Fast computation of principal \mathcal{A}-determinants by means of dimer models; an introduction through three concrete examples.

Jan Stienstra

$\mathcal{A}=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}\right\}$ is a set of N vectors in \mathbb{Z}^{N-2} which spans \mathbb{Z}^{N-2} over \mathbb{Z} and for which there exists a linear map $h: \mathbb{Z}^{N-2} \rightarrow \mathbb{Z}$ such that $h(\mathcal{A})=\{1\}$. The principal \mathcal{A}-determinant was defined by Gelfand, Kapranov, Zelevinsky [1]. It describes the singularities of the associated GKZ \mathcal{A}-hypergeometric system of differential equations. It also gives the locus in $\left(u_{1}, \ldots, u_{N}\right)$-space where the zero-set of the $(N-2)$-variable Laurent polynomial $\sum_{j=1}^{N} u_{j} \mathrm{x}^{\mathbf{a}_{j}}$ has singularities. According to GKZ it is a linear combination of monomials in the variables u_{1}, \ldots, u_{N} with exponents being the integer points in the so-called secondary polygon. GKZ gave the coefficients for the vertices of the secondary polygon. We want all coefficients. In [3] it was proven that the principal \mathcal{A}-determinant equals the determinant of (an appropriate form of) the Kasteleyn matrix of a dimer model. D. Gulotta describes in [2] an efficient algorithm for constructing this dimer model from \mathcal{A}, or rather from a $2 \times N$-matrix $B=\left(b_{i j}\right)$ of which the rows form a basis for the lattice of relations $\left\{\left(\ell_{1}, \ldots, \ell_{N}\right) \in \mathbb{Z}^{N} \mid \ell_{1} \mathbf{a}_{1}+\ldots+\ell_{N} \mathbf{a}_{N}=\mathbf{0}\right\}$. Let me now restrict to concrete examples.

Appell's hypergeometric function F_{1} :
$\mathcal{A}=\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right], B=\left[\begin{array}{rrrrrr}1 & 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 & -1\end{array}\right]$. We present $\mathrm{Gu}-$ lotta's algorithm for this example in two pictures. These should be viewed on a torus which is drawn here as a square with opposite sides identified:

Start in the left hand picture with $\sum_{j=1}^{N}\left|b_{1 j}\right|$ horizontal lines alternatingly oriented \rightarrow resp. \leftarrow and $\sum_{j=1}^{N}\left|b_{2 j}\right|$ vertical lines alternatingly oriented \uparrow resp. \downarrow. The reader may try to guess how the other pictures are created from the starting picture, or look up the algorithm in [2]. The final situation shown in the right-hand picture consists of six oriented zigzag paths with winding numbers on the torus given by the columns of matrix $B ; u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}$ are variables corresponding with the columns of B and with the zigzags. The connected components of the
complement of this zigzag configuration are 2-cells of which the boundary is either oriented or unoriented. There are three cells with positive (resp. negative) oriented boundary which we label $1,2,3$ (resp. $1^{\prime}, 2^{\prime}, 3^{\prime}$). The dimer model mentioned in the title "is" this configuration of 2-cells with oriented boundaries. As in [3] we collect the information on the zigzags, their intersection points and intersection numbers and the cells with oriented boundary in the following 3×3-matrix, which is a form of the Kasteleyn matrix of the dimer model.

$$
\mathbb{K}\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)=\left[\begin{array}{lll}
u_{2} u_{4} & u_{1} u_{5} & u_{1} u_{2}+u_{4} u_{5} \\
u_{4} u_{6} & u_{1} u_{3} & u_{1} u_{6}+u_{3} u_{4} \\
u_{2} u_{6} & u_{3} u_{5} & u_{2} u_{3}+u_{5} u_{6}
\end{array}\right]
$$

the matrix entries in this matrix correspond to the intersection points of the zigzags: an entry $p u_{k} u_{m}$ in position (i, j) means that it is an intersection point of zigzags u_{k} and u_{m}, that it is a vertex of the oriented 2-cells i^{\prime} and j and that p is the number of intersection points of the zigzags u_{k} and u_{m}. According to [3] the sought for principal A-determinant for this example is

$$
\begin{aligned}
& \operatorname{det}\left(u_{1} u_{2} u_{3} u_{4} u_{5} u_{6} \mathbb{K}\left(u_{1}^{-1}, u_{2}^{-1}, u_{3}^{-1}, u_{4}^{-1}, u_{5}^{-1}, u_{6}^{-1}\right)\right)= \\
& \quad=u_{1} u_{2} u_{3} u_{4} u_{5} u_{6}\left(u_{1} u_{2}-u_{4} u_{5}\right)\left(u_{2} u_{3}-u_{5} u_{6}\right)\left(u_{1} u_{6}-u_{3} u_{4}\right)
\end{aligned}
$$

This result is written in the GKZ formalism. In order to connect it with Appell's F_{1} one must set $x=u_{1} u_{2} u_{4}^{-1} u_{5}^{-1}$ and $y=u_{2} u_{3} u_{5}^{-1} u_{6}^{-1}$ (cf. with the rows of B).

Horn's hypergeometric function G_{3} :
$\mathcal{A}=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 3\end{array}\right], B=\left[\begin{array}{rrrr}1 & 1 & -2 & 0 \\ 0 & 2 & -1 & -1\end{array}\right]$. Gulotta's algorithm for Horn's G_{3} in three pictures, the first two of which are the same as for Appell's F_{1} :

The final situation shown in the right-hand picture consists of four oriented zigzag paths with winding numbers on the torus given by the columns of matrix B; $u_{1}, u_{2}, u_{3}, u_{4}$ are variables corresponding with the columns of B and with the zigzags. In the complement of this zigzag configuration there are three cells with positive (resp. negative) oriented boundary which we label $1,2,3$ (resp. $1^{\prime}, 2^{\prime}$, $\left.3^{\prime}\right)$. As before we collect the information on the zigzags, their intersection points and intersection numbers and the cells with oriented boundary in the following
3×3-matrix, which is a form of the Kasteleyn matrix of the dimer model.

$$
\mathbb{K}\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=\left[\begin{array}{lll}
3 u_{2} u_{3} & 1 u_{1} u_{3} & 2 u_{1} u_{2} \\
2 u_{3} u_{4} & 2 u_{1} u_{2} & 1 u_{1} u_{4}+3 u_{2} u_{3} \\
1 u_{2} u_{4} & 3 u_{2} u_{3} & 2 u_{3} u_{4}
\end{array}\right]
$$

According to [3] the sought for principal A-determinant for this example is

$$
\begin{aligned}
& \operatorname{det}\left(u_{1} u_{2} u_{3} u_{4} \mathbb{K}\left(u_{1}^{-1}, u_{2}^{-1}, u_{3}^{-1}, u_{4}^{-1}\right)\right)= \\
& \quad=18 u_{1}^{2} u_{2} u_{3} u_{4}^{2}+u_{1} u_{2}^{2} u_{3}^{2} u_{4}-4 u_{1} u_{3}^{3} u_{4}-4 u_{1}^{2} u_{2}^{3} u_{4}-27 u_{1}^{3} u_{4}^{3}
\end{aligned}
$$

This becomes 0 exactly when the polynomial $u_{1}+u_{3} x+u_{2} x^{2}+u_{4} x^{3}$ does not have three distinctinct non-zero roots.

$$
\begin{aligned}
& \text { APPELL'S HYPERGEOMETRIC FUNCTION } F_{4} \text { : } \\
& \mathcal{A}=\left[\begin{array}{rrrrrr}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1
\end{array}\right], B=\left[\begin{array}{rrrrrr}
1 & 1 & -1 & -1 & 0 & 0 \\
1 & 1 & 0 & 0 & -1 & -1
\end{array}\right] .
\end{aligned}
$$

Gulotta's algorithm for this example in three pictures:

The right-hand picture leads to the matrix

$$
\mathbb{K}\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)=\left[\begin{array}{llll}
0 & u_{3} u_{5} & u_{2} u_{3} & u_{2} u_{5} \\
u_{1} u_{4} & u_{1} u_{5} & 0 & u_{4} u_{5} \\
u_{1} u_{6} & u_{1} u_{3} & u_{3} u_{6} & 0 \\
u_{4} u_{6} & 0 & u_{2} u_{6} & u_{2} u_{4}
\end{array}\right]
$$

We leave the computation of the principal \mathcal{A}-determinant as an exercise.

References

[1] Gelfand, I.M., M.M. Kapranov, A.V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser Boston, 1994
[2] Gulotta, D., Properly ordered dimers, R-charges and an efficient inverse algorithm, arXiv:0807.3012
[3] Stienstra, J., Chow Forms, Chow Quotients and Quivers with Superpotential, arXiv:0803.3908

