Fast computation of principal A-determinants by means of dimer models; an introduction through three concrete examples. JAN STIENSTRA

 $\mathcal{A} = \{\mathbf{a}_1, \ldots, \mathbf{a}_N\}$ is a set of N vectors in \mathbb{Z}^{N-2} which spans \mathbb{Z}^{N-2} over \mathbb{Z} and for which there exists a linear map $h : \mathbb{Z}^{N-2} \to \mathbb{Z}$ such that $h(\mathcal{A}) = \{1\}$. The *principal* \mathcal{A} -determinant was defined by Gelfand, Kapranov, Zelevinsky [1]. It describes the singularities of the associated GKZ \mathcal{A} -hypergeometric system of differential equations. It also gives the locus in (u_1, \ldots, u_N) -space where the zero-set of the (N-2)-variable Laurent polynomial $\sum_{j=1}^{N} u_j \mathbf{x}^{\mathbf{a}_j}$ has singularities. According to GKZ it is a linear combination of monomials in the variables u_1, \ldots, u_N with exponents being the integer points in the so-called *secondary polygon*. GKZ gave the coefficients for the vertices of the secondary polygon. We want all coefficients. In [3] it was proven that the principal \mathcal{A} -determinant equals the determinant of (an appropriate form of) the Kasteleyn matrix of a dimer model. D. Gulotta describes in [2] an efficient algorithm for constructing this dimer model from \mathcal{A} , or rather from a $2 \times N$ -matrix $B = (b_{ij})$ of which the rows form a basis for the lattice of relations $\{(\ell_1, \ldots, \ell_N) \in \mathbb{Z}^N \mid \ell_1 \mathbf{a}_1 + \ldots + \ell_N \mathbf{a}_N = \mathbf{0}\}$. Let me now restrict to concrete examples.

Appell's hypergeometric function F_1 :

 $\mathcal{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 & -1 \end{bmatrix}.$ We present Gu-

lotta's algorithm for this example in two pictures. These should be viewed on a torus which is drawn here as a square with opposite sides identified:

Start in the left hand picture with $\sum_{j=1}^{N} |b_{1j}|$ horizontal lines alternatingly oriented \rightarrow resp. \leftarrow and $\sum_{j=1}^{N} |b_{2j}|$ vertical lines alternatingly oriented \uparrow resp. \downarrow . The reader may try to guess how the other pictures are created from the starting picture, or look up the algorithm in [2]. The final situation shown in the right-hand picture consists of six oriented zigzag paths with winding numbers on the torus given by the columns of matrix B; $u_1, u_2, u_3, u_4, u_5, u_6$ are variables corresponding with the columns of B and with the zigzags. The connected components of the

complement of this zigzag configuration are 2-cells of which the boundary is either oriented or unoriented. There are three cells with positive (resp. negative) oriented boundary which we label 1, 2, 3 (resp. 1', 2', 3'). The *dimer model* mentioned in the title "is" this configuration of 2-cells with oriented boundaries. As in [3] we collect the information on the zigzags, their intersection points and intersection numbers and the cells with oriented boundary in the following 3×3 -matrix, which is a form of the *Kasteleyn matrix* of the dimer model.

$$\mathbb{K}(u_1, u_2, u_3, u_4, u_5, u_6) = \begin{bmatrix} u_2 u_4 & u_1 u_5 & u_1 u_2 + u_4 u_5 \\ u_4 u_6 & u_1 u_3 & u_1 u_6 + u_3 u_4 \\ u_2 u_6 & u_3 u_5 & u_2 u_3 + u_5 u_6 \end{bmatrix};$$

the matrix entries in this matrix correspond to the intersection points of the zigzags: an entry $p u_k u_m$ in position (i, j) means that it is an intersection point of zigzags u_k and u_m , that it is a vertex of the oriented 2-cells i' and j and that p is the number of intersection points of the zigzags u_k and u_m . According to [3] the sought for principal A-determinant for this example is

$$\det(u_1 u_2 u_3 u_4 u_5 u_6 \mathbb{K}(u_1^{-1}, u_2^{-1}, u_3^{-1}, u_4^{-1}, u_5^{-1}, u_6^{-1})) = u_1 u_2 u_3 u_4 u_5 u_6(u_1 u_2 - u_4 u_5)(u_2 u_3 - u_5 u_6)(u_1 u_6 - u_3 u_4).$$

This result is written in the GKZ formalism. In order to connect it with Appell's F_1 one must set $x = u_1 u_2 u_4^{-1} u_5^{-1}$ and $y = u_2 u_3 u_5^{-1} u_6^{-1}$ (cf. with the rows of *B*).

HORN'S HYPERGEOMETRIC FUNCTION G_3 : $\mathcal{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 3 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & -2 & 0 \\ 0 & 2 & -1 & -1 \end{bmatrix}$. Gulotta's algorithm for Horn's G_3 in three pictures, the first two of which are the same as for Appell's F_1 :

The final situation shown in the right-hand picture consists of four oriented zigzag paths with winding numbers on the torus given by the columns of matrix B; u_1, u_2, u_3, u_4 are variables corresponding with the columns of B and with the zigzags. In the complement of this zigzag configuration there are three cells with positive (resp. negative) oriented boundary which we label 1, 2, 3 (resp. 1', 2', 3'). As before we collect the information on the zigzags, their intersection points and intersection numbers and the cells with oriented boundary in the following

 3×3 -matrix, which is a form of the *Kasteleyn matrix* of the dimer model.

$$\mathbb{K}(u_1, u_2, u_3, u_4) = \begin{bmatrix} 3 u_2 u_3 & 1 u_1 u_3 & 2 u_1 u_2 \\ 2 u_3 u_4 & 2 u_1 u_2 & 1 u_1 u_4 + 3 u_2 u_3 \\ 1 u_2 u_4 & 3 u_2 u_3 & 2 u_3 u_4 \end{bmatrix}.$$

According to [3] the sought for principal A-determinant for this example is

$$det(u_1u_2u_3u_4 \mathbb{K}(u_1^{-1}, u_2^{-1}, u_3^{-1}, u_4^{-1})) = \\ = 18 u_1^2 u_2 u_3 u_4^2 + u_1 u_2^2 u_3^2 u_4 - 4 u_1 u_3^3 u_4 - 4 u_1^2 u_2^3 u_4 - 27 u_1^3 u_4^3$$

This becomes 0 exactly when the polynomial $u_1 + u_3 x + u_2 x^2 + u_4 x^3$ does not have three distinct non-zero roots.

Appell's hypergeometric function F_4 :

$$\mathcal{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & -1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 & -1 & -1 \end{bmatrix}.$$

Gulotta's algorithm for this example in three pictures:

The right-hand picture leads to the matrix

$$\mathbb{K}(u_1, u_2, u_3, u_4, u_5, u_6) = \begin{bmatrix} 0 & u_3 u_5 & u_2 u_3 & u_2 u_5 \\ u_1 u_4 & u_1 u_5 & 0 & u_4 u_5 \\ u_1 u_6 & u_1 u_3 & u_3 u_6 & 0 \\ u_4 u_6 & 0 & u_2 u_6 & u_2 u_4 \end{bmatrix}.$$

We leave the computation of the principal \mathcal{A} -determinant as an exercise.

References

- Gelfand, I.M., M.M. Kapranov, A.V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser Boston, 1994
- [2] Gulotta, D., Properly ordered dimers, R-charges and an efficient inverse algorithm, arXiv:0807.3012
- [3] Stienstra, J., Chow Forms, Chow Quotients and Quivers with Superpotential, arXiv:0803.3908