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1 Exercises

Exercise 1 (Deadline: February 29) We consider a small category C and a
monoid M. An M -presheaf on C is a presheaf F' on C endowed with, for every
object C' € C, a right M-action F(C) x M — F(C) (written: (z,m) — xm)
which, besides the usual axioms for an M-action, also satisfies: f*(zm) =
ff(e)ymfor f: D - C, z € F(C) and m € M. A morphism of M-presheaves
F — G is a natural transformation p : F = G such that uc(xm) = pe(z)m
for all C € C, x € F(C). Clearly, we have a category M-C of M-presheaves and
morphisms.

a) Let A: C — M-C be the functor which endows each presheaf F with the
trivial (identity) M-action. Show that A has a right adjoint, and describe
it explicitly.

b) Show that M-C is a topos.

Exercise 2 (Deadline: March 14) Recall the definition (before Proposition
3.14) of the map 3y : QX — QY for any monomorphism f: X — Y.

a) (4 pts) Show that 3f induces a function }_, : Sub(X) — Sub(Y’), and
describe this function explicitly.

b) (6 pts) Show that for any subobject A of X, the inequality A < f*(3_(A))
holds.

Exercise 3 (Deadline: March 28) Let T : £ — F be a logical functor be-
tween toposes.

a) (4 pts) Let X be an object of £. Show that the functor T/X : £/X —

F/TX which sends (Y % X) to (TY S TX (with the straightforward

action on morphisms) is logical.

b) (3 pts) Suppose the functor T has a left adjoint F. Show that T//X has a
left adjoint.



¢) (3 pts) Under the assumption in b), show that 7//X has a right adjoint.
Can you describe it explicitly?

Exercise 4 (Deadline: April 11) We consider a universal closure operation
con a topos £.

a) (2 pts) Let

be a commutative square with m a dense mono and n a closed mono.
Prove that there is a unique “filler” g : A — B’ (i.e., a map such that

gm = f" and ng = f).

b) (2 pts) For a subobject A" of A, show that c4(A’) is the unique subobject
A" of A with the property that A’ — A" is dense and A” — A is closed.

¢) (3 pts) Show that the composition of two dense monos is dense; and the
same for closed monos.

d) (3 pts) Show that for A’, A” € Sub(A) we have: ca(A'NA") =ca(A)N
ca(A”). [Hint: one inclusion is clear since ¢ is order-preserving. For the
other, show that it suffices to prove that (4’ N A”) — (ca(A") Neca(4"))
is dense and (ca(A") Nca(A”)) — A is closed.]

Exercise 5 (Deadline: April 25) This exercise is about the Heyting algebra
structure of subobject lattices. Sub(X) denotes the lattice of subobjects of X.

a) Let i : X — Y be a monomorphism. Prove: if Sub(Y) is a Boolean
algebra, then so is Sub(X).

b) Letp: X — Y be an epimorphism. Prove: if Sub(X) is a Boolean algebra,
then so is Sub(Y).

Exercise 6 (Deadline: May 21) Let R be a commutative ring. Let Z be the
poset of proper ideals of R (that is, ideals not equal to R), ordered by reverse
inclusion (so I < J if and only if J C I') We define a presheaf R on Z by putting

R(I) = R/I
(R/I is the quotient ring of R modulo I).

a) (4 pts) Complete the definition of R as a presheaf and show that it carries
the structure of an internal ring in Z.

b) (6 pts) Show that “R is a field”, that is:

RIFVz(=(x =0) = Jy(zy = 1))



2 Solutions

Exercise 1 a) Clearly, if u : A(F) — G is any morphism in M-C then by the
definition of such morphisms, for all C € C, z € F(C) and m € M we have
(ne(z))m = pe(x), so p lands in the part of G which is invariant under the
M-action. We have a functor from M-C to C which sends each M -presheaf to
its invariant part. This is right adjoint to A, the verification of which is left to
you. R

b) This is most easily done by observing that M-C is equivalent to a presheaf
category: it is equivalent to the category of presheaves on the product category
Cx M.

Exercise 2 a) Elements of Sub(X) are in 1-1 correspondence with maps 1 —
QX take the exponential transpose of the classifying map.
Define }; as follows: for A € Sub(X), corresponding to the map a : 1 —

QX define >_(A) € Sub(Y) as the subobject corresponding to the composition
Jpoa:1— QY.

One can prove that this is simply the subobject A — X EN Y, although it is
hard to argue that this operation is induced by .
b) Let % be the exponential transpose of 35. Then }_ ,(A) is classified by the
composition

(a,idy) ~x e
Y —'Q% xY — Q.

Then f*(3°;(A)) is classified by

@) 0X wy 2y Q.

xhy
and the inequality A < f*(3_,(A)) holds if and only if the composition
Asx Ly @hox .y 2 g

factors through the subobject classifier 1 5 Q.
This, however, follows from the commutative diagram:

! Y

X
l(a,id) l(aﬂdy)

X x X — QX xY

idx f
evy o
35

—F 0

—_—

The lower right-hand triangle commutes by Proposition 3.14, and the left hand
square commutes because the composite ev X0<a7 id> equals the transpose of a,
that is: the map which classifies A as subobject of X.



Exercise 3 a) Assume T : £ — F is logical; this means that 7' preserves

finite limits, subobject classifiers and exponentials. So T'(1 4 Q) is a subobject
classifier in F and moreover, if y4 : X — € classifies the subobject A of X
in &, then T(xa) classifies T(A) € Sub(TX) in F. It follows that the map
A X x X — Q, which classifies the diagonal § : X — X x X, is preserved
by T. Also, T commutes with taking exponents and also with exponential
transposes. So, for example, the singleton map {-} : X — Q¥ is preserved by
T. We see that partial map classifiers are preserved by T'. It is now a matter of
inspection to see that the whole topos structure of £/X is preserved by T/X.
We conclude that T/X is logical.

b) Let F 4 T. Define FX : F/TX — £/X as follows: for an object (Y %

TX) of F/TX let FX(g) be the map FY EN X, the transpose of g along the
adjunction F' 4 T. On morphisms

Yy — " sy

N A

the image FX(h) is the map F(h) : § — ¢’ obtained by transposing. The
adjunction is straightforward.

¢) The existence of a right adjoint is an immediate application of Corollary
3.20: T/X is logical and has a left adjoint, so it has a right adjoint by 3.20.

In order to exhibit the right adjoint, we use the assumption in b) once more,
and conclude that T has a right adjoint. Let G : F — & be right adjoint to

T. Define Gx : F/TX — £/X as follows: Gx(Y % TX) is the map Y’ % X,
from the pullback diagram

Y —— GY

| o

XﬁGTX

where 7 : X — GT X is the unit of the adjunction 7' 4 G. Again, the adjunction
T/X 4 Gx is left to you.

Exercise 4 a) Commutativity of the square gives that m < f*(n) in Sub(A),
so by the order-preservingness of the closure operation, we have calm) <
ca(f*(n)). Now ca(m) = id4 since m is dense, and ca(f*(n)) = f*(cx(n)) =
f*(n) by stability of closure and the assumption that n is closed. The resulting



inequality id4 < f*(n) in Sub(A) gives us a commutative diagram

A/

N

where the square is a pullback, and m : A’ — A is the composite b’'k. Note that
b'ab’ = b’ hence ab’ = id since ¥’ is mono. Therefore the map g = ba : A — B’
satisfies the stated equalities.

b) We have inclusions A’ — c4(A’) — A. Clearly, the second one is closed.
To see that the first one is dense we must prove the equality

Cea(an)(A') = ca(A').

Consider the pullback

The desired equality is now clear from:
CCA(A')(A/) = ccA(A’)(i*A/) = Z* (CA(A/)) = CA(A/)

Now, we need to see that c4(A’) is unique with the stated property. So assume
A" is such that A’ — A" is dense and A” — A is closed. We have commutative
diagrams

Al —— A" A ) (A)

ca(A)y—— A A — S A

which in turn, by applying part a), yield c4(A4’) < A” and A” < c4(A’). We
conclude that A” = c4(A").

¢) Let N - M — X be subobjects. First assume both inclusions are dense;
we show that N — X is dense. Let ¢ : M — X the inclusion. We have:

Cx(N) NM = Z*(Cx(N)) = C]u(i*N) = CM(MQN) = CM(N)
Now since N — M is dense we have

M:CM(N):CX(N)QM,



so M C c¢x(N). Since ¢ is order preserving and idempotent we have X =
ex (M) Cex(ex(N)) =cx(N), giving that N — X is dense as required.
Now assume both inclusions are closed. We have (as used before) c¢x (N) N

M = cp(N) = N, so we have a pullback:

N—— M

|

CX(N) — X

Since M — X is closed, N — cx(N) is closed. But N — ¢x(N) is also dense.
We conclude N = cx (N).

d) First a little remark: if A 45 BL Xisa composition of monos and
c¢x (A) = B, then i is dense. Indeed,

cp(A) =cx(A)NB=j"(cx(A)) = B.
For the proof that c4(A’' N A"”) = ca(A) Nca(A”), we prove:
dl) the map A’ N A" — ca(A") Nca(A”) is dense;
d2) the map ca(A")Nca(A”) = A is closed.
Let us first see that this is enough. We first show that statements d1) and
d2) also hold for c4(A’ N A”) in the place of c4(A") Nca(A”), so that by the
uniqueness of part b) we will be done after proving d1) and d2).

We have that c4(A'NA") — Ais clearly closed, and c4(A'NA") — ca(A")N
ca(A”) is dense by the little remark, since

Cea(any(ca(A) Nea(A”)) = copan((3)(ca(A))) =
(1) calca(A)) = (") ea(A)

(where j is the mono c4(A”) — A).

Now for the proof of d1) and d2).

d1): this arrow is a composite of A’NA" — c4(A)NA" = ca(A)Neca(A”).
Let j be the mono A” — A. Then

ca(A)Nea(A”)

can(A'NA") = can (57 (A') = j"(ca(A)) = ca(A) N A"

so the first arrow in the composite is dense; the second one is dense because it is
a pullback (intersection with c4(A’)) of the dense map A” — c4(A”). By part
¢) we conclude that d1) has been proved.

For d2), we split this as ca(A") Nca(A”) = ca(A”) — A. For the first of
these arrows, we have (again, let j’ be the arrow c4(A"”) — A):

ca(A)Nea(A”) = (5")"(ca(A) = cepam () (A))

We see that ca(A") Nca(A”) is closed in c4(A”). The second arrow of the
composite is trivially closed, so (invoking once again part c)) we are done.



Exercise 5. Of course, we are talking about maps in a topos.

a) If i : X — Y is a monomorphism then X is a subobject of Y and has
therefore a complement X¢ € Sub(Y") since Sub(Y) is Boolean by assumption.
If A is a subobject of X then A is also a subobject of Y and has complement
A¢in Sub(Y); let A’ = A°N X. Then A’ is a subobject of X, AN A’ =0 and

AUA =AU(ANX)=(AUA)NAUX)=YNX =X

so A’ is a complement of A in Sub(X), which is therefore Boolean.

b) We work with the geometric morphism £/X — £/Y. Its inverse image
functor f* is logical. It restricts to a map between the lattices of subobjects
of 1 in the respective toposes. Note that Sub(X) in £ is isomorphic to Sub(1)
in £/X, and ditto for Y; modulo these isomorphisms, the restriction of f* to
the lattices of subobjects of 1 is the pullback functor f* : Sub(Y) — Sub(X).
This functor preserves the Heyting structure. Note also that a Heyting algebra
H is Boolean if and only if # = —=—a holds for all z € H. Now if A € Sub(Y)
then f*(=—A4) = == f*(A) = f*(A) (the last equality since Sub(X) is Boolean;
hence == A = A because f is a surjection. So Sub(Y') is Boolean.



