id×f
// ΩX × Y

∃̃f
xxrrr

rrr
rrr

rrr

1
t

// Ω

The lower right-hand triangle commutes by Proposition 3.14, and the left hand
square commutes because the composite evX◦⟨a, id⟩ equals the transpose of a,
that is: the map which classifies A as subobject of X.

3



Exercise 3 a) Assume T : E → F is logical; this means that T preserves

finite limits, subobject classifiers and exponentials. So T (1
t→ Ω) is a subobject

classifier in F and moreover, if χA : X → Ω classifies the subobject A of X
in E , then T (χA) classifies T (A) ∈ Sub(TX) in F . It follows that the map
∆ : X × X → Ω, which classifies the diagonal δ : X → X × X, is preserved
by T . Also, T commutes with taking exponents and also with exponential
transposes. So, for example, the singleton map {·} : X → ΩX is preserved by
T . We see that partial map classifiers are preserved by T . It is now a matter of
inspection to see that the whole topos structure of E/X is preserved by T/X.
We conclude that T/X is logical.

b) Let F ⊣ T . Define FX : F/TX → E/X as follows: for an object (Y
g→

TX) of F/TX let FX(g) be the map FY
g̃→ X, the transpose of g along the

adjunction F ⊣ T . On morphisms

Y

g
!!C

CC
CC

CC
C

h // Y ′

g′
}}zz
zz
zz
zz

TX

the image FX(h) is the map F (h) : g̃ → g̃′ obtained by transposing. The
adjunction is straightforward.

c) The existence of a right adjoint is an immediate application of Corollary
3.20: T/X is logical and has a left adjoint, so it has a right adjoint by 3.20.

In order to exhibit the right adjoint, we use the assumption in b) once more,
and conclude that T has a right adjoint. Let G : F → E be right adjoint to

T . Define GX : F/TX → E/X as follows: GX(Y
g→ TX) is the map Y ′ f→ X,

from the pullback diagram

Y ′

f

��

// GY

G(g)

��

X
η
// GTX

where η : X → GTX is the unit of the adjunction T ⊣ G. Again, the adjunction
T/X ⊣ GX is left to you.

Exercise 4 a) Commutativity of the square gives that m ≤ f∗(n) in Sub(A),
so by the order-preservingness of the closure operation, we have cA(m) ≤
cA(f

∗(n)). Now cA(m) = idA since m is dense, and cA(f
∗(n)) = f∗(cX(n)) =

f∗(n) by stability of closure and the assumption that n is closed. The resulting
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inequality idA ≤ f∗(n) in Sub(A) gives us a commutative diagram

A′

k
��

f ′

!!B
BB

BB
BB

B

A
a //

id
  
BB

BB
BB

BB
B′′

b′

��

b // B′

n

��

A
f
// B

where the square is a pullback, and m : A′ → A is the composite b′k. Note that
b′ab′ = b′ hence ab′ = id since b′ is mono. Therefore the map g = ba : A → B′

satisfies the stated equalities.
b) We have inclusions A′ → cA(A

′) → A. Clearly, the second one is closed.
To see that the first one is dense we must prove the equality

ccA(A′)(A
′) = cA(A

′).

Consider the pullback

A′

��

// A′

��

cA(A
′)

i
// A

The desired equality is now clear from:

ccA(A′)(A
′) = ccA(A′)(i

∗A′) = i∗(cA(A
′)) = cA(A

′)

Now, we need to see that cA(A
′) is unique with the stated property. So assume

A′′ is such that A′ → A′′ is dense and A′′ → A is closed. We have commutative
diagrams

A′

��

// A′′

��

cA(A
′) // A

A′

��

// cA(A
′)

��

A′′ // A

which in turn, by applying part a), yield cA(A
′) ≤ A′′ and A′′ ≤ cA(A

′). We
conclude that A′′ = cA(A

′).
c) Let N → M → X be subobjects. First assume both inclusions are dense;

we show that N → X is dense. Let i : M → X the inclusion. We have:

cX(N) ∩M = i∗(cX(N)) = cM (i∗N) = cM (M ∩N) = cM (N)

Now since N → M is dense we have

M = cM (N) = cX(N) ∩M,
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so M ⊆ cX(N). Since c is order preserving and idempotent we have X =
cX(M) ⊆ cX(cX(N)) = cX(N), giving that N → X is dense as required.

Now assume both inclusions are closed. We have (as used before) cX(N) ∩
M = cM (N) = N , so we have a pullback:

N

��

// M

��

cX(N) // X

Since M → X is closed, N → cX(N) is closed. But N → cX(N) is also dense.
We conclude N = cX(N).

d) First a little remark: if A
i→ B

j→ X is a composition of monos and
cX(A) = B, then i is dense. Indeed,

cB(A) = cX(A) ∩B = j∗(cX(A)) = B.

For the proof that cA(A
′ ∩A′′) = cA(A

′) ∩ cA(A
′′), we prove:

d1) the map A′ ∩A′′ → cA(A
′) ∩ cA(A

′′) is dense;

d2) the map cA(A
′) ∩ cA(A

′′) → A is closed.

Let us first see that this is enough. We first show that statements d1) and
d2) also hold for cA(A

′ ∩ A′′) in the place of cA(A
′) ∩ cA(A

′′), so that by the
uniqueness of part b) we will be done after proving d1) and d2).

We have that cA(A
′∩A′′) → A is clearly closed, and cA(A

′∩A′′) → cA(A
′)∩

cA(A
′′) is dense by the little remark, since

ccA(A′′)(cA(A
′) ∩ cA(A

′′)) = ccA(A′′)((j
′)∗(cA(A

′))) =
(j′)∗cA(cA(A

′)) = (j′)∗cA(A
′) = cA(A

′) ∩ cA(A
′′)

(where j′ is the mono cA(A
′′) → A).

Now for the proof of d1) and d2).
d1): this arrow is a composite of A′∩A′′ → cA(A

′)∩A′′ → cA(A
′)∩ cA(A

′′).
Let j be the mono A′′ → A. Then

cA′′(A′ ∩A′′) = cA′′(j∗(A′)) = j∗(cA(A
′)) = cA(A

′) ∩A′′

so the first arrow in the composite is dense; the second one is dense because it is
a pullback (intersection with cA(A

′)) of the dense map A′′ → cA(A
′′). By part

c) we conclude that d1) has been proved.
For d2), we split this as cA(A

′) ∩ cA(A
′′) → cA(A

′′) → A. For the first of
these arrows, we have (again, let j′ be the arrow cA(A

′′) → A):

cA(A
′) ∩ cA(A

′′) = (j′)∗(cA(A
′)) = ccA(A′′)((j

′)∗(A′))

We see that cA(A
′) ∩ cA(A

′′) is closed in cA(A
′′). The second arrow of the

composite is trivially closed, so (invoking once again part c)) we are done.
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Exercise 5. Of course, we are talking about maps in a topos.
a) If i : X → Y is a monomorphism then X is a subobject of Y and has

therefore a complement Xc ∈ Sub(Y ) since Sub(Y ) is Boolean by assumption.
If A is a subobject of X then A is also a subobject of Y and has complement
Ac in Sub(Y ); let A′ = Ac ∩X. Then A′ is a subobject of X, A ∩A′ = 0 and

A ∪A′ = A ∪ (Ac ∩X) = (A ∪Ac) ∩ (A ∪X) = Y ∩X = X

so A′ is a complement of A in Sub(X), which is therefore Boolean.
b) We work with the geometric morphism E/X → E/Y . Its inverse image

functor f∗ is logical. It restricts to a map between the lattices of subobjects
of 1 in the respective toposes. Note that Sub(X) in E is isomorphic to Sub(1)
in E/X, and ditto for Y ; modulo these isomorphisms, the restriction of f∗ to
the lattices of subobjects of 1 is the pullback functor f∗ : Sub(Y ) → Sub(X).
This functor preserves the Heyting structure. Note also that a Heyting algebra
H is Boolean if and only if x = ¬¬x holds for all x ∈ H. Now if A ∈ Sub(Y )
then f∗(¬¬A) = ¬¬f∗(A) = f∗(A) (the last equality since Sub(X) is Boolean;
hence ¬¬A = A because f is a surjection. So Sub(Y ) is Boolean.
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