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I n t r o d u c t i o n  

The affme threefold Z with equation 

~o + ~o~ + ~ + ~i-~ + ~2 + ~'~ + ~s + ~; "~ = o  (1) 

fibres via the projection to Pl(~0) into surfaces which turn out to be open parts of 
K3-surfaces for ~0 ~ 0, co, + l ,  5:3 5: 2x/2. We examine this in detail in section 2. The 
relative 2-form 

1 d~l d~2 
6o= ~s-- ~-1 ~- A ~- (2) 

gives a nowhere vanishing 2-form on these K3-surfaces. Its periods are multi-valued 
functions of ~0 which satisfy a third order differential equation, the Picard-Fuchs 
equation. This equation is determined in section 3. It appears to be equivalent with 
a recurrence Ap~ry used in his proof for the irrationality of ~(3) (cf. [Po D. The 
monodromy of the Picard- Fuchs equation is determined in section 4. Here some in- 
teresting modular functions and cusp forms come up~ which were previously studied 
in [Be] and [Be2] in a different context. 
D. Gieseker, H.Kn6rrer and E. Trubowitz have for some time been studying Fermi 
curves. These are certain real curves associated to electrons, moving in a periodic 
2-dimensional potential created by a 2-dir;nensional lattice of positive ions. In fact 
they consider a discrete approximation which equally well can be formulated in any 
dimension. But whereas in two dimensions the theory is fairly complete, the tech- 
nical complications in higher dimensions are so enormous that virtually no result 
is available. So the interest arose in simple 3-dimensional potentials, e.g potential 
zero. The corresponding Fermi-variety is now a surface depending on a parameter s 
(essentially the energy of the electron) and in the coarsest discrete approximation is 
given by the equation ~1+ ~i -1 + ~z+ ~1  + ~s+ ~-1 = s. Replacing s by -~0 - ~o 1 has 
certain advantages, discussed at the end of section 2. For this reason we call (1) the 
Fermi-threefold and the family of K3-surfaces the Fermi-fibration. The integral of 
the 2-form w over the 2-cycle 1~11 = 1~2t = I~sl = 1 (when not empty) has a physical 
interpretation as density of states function. We recall this background in section 1. 
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One of the motivations for our work has been to extend the domain of the density of 
states function to all of C (minus a few singular points).  Since this function is defined 
as a period integral, we can find such an extension as a solution to the Picard-Fuchs 
equation for the Fermi-fibration. 

1 F e r m i - s u r f a c e s  

In solid s tate  physics the wave function ¢ : R a --~ C describing an electron with 
energy ,~ moving about  a lattice F c R s is determined by a potential  V : R s ~ R 
which is assumed to be periodic in r .  The  physical meaning of ¢ is given by the 
probabili ty fB 11¢ll2dx/fR~, ]1¢112dx to find an electron in a region B C R s • To find 
¢ belonging to energy A one solves the t ime-independent Schr6dinger equation 

(-zx + v )¢  = 

and one restricts to solutions ¢ for which 

C3) 

Here k : R s --~ R is a linear functional and one is led to consider those k E (Rs) * 
for which non zero solutions ¢ for (3) exist. In solid s tate  physics it is assumed that  
these k form a surface - the Fermi surface for energy A. This surface is periodic in 
k-space and so one may equally well consider its image in the three- torus obtained 
by identifying opposite faces of a fundamental  domain for the lattice dual to r .  

Following Gieseker, Knbrrer  and Trubowitz [G-K-T] we look at a certain discrete 
analogue. We replace R s by Z s and r by the sublatt ice with basis ale1, aze2,ases. 
Here {el,  e2, es} is the standardbasis for R s. The Laplacian is replaced by the second 
order difference operator  

1 
A f ( x )  := ~(~"~ fCx + n) - - / (m)) ,  n E {+ex ,+e2  + es} 

n 

and potentials are allowed to be complex-wlued (but still periodic with respect to 
F). The  Fermi surface Fx(R) is the intersection with S 1 x S 1 x S 1 C C* x C* x C* 
of the complex Fermi surface 

Fx := {(~,, ~ ,  ~s) 6 C "s 1 3 ¢ :  z s -~ c solving (3) 
with ¢ (x  + ajei)  = ~i¢(x),j = 1,2,3} 

If we collect these Fermi surfaces for all complex values of the energy we obtain a 
variety B in C °s × C. It fibers over C and we let ~r be the projection onto C. The 
relative 2-form w defined by 

d~l ^d~ d~s 
~---1 --~2 ^ es I B = t° ^ r* d)~ 
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is regular on Fx. If ~/(X) := Fx(R) is non empty the integral of the relative two form : 

f~(x) W[F ~ ( the d e n s i t y  o f  s ta tes  funct ion ) 

has a physical interpretation (cf [G-K-T]). In the sequel we s tudy the simplest sit- 
uation where V = 0 and F = Z 3. It is easy to determine the equations of the 
corresponding Fermi-surfaces, since there is only one function with _~ = (~1, ~2, ~a) as 
quasi-periodicity factor, namely 

z 3 c ,  =3) = 

The relation Ae_~ = ~(~1 + ~i -1 + ~2 + ~ 1  + ~3 + ~ 1  _ 6)e_~ implies the following 
equation for Fx 

~1 -~" ~11 -1- ~2 -~- ~21 -~- ~3 -~- ~-1 = 6(~  -}- i). 

We end this section by observing that  from this equation we can easily deduce the 
explicit representation of the form w we gave in the introduction (see (2)). 

2 T h e  F e r m i  t h r e e f o l d  

The affine threefold X given by the equation 

~1 + ~i -~ + ~2 + ~ 1  + ~3 + ~ 1  = s 

admits a nice compactification X in p6 x p1 x p1 x p1 x p1, which in terms of 
the coordinates ((w, ul, u2, us, Vl, v2, vs), (Pl, ql), (P2, q2), (pa, qa), (S, T)) is given by 
the equations 

pi=~ = q l w ,  q iv i  = p i w  (i = 1,2,3) 

(4) 
T(Ul + vl + u2 + v2 + u3 + v3) = S w  

The isomorphism X \ {w = 0} , X is defined by s = S T  -1  and ~i = u l w  -1  for 
i = 1, 2, 3. The threefold X has 48 singular points, all si tuated on T = 0 .  Projection 
onto the last Pl-factor  defines a fibration 7r : X- ~ p1. The fibre of ~r over a 
point (S, T) # (1,0) will be denoted by X-, , where s = S T  -1  . From (4) we see 
that  this fibre is an intersection of three quadrics in p5 in which 12 rational double 
points where w = 0 have been resolved into a p1. For s ~ { 2 , - 2 , 6 , - 6 ,  c¢} it is 
smooth and hence a K3-surface (it is simply connected by Lefschetz' theorem and 
the canonical bundle is trivial by the adjunction formula applied to the embedding 
of X-0 in 1 ae x P~ x p1 x p1). The fibre has exactly 3 (resp 1) rational double points 
if s = +2 (resp. +6). Resolving these, we obtain K3-surfaces too. 

Let (7 = SaxI(Z/2Z) s, where the first factor acts by permutat ion on the second 
factor. This group acts on each surface X,; the first factor permutes the indices 1,2,3 
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Figure 1: A cube of lines on the Fermi K3 

and the i-th generator of the second factor simultaneously interchanges (ui, v~) and 
(Pl, q~) leaving the the other coordinates fixed. 
The zero locus of w on X, consists of the following twenty lines: 
the 12 lines forming the G-orbit of 

Lo++ := {((0,0, 1 , -1 ,0 ,0 ,0 ) ,  (P,,qJ, (0, 1), (0, 1))l(p,, q j  6 p1} 

and the 8 lines in the G-orbit of 

L+++ = {((0, ul, u2, us,O,O,O), (0, 1), (0, 1), (0,1)lu, + u2 + us = O} 

(coordinates as in (4) with s omitted). 

The pattern of these 20 lines is presented in Fig. 1, in which the vertices cor- 
respond to lines with self-intersection -2 and the edges represent intersections of 
multiplicity 1. The indexing of the vertices should be obvious. We remark that  our 
group G actually is isomorphic to the group of symmetries of the cube. 
Let L be the sublattice of H2(X-a,Z) generated by the cycle classes of the 20 lines 
pictured in Fig. 1. 
N o t a t i o n :  Lattices Ai,Di, El denote the usual (positive definite) root lattices, H 

stands f°r the hyperb°lic plane' i'e the rank tw° lattice with Gram matrix ( 01 01) 

and finally /i/ is the rank one lattice with Gram matrix (i). If F is a lattice with 
form l ,  / the lattice kI' is the lattice with the same group as I', but with form k ( , / .  
Finally r* is the dual of F and if I" is non degenerate, ( , )  embeds it naturally in F*. 

P r o p o s i t i o n  1 The lattice L has rank 17, signature (1,16) and diseriminant 16 
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Proof: The  lattice L contains the lattice Lo generated by four ( -D4)- la t t ices  cen- 
tered at lines with indices + + +,  + - - ,  - + - ,  - - + and the rank 1 lattice (4) with 
basis 

2(L___ + L o - -  + L -o -  + L - - o  + L+__ + L_+_ + L _ _ + ) +  

+L+o-  + Lo+- + Lo-+ + L+-o + L-+o + L-o+. 

This yields a sublatt ice of rank 17, signature (1,16) and discriminant 4 5. Relations 
in L are found as follows. We observe tha t  projecting the fibre onto one of the (Pl, ql)- 
axes gives an (elliptic) pencil with two special fibres at (0, 1) and (1, 0) composed of 
the lines in two opposite faces of the cube of Fig. 1. Modulo L0 this gives the three 
relations 

L + _ + + L _ + +  = L _ _ _ + L + + _  m o d L o  

L + _ + + L + + _  -- L _ _ _ + L _ + +  m o d L o  

L+_+ + L = L++_ + L_++ mod Lo. 

Since 2L___ E Lo, by the construction of Lo we find 

2L___ ~_ 2L+_+ -= 2L_++ -= 2L++_ = 0 mod Lo 

and 

L___ + L+_+ + L_++ + L++_ ----- 0 mod Lo. 

The  divisors T1 = L+-o + L o - - ,  T2 = L-+o + L - o - ,  T3 = L+o- + L o - -  intersect 
the elements of L0 with even multiplicity, whereas 

L+_+ • T1 = 1, 
L_++ • :/'1 = 0, 
L++_ • T1 = 0, 

This shows that  {L+_+, L++_, 

L+_+ • T2 = 0, 
L_++ • T2 = 1, 
L++_ • T2 = 0, 

L+_+ • Ts = 0 
L_++ • Ts = 0 
L++_ • T3 = 1. 

L_++} reduces modulo L0 to a basis of L/L0.  So 
the index of L0 in L is 8. Hence L has discriminant 4s/8 2 = 16 .  [] 

The lattice L is embedded in Hz(~- , ,Z)  for every 8 # oo and is independent  of s. 
The  monodromy action of ~q(C \ { + 2 , + 6 } , s )  on H2(Xo, Z) (s ~ ± 2 , + 6 )  is trivial 
on this sublattice. For s ~ + 2 ,  co we have 12 more lines forming the G-orbit  of the 
line 

:-- {(w, ow, (1, o), -q )l 
p2u2 = q 2 w ,  q2vz  = p 2 w }  

Here a is fixed so tha t  o + a -1 = s and coordinates are as in (4). We label these 
twelve lines as Mk,a./~, k = 1,2,3,  a,/~ = + , -  in such a way that  in the parameter  
presentat ion one has u~ = o w  if  a = +, uk : o"-11/ )  i f  a : - ,  ut = - u j  if i , j  ~ k 

and ~ = +,u~ = - v j  if i , j  ~ k and ~ = - .  
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L e m m a  1 The intersection products of the M-lines are 

- 2  if ( k , . , 8 )  = (h,~,~)  
2 i.f ( k , o , ) = ( h , . ~ ) ,  a # ~  

= 1 i/  (,~,8) = ('~,~), k # h 
1 if all indices differ 
0 otherwise 

The intersection products of the L-lines and the M-lines are 

1 i/ e k = O a n d S = e i e i ,  i # k # j # i  
M~a~" L,~,2,s = 0 otherwise 

[] 

Let M, be the sublattice of H2(Z-,, Z) generated by the cycle classes of the L-lines 
and the M-lines. 

T h e o r e m  1 The lattice Ms is isometric to 

-Es_l_ - Es _LHl(-12)  

for every s ~ +2, oo. 

Proof: Consider the following three sublattices of Ms : 

KI = (L+-o, L__+, Lo-+, L+_+, L+o+, L+++, Lo++, MI++), 

K2 : (L-+o, L___, L-o-, L_+_, Lo+-, L++-, L+0-, M2+-), 

and finally 

Ks (Lo-- - L--o + L-o+ - M3++ - Ms-+, 
L+__ + L_++ - MI++ - M~__ - Ms-- ,  
-L-o+ + M3-+ + 2Ms++ + 2M1++ + 2Lo++ + 2L+++ 

+2L+o+ + 2L+_+ + L+-o + Lo_+). 

Using Fig. 1 and Lemma 1 one checks that the preceding three lattices are mutually 
orthogonal, that the first two are isometric to - E s  and that the intersection matrix 
for the third sublattice (for the given basis) is 

--6 4 5 ) 
4 --4 --6 . 
5 - 6  - 8  

The matrix relation 

(1 2 1)(0 4 12 0) (0  01) 
- 2  - 5  4 4 - 4  - 6  2 - 5  1 ---- 0 -12  0 

0 1 - 1  5 - 6  - 8  - 1  4 - 1  1 0 0 
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shows that Ks is isometric to H&(-12).  An easy argument, using the fact that the 
generic fibre of a non constant family of K3 surfaces has Picard number at most 19 
shows that K I / K 2 / K 3  has finite index in M,  and as in the proof of [P, prop. 7.1.1] 
we show that this index must be one .  1-3 

As in [P, lemma 7.1.2] we then find: 

Coro l l a ry  1 For every s ~ +2, 5:6, c~ the orthogonal complement o [ M ,  in H~(X-,, Z) 
is isometric with the lattice H_I_(12). 

R e m a r k  1 For the minimal resolution of singularities of the fibres X+6 one computes 
the N~ron-Severi lattice in a similar fashion and one finds that it is isometric to 
-Es_l_ - E s  _I_H_L(-12)_I_(-2) and its transcendental lattice is therefore isometric to 
(2)_L(12). 
For X~:2 we find - - E s l  -- Es _1_H_1_<-4)_I_<-2), resp. (4)_1_<2). 

R e m a r k  2 The monodromy action of r l (C  \ {+2,+6},s)  on H2(--X,, Z) stabilizes 
the sublattice M, ,  but the monodromy action is not trivial. Positive simple loops 
around the two points +6 act trivially, but for similar such loops around the points 
-t-2 this only holds for the L-lines. The M-lines are pairwise permuted: 

Mk+# *-, Mk-a for k = 1,2,3,fl = +. 

The M-lines are obviously fixed on the double cover of Pl(s) given by s = a + a -1 
(see the parametrization of these lines as given before). It follows that  monodromy 
on the sublattice M~ has become trivial on this double cover. For the action on the 
orthogonal complement this implies that monodromy takes place in the subgroup of 
isometries of T = H_I_(12) inducing the identity on the discriminant lattice T * / T  = 
Z/12Z. 

From the preceding remark we see that it is natural to make the substitution s = 
- ~ 0 -  ~ffl The relation between the s-parameter and the new parameter is depicted 
in Fig. 2. 

The resulting threefold Z 

we call the Fermi-threefold. A compactification Z of the Fermi-threefold in ps  × p l  × 
P'  × P ' × r  ~ ×P ,  with coordinates ((w, ~, ,  ~ ,  ~0, ~ ,  ~ ,  Vo), (~l,tl),  (~ ,  t~), (~,t~),  (~o,t0)) 
is given by 

Siui = tiw, tlvi = SiW (i : 1,2,3,0) 

U l  -4,- I) 1 -q- U2 -~- V2 --~ lZ3 "~- V s "~- U 0 -~" "120 = O, 

There is an isomorphism 

z \ (w = o} - - ,  z 
~, = ~, tw (i = 1, 2, 3, 0). 
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Figure 2: Relation between s and ~0. 

We call the projection onto the ~0-axis 

~o: ~ , vl(~o) C6) 

the Fermi-fibration. An immediate corollary is the following central result. 

T h e o r e m  2 For ~o (t S := {0, oo, ±1, 3 + 2V~, - 3  + 2v/2} the fibres of the Fermi- 
fibration are KS-surfaces. The N~ron-Severi lattice of the generic fibre is isometric 
to -Es-L - Es J.H_L(-12> and its transcendental lattice is isometric to T = HI(12>.  
The monodromy is trivial on the N6ron-Severi lattice and on the transcendental lattice 
takes place in the subgroup of isometrics of T inducing the identity on the diserimi- 
nant lattice T* /T  = Z/12Z. 

[] 

R e m a r k  3 The precise monodromy representaion is given in Theorem 6. The exact 
meaning of "generic" is explained in Remark 7 

3 The Picard-Fuchs equation 

Consider, for Isl > 6, the integral 

fl~ f]~ f[~ ~11 ~21 ~31d~1A d~,A d~3 
I(s) = (27ri) -$ .1 =1 2l =1 3l =1 ~1 "~ ~11 --~ ~2 --~ ~ 1  _t_ ~3 -~- ~ 1  _ 8 

By the Poincax~ residue theorem one has 

f r  d& 1 d~, A - - ,  
I(s) = (2~i)- '  • f _ - - - S ~  ~ f2 
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where I'# is a 2-cycle on the surface X , .  On the other  hand  one can expand I (s )  as 
a power series in the variable t = s - i :  

I (s)  = - ~ a . t  "+1 
n=O 

with 

So 

a2m+l = 0 

(2.+)! 
asm = ~ .  (p!q!r!) 2 p+q+r=m 

We shall construct  a differential equation, of which I (s)  is a solution, from a recur- 
rence relation for the coefficients a2.~. 

First we note, setting k = m - p, 

a2m = k=0~ q+~r: = Urtt 

with 

t:=0 

In [S-B, p.288] it is shown that  these integers u~ satisfy the recurrence relation 

(m + 1 ) % , + i  - (lOre' + lore + a)u,~ + 9m',+,~_1 = o. 

Multiplying this relation with 8 ( m +  1 ) (2m + 2~ one obtains the following recurrence \ m + l ]  
relation for the integers a2,,~ 

(2rn + 3 -~ 1)Sa2,n+2 - 8(5(2m + 1) 2 + 1)(2m -4- 1)a2,n+ 

+144(2m - 1 -4- 1)(2m - 1)(2rn - 1 + 2)a2,~-~ = 0 

From this one immediately sees tha t  the function I ( t -1) ,  given by the power series 

oo 1 
- ~ a2.~t ~m+t for ttl < 

tr~=O 

is annihilated by the differential operator  

( O -  1) s -  8t20(502 + 1) + 144t40(O + 1)(O + 2), 

where 0 = td/dt .  Setting s = t -1 so that  O = - s d / d s ,  a simple calculation shows 
tha t  I (s )  satisfies the differential equation 

[(s' -- 4)(s 2 -- 36)(dlds)  s + 6s(s 2 - 20)(d/ds)  2 + (Ts 2 - 48)(d/ds)  + s] I = 0 
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We note tha t  all other  periods of the form w (see (2)) also satisfy this differential 
equation. The  argument is the same as tha t  given in [B-P, p.46-47]. In fact the 
differential operator  as studied in loc. cit. is the same as the preceding one, up to 
change of parameters  as we shall state in a more precise form in Remark 4. So we 
arrive at 

T h e o r e m  3 The Picard Fuehs equation for the periods of the form w(s) is given by 

{(s 2 - 4)(s 2 - 36)(d/ds) 3 + 6s(s 2 - 20)(d/ds) 2 + (7s 2 - 48)(d/ds) + s } I  = 0 

In particular, the periods of w(s) span the solution space. 

[] 

In his proof of the irrationality of f(3) = ~ '  n -s Ap~ry considered the recurrence 
relation 

(n q- 1)avn+l -- (34n 3 + 51n ~ + 27n -t- 5)vn + navn_l = O, 

of which one solution is given by 

Vn : Z n-}-k k (7) 

(eft[Po D. Ap~ry's recurrence is equivalent with 

(2n + 2)3v.+i -- (34(2n + 1) s + 6(2n + 1))v,~ + (2n)SVn_l = 0 

This form shows immediately tha t  the generating power series 

F ( = )  = v . =  2"+' 
n_>0 

is annihilated by the differential operator  

£ = (P  - 1) s = =2(34P s + 6P)  + x4(p + 1)s, 

where P = z d/dx. One now easily checks the following remarkable identity of 
differential operators 

=-2£ = ( z _  = - , ) . p S .  ( z _  z - , )  _ z2eS.  

The differential operator  (= - =-1)-1z-2/~ is invariant under  the involution = +-~ =-1 
and is (the pull back of) an operator  in the variable s = = + =-1. Indeed, from 
the easy to prove identities d /ds = ( = -  =-l ) - ' ( zd/d=)  and (zd/d=) . ( = -  =-1) = 
(s ~ - 4)(d/ds)  + s, this operator  becomes 

((s' -4 ) (d /ds )  + s)(d/ds)((s  2 -4 ) (d /ds )  + s) - 32(d/ds)((s 2 -4 ) (d /ds )  +s)(d/ds) ,  

which by direct calculation is seen to be equal to 

( 8  2 - -  4 ) ( 8  2 - -  36)(d/ds) 3 + 6s(s 2 - 20)(d/ds) 2 + (7s 2 - 48)(d/ds) + s. 

This is precisely the differential operator  which we found to annihilate the period 
integral I(s) (cf. Theorem 3). 
Combining the results of this section we arrive at the following geometric picture. 
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T h e o r e m  4 The Fermi-fibration (6) is a fibration into KS-surfaces. The Picard 
Fuchs operator for the transcendental periods of the form w (see (2)) is 

(~0 -- ~oZ)(~0 alamo) s" (~0 - eo z) -32(e0  d/d~o) s, 

For power series solutions 
F(~o) = Y~ v,~g "+z, 

n>_O 

the differential equation is equivalent with Apgry's recurrence relation on the v,.  

R e m a r k  4 In [B-P] Ap6ry's recurrence is translated into a differential equation for 
the generating power series G(u) := ~n>0 v,  u" and it is shown that this is the 
Picard-Fuchs equation for the transcendental periods of a family of K3-surfaces. We 
have worked out the coordinate transformations relating the family of K3-surfaces 
from [B-P] to the Fermi-fibration (6). It turned out that the fibered threefold in 
[B-P] is the quotient of (1) by the involution (~0, ~x, ~2, ~3) ~-* ( - ~ 0 , - ~ z , - ~ 2 , - ~ s ) .  
Since f(~0) = ~0G(~) the Picard-Fuchs equation for G(u) from [B-P] lifts to the 
Picard-Fuchs equation for F(~0). 

4 T h e  m o n o d r o m y  r e p r e s e n t a t i o n  

Theorem 2 tells us that the monodromy of the Picaxd-Fuchs equation in Theorem 4 
takes place in the index 4 subgroup of isometries of the lattice T = H_L{12 / inducing 
the identity on the discriminant lattice. In this section we shall determine the exact 
monodromy representation. We shall do this by representing ~0 as a modular function 
and use it to pull back the variation of weight two Hodge structure on the smallest 
irreducible local system containing the transcendental lattices of the Fermi-fibration 
(6) to the upper half plane 

H = {r E C I Imr > 0}. 

To keep the notation simple we write f instead of f0. 
t/-function: 

oo 

r/(r) = e ~'11' I I  (1 - e  2"~'") , r  E H 
n = l  

and its basic functional equations (see [R], p.163) 

~(~ + 1) = e ~ / % ( , )  , ~(-1/~) = ¢ - ~ ( ~ )  

Now define 

First we recall Dedekind's 

(,(,)~(6,) '~ e" ~(') = ~,,7(2,),(3,)/ = I I  ( I -  e"')  ~ 
n = l , ( n , 6 ) = l  

From (8) one obtains the functional equations for ~(r) 

~2r - 1~ 
~(, + 1) = -~( , ) ,  ~(-1/6~) = ~(,), ~ - ~ )  = ~(,)-1 

(8) 

(o) 

(io) 
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ioo 

±1/2 

±1 + i /V~ 

±2/5 -k i/(5,v/-6) 

~:3/s + i / ( s ~ )  

T~ 
stabilizer 

1 2 
( 0  1 )  

-24 i ± 12 

(o 1 
- 6  O )  

- 6  + 6  

-30  ±12 

( : t : 1 8 1 1 )  
--30 ±18 

ble 1; 
~0-) 

OO 

"vanishing cycles ~ 

3 - 2x/2 

--3 + 2V~ 

3+2V~ 

--3 -- 2X/2 

(I,0, --I) 

(1 ,±1 , -7)  

(-5,±2,s) 

(5, ±3,--11) 

T h e o r e m  5 The space of solutions of the differential equation 

[(~ -- ~ -1 ) (~  d/d~)S . (~ _ ~-1) _ 32(~ d/d~) 3] g(~) = 0 

has a basis of multiple valu6d functions on the f-line, which on the upper half plane 
can be given as the triple {G(r),rG(r),r~G(r)} of univalent functions, where G(r) 
is a cusp form 4 weight two for r1(6,2) which satisfies G(-1/6r )  = -6r2G(r) .  

Proof: We use [Be, sections 1 and 2]. First one observes that any solution h(t) 
of equation (A) in [Be] yields a solution g(~) := ~h(~ 2) of the above differential 
equation (cf. Remark 4). The results of [Be] in combination with the axgument 
of [S-B, p. 296] now show that this differential equation has a basis of solutions 
~(r)F(r),r~(r)F(r),r2~(r)F(r),  where F(r) is given in [Be, p.205]. From [loc. cit. 
p.206] one may conclude that G(r) = ~(r)F(r) has the desired properties. [] 

R e m a r k  5 The space of cusp forms of weight two for r , (2,6)  has dimension one, 
since the canonical morphism of modular curves 

r1(6, 2)\H* .~ ri(6, 2)*\H* 

is a double cover of p1 branched in the four points 3 ± 2v/2, -3 ± V/2 and hence the 
source is an elliptic curve. Since t/(r)tI(2r)r/(3r)r/(6r) is easily seen to be a cusp form 
of weight two for ri(6,2) with the same first Fourier expansion term as G(r), we 
have identified G(r) as 

G(~) = ~(~).(2~)~(3~)n(6,). (oo 
We now take a basis {e0,el,e2} of the lattice T with Gram matrix 0 12 

1 0 
and we define 

~(~) : =  c (~ ) (eo  + ,-e, - 6 , " e , ) .  

1) 
0 
0 
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-l+i/q6 

I 
I 
I 
I • 
I 
fl -i/2 

-2/5+±/546 

±/46 

0 

215+i/546 

(~) 
0 

315+i/546 

I 
I 
I 
I 
I 

I' 

-3-2q2 -3+242 3-242 3+42 

Figure 3 
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To describe the transformation behaviour of ~(r) we need the following subgroups of 
Gl(2, Q): 

r~(6) 

ri(6,2) 

r,(6). 

r~(6,2)* 

/labt t 
-- c d ESL2Z  l a _ ~ d = _ l m o d 6 ,  c - O m o d 6  , 

a b 
= c d Er l (6 ) l  c = 6 b m o d l 2  , 

(01) 
= group generated by rl(6) and w6, with w6 = - 6  0 ' 

= group generated by rl(6, 2) and w6. 

P r o p o s i t i o n  2 

~ar+b. ( a 
~ ( - V ~  = ~(~) for c 

Proof: This follows from JR, p.163] and (10) . 

b) 
d ~ r1(6,2)'. 

[] 

The group r1(6,2)* acts by fractional linear transformations on the extended 
upper half plane H* := H U Q u {ioo}. A fundamental domain for this action is 
shown in Fig. 3. 

The function ~(r) extends to a meromorphic function on H*. Its only zero in 
the fundamental domain is at ic~ and has order 1. Consequently, ~(r) generates the 
field of modular functions for the group rl(6,  2)* and induces an isomorphism of the 
modular curve rl(6, 2)'\H* onto p1. Since w~ acts trivially, the action on H* factors 
through an effective action of 

P r l  (6, 2)" := r1(6, 2 )* t (~ ) .  

The points in the fundamental domain with a non-trivial stabiliser are listed in the 
first column of Table 1. The second column gives a generator for this stabiliser 
which is of infinite order for the first two entries and of order two for the remaining 
ones. The third column gives the ~-images of these points; these values have been 
determined up to sign in [Be2, Proposition 2.1], while the signs are found upon using 
(9) and (10). The last column will be explained below (el. Remark 6). The group 
P r l (6 ,  2)" acts freely on 

i i 2 i 3 i 
H ° := H \ {Pr l (6 ,2) ' -orbi t  of ~ u 1 + ~  u g + ~ - ~  u g + ~ - ~ }  

and so ~ induces an unramified covering 

~: H 0 __~ p1 \ {o, oo,3 + 2 v ~ , - 3  + 2v~} (11) 

with covering group PFI(6, 2)*. We pull back the Picard-Fuchs equation from The- 
orem 4 and obtain a basis of solutions. 
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The vector valued function w(r) is a global section of the vector bundle T ®z 0H0. 
The trivial local system T on H ° carries a variation of Hodge structure of weight two 
given by 

T@ZOHO 33 rl 3~'2, 

5 r2 -- line bundle spanned by co(T), (12) 
~,1 = (~2)±. 

Introduce the three dimensional representation (using the basis {e0, el, e2} for T) 

j:I"1(6,2)* , GI(T) 

(°,) (, c/6) 
e d ~'+ bd ad+ bc -ac /6  • ( -6)  -k 

-6b 2 -12ab a 2 

and the groups 

if a d -  be = 6 k,k E Z, 

O°(T) = {isometries of T inducing the identity on the discriminant lattice of T} 
a n =  l m o d 1 2  and a x s - a 3 1 m o d 1 2  ] 

O'(T) = (aq) 6 0 ° ( T )  or / " 
a , s = l m o d 1 2  and an -= aas mod12 

Note that O°(T), resp. 01(T) has index 4, resp. 16 in the group of all isometries of 
T. 

P r o p o s i t i o n 3  Wehave]or ( a b )  c d EF1(6,2)*:  

. a r + b .  ( a b ) w(r ) 
w(c--r--~) = J c d 

The map j induces an isomorphism 

j :  Pr1(6,2)" --:-, O~(T). 

The action of F1(6,2)* on the variation of godge structure (12} induces one on 
the quotient local system over p1 \ {0, oo, 3 -4- 2 V ~ , - 3  -4- 2V~} (el. (11)) and the 
monodromy group of this variation is the group 01(T). 

Proof: The first assertion follows directly from the the transformation properties 
of the form G(r) : it is modular with respect to F1(6, 2) and G(-1 /6v)  = --6T2G(T). 
One checks injectivity of ~ directly. Surjectivity can be seen in the following way. 
After multiplying with j(ws) if necessary we may assume 

a l l  ~ l m o d  12, 

a13 -= as1 rood 12 

2al ia31 + 1 2 a ~  = 0 

2a13as3 + 12a~3 : 0 

ana3s + a13a31 -{- 12aria23 = 1 
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The only integral solutions of these equations are 

all = d2, ass= a s, as1 = -6b2,als = -e2 /6  

a21  = bd, a2s = -a t~6  

with 

c d e r 1 ( 6 , 2 ) .  

The remaining equations for the ai~ then yield 

a12 = 2cd ,  as2 = - 1 2 a b ,  a22 = a d  + bc. 

The last assertion is obvious. [3 

This proposition translates now immediately into the geometric setting of the Fermi- 
fibration (6), which is our main result. 

T h e o r e m  6 For the Fermi-fibration (el (6)) 

~ro :-~\ %1S , pl  \ s 

where 

the form (el. (~)} 

S := {0, co,=E1,3 =E 2V'~,-3 =k 2'v/2}. 

1 d6 d~2 
~(~o) - ~ _ ~ 1  ~-Z ^ ~2 

gives a variation of weight two [-lodge structures on the irreducible subsystem of 
R~(Tro),Z whose fibres contain the transcendental lattices. The function 

(,1(~),7(o~) ~ 
~o = ~,'~(2T)'K3T) / 

pulls back this variation to the the variation (I2) restricted to 

, , H \  {Prl(6,2)*-orbit of 1 + - ~  u ~ + ~  u -~ u 1 
, , 3 ~} Ug+~ ug+ 

The monodromy group of this variation is PFI(6, 2)* ~ OI(T) (see Proposition 3). A 
triple of multivalued functions forming a basis for the solutions of the Picard-Fuehs 
equation 

[ ( {o  - { o l ) ( { o  dld~o) 3" C~o - eo 1) - 32(~o dld~o) 3] g( {o )  = 0 

associated to this variation lifts to the univalent triple { G(r), rG(r), r2G(r) } on the 
uppe, half plane, where aCT) = n(T),C2T)0(3T),COT). 
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R e m a r k  6 The monodromy group is generated by the j-images of the matrices 
given in Table 1. The corresponding elements in the monodromy group, which have 
finite order can be viewed as Picard Lefschetz transformations in certain vanishing 
cycles, i.e. reflections of the form x ~ x + (x, e/e, where e is the element of norm -2 
given in the last column of Table 1. A set of generators for the fundamental group 
of PX \ {0, c~, ±3 4- 2V~} is depicted in Fig. 3: the arcs in the upper half plane give 
the closed arcs in the punctured projective plane. Here we use the identifications of 
the boundary arcs connected by each of the dashed arcs given by the matrices (from 
top to bottom) 

(, 2)(° , ) ( 7 , ) ( ,  
0 1 ' - 6  6 -12 7 ' 12 - 5  

R e m a r k  7 It follows from section 2 that the Picard Number (= the rank of the 
N~ron- Severi lattice) of a K3-surf~e in the Fermi-fibration is 19 or 20. For the fibre 
over ~0(r) this rank is 20 if and only if there exists a vector pe0 ÷ qel ÷ re2 in T which 
is perpendicular to w(r) i.e. if and only if -6pr  2 + 12qr + r = 0. Thus one sees that 
this fibre is a K3-surface with Picard number 20 if and only if r satisfies a quadratic 
equation over Q. So in Theorem 2 the generic fibres are those over ~o(r) with r not 
in an imaginary quadratic number field. Notice also that by this argument every 
vector in T with negative norm 12q ~ ÷ 2pr becomes an algebraic cycle in some fibre. 

R e m a r k  8 The monodromy of the original family of Fermi-surfaces over Pl(s) is 

obtained from the monodromy of the Fermi-fibration by adding w~ = 6 - 2  to 

the generators of Prl(6, 2)*. This follows directly from (10). 
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