
A variation of mixed Hodge structure

for a special case of Appell’s F4

Jan Stienstra

dedicated to Mr Taniguchi on the occasion of his ninetieth birthday

Abstract

We present a variation of mixed Hodge structure of geometric origin
for Appell’s system of differential equations of type F4 with parameters
0, 1

2
, 1, 1 and variables τ2

1
, τ2

2
.

1 Appell’s F4

In [1] Appell introduced the hypergeometric series of type F4 with parame-
ters α, β, γ, γ′ and variables u1, u2:

F4(α, β, γ1, γ2, u1, u2) =
∑

m,n≥0

(α,m + n)(β,m + n)

(γ1,m)(γ2, n)(1,m)(1, n)
um

1 un
2 .

Here (λ, k) = λ · (λ + 1) · · · (λ + k − 1). It is one solution for the system of
hypergeometric differential equations, with Di = ui

∂
∂ui

, i = 1, 2,

Di(Di + γi − 1)Z = ui (D1 + D2 + α)(D1 + D2 + β)Z .

In this paper we want to study Appell’s system of differential equations for
(α, β, γ, γ′) = (0, 1

2 , 1, 1) and u1 = τ2
1 , u2 = τ2

2 : with Di = τi
∂

∂τi
, i = 1, 2,

D2
i Z = τ2

i (D1 + D2)(D1 + D2 + 1)Z . (1)

This system turns out to be quite interesting, although from the point of
view of Appell’s function F4 it looks somewhat degenerate. Set

∆ = (1 + τ1 + τ2)(1 + τ1 − τ2)(1 − τ1 + τ2)(1 − τ1 − τ2)

Γ = 1 − τ2
1 − τ2

2

Λ± = ((2τ2
1 ± Γ) τ2 dτ1 ± (2τ2

2 ± Γ) τ1 dτ2)/(2τ1τ2)
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Let Z± = (D1Z ±D2Z)/2 and Z3 = (D1Z + D2Z + 2D1D2Z)/2Γ. Noticing
that the differential equations can be rewritten as D2

i Z = 2τ2
i Z3, one easily

deduces the following Pfaffian system equivalent to (1)
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(2)

2 Variation of mixed Hodge structure

We will associate with (2) a variation of mixed Hodge structure (VZ,W,F)
of geometric origin [6]. In this section we describe this VMHS abstractly.
In the subsequent sections it will be realized in geometry.

The base space B is the complement in the projective plane P2 of the
complete quadrilateral with equation

t1t2(t0 + t1 + t2)(t0 + t1 − t2)(t0 − t1 + t2)(t0 − t1 − t2) = 0 (3)

The construction of the vector bundle with connection works completely
within the algebraic geometry of schemes over Z[12 ]. The vector bundle V
underlying the VMHS has rank 4 and is generated by global sections |ω1|,
|ω2|, |ω3|, |ω4|. The weight filtration W0V ⊂ W1V ⊂ W2V ⊂ W3V ⊂ W4V is

0 ⊂ OB |ω3| ⊕ OB |ω4| ⊂ W1V ⊕OB |ω2| = W3V ⊂ V .

The Hodge filtration F0V ⊃ F1V ⊃ F2V ⊃ F3V is given by

V ⊃ OB|ω1| ⊕ OB|ω2| ⊕ OB|ω3| ⊃ OB|ω1| ⊃ 0 .

The vector bundle carries a connection compatible with the weight filtration

∇ : V → Ω1
B/Z ⊗ V .

With respect to the basis |ω1|, |ω2|, |ω3|, |ω4| the connection is given by

∇ω = Lω (4)
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where L is the connection matrix from (2) and ω = (|ω1|, |ω2|, |ω3|, |ω4|)
t.

For the local system on B we must pass to analytic geometry and view
B as a complex analytic space. The local system VZ on B and its relation
with V are most easily described over the universal covering space B̃ of B.
Let q : B̃ → B be the covering projection. Then ṼZ = q∗VZ is a constant
sheaf on B̃, equal to a free Z-module with basis e1, e2, e3, e4. The weight
filtration W0ṼZ ⊂ W1ṼZ ⊂ W2ṼZ ⊂ W3ṼZ ⊂ W4ṼZ is

0 ⊂ Z e3 ⊕ Z e4 ⊂ W1ṼZ ⊕ Z e2 = W3ṼZ ⊂ ṼZ .

There is an isomorphism which is compatible with the weight filtrations

I : V ⊗OB
O

B̃

≃
→ ṼZ ⊗Z O

B̃
.

With respect to the bases ω and e it is described by a matrix P = (Pij) of
analytic functions on B̃:

I ω = P e . (5)

Here e is the column vector (e1, e2, e3, e4)
t. The frame e is horizontal:

∇ ei = 0 , i = 1, 2, 3, 4. (6)

From (4)-(6) one sees that the columns of P satisfy the differential equation
(2) and that P11, P12, P13, P14 span the solution space of Appell’s system
(1) over C. This only involves the C-vector space ṼZ ⊗C.

Fix a base point b ∈ B. The natural action of the fundamental group
π1 = π1(B, b) on B induces a representation ν of π1 on the sheaf of functions
O

B̃
. Let 1 denote the trivial representation of π1 on V. The monodromy

representation µ of π1 on ṼZ is such that I is actually an isomorphism of
representations I : 1⊗ ν ≃ µ⊗ ν. The integral structure ṼZ comes in if one
wants the monodromy representation to take values in GL4(Z).

3 A family of elliptic curves minus four points

This section realizes (W1V ⊂ W2V, ∇) in the de Rham cohomology of a
family of elliptic curves minus four points.

Consider in P2 × P1 × P1 over Z[12 ] the subscheme E defined by

2t0 x1y1 x2y2 + t1 (x2
1 + y2

1) x2y2 + t2 x1y1 (x2
2 + y2

2) = 0 .
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Take in P2 the complete quadrilateral × defined by (3) and in P1 × P1

the quadrilateral 2 : x1y1x2y2 = 0. Let p and p′ be the projections from
P2 × P1 × P1 onto P2 and P1 × P1, respectively. We define

B = P2 \ × , A = E ∩ p−1(B) , S = A ∩ p′−1(2) , A◦ = A \ S .

Then p : A → B is a family of elliptic curves over the base B and S consists
of the four sections (00), (0∞), (∞0) and (∞∞).

On A◦ we use the inhomogeneous coordinates ξ1 = x1/y1, ξ2 = x2/y2.
For the computations showing that the Gauss-Manin connection on a sub-
space of the de Rham cohomology of A◦/B matches the lower right hand
3 × 3-block of (2) it suffices to work on B \ {t0 = 0} and use the inhomo-
geneous coordinates τ1 = t1/t0, τ2 = t2/t0. In these coordinates A◦ is
described by the equation

A◦ : 2 + τ1(ξ1 + ξ−1
1 ) + τ2(ξ2 + ξ−1

2 ) = 0 .

Consider the three differential forms on A/B:

ω3 =
−1

τ1(ξ1 − ξ−1
1 )

dξ2

ξ2

ω4 =
2(ξ1 + ξ−1

1 )

τ2
1 (ξ1 − ξ−1

1 )3
dξ2

ξ2

ω2 =
τ1(ξ1 + ξ−1

1 ) − τ2(ξ2 + ξ−1
2 )

2τ1(ξ1 − ξ−1
1 )

dξ2

ξ2
.

These are forms of the first, second and third kind respectively. Their co-
homology classes |ω3|, |ω4|, |ω2| are elements of the de Rham cohomology
group H1(A,Ω•

A/B(log(S))), hypercohomology of the complex of differential
forms on A relative to B with at most logarithmic singularities along S. The
3-dimensional subspace spanned by these classes can be characterized as the
+1 eigenspace of the involution σ on H1(A,Ω•

A/B(log(S))) induced by the

involution σ of A◦/B defined by

σ(ξ1) = ξ−1
1 , σ(ξ2) = ξ−1

2 .

H1(A,Ω•
A/B(log(S)))σ=1 carries a Gauss-Manin connection ∇ [3, §4]. One

can show ( the proofs will appear elsewhere)

∇







|ω2|
|ω3|
|ω4|






= L







|ω2|
|ω3|
|ω4|






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where L is the lower right hand 3 × 3 block of the matrix in (2). It is well
known that the vector bundle with connection (H1(A,Ω•

A/B(log(S)))σ=1, ∇)

underlies a variation of mixed Hodge structure on B [6]. The local system
of this VMHS is R1p◦∗ZA◦ , where p◦ : A◦ → B is the restriction of p and
ZA◦ is the constant sheaf Z on A◦.

We use the following notation emphasizing the weight filtration

W1V = H1(A,Ω•
A/B) , W2V = H1(A,Ω•

A/B(log S))σ=1

W1VZ = R1p∗ZA , W2VZ = (R1p◦∗ZA◦)σ=1

This VMHS is an extension of the Tate Hodge structure Z(−1), viewed
as a constant VHS on B, by the VHS associated with the family A → B of
complete elliptic curves.

4 A rank 4 VMHS; Bloch’s regulator

There is an obvious and simple way to extend the rank 3 bundle W2V to a
rank 4 bundle V with connection giving the full 4 × 4 connection matrix of
(2); namely

V = W2V ⊕OB · |ω1|

with connection ∇ inducing the Gauss-Manin connection on W2V and such
that for the global section |ω1| of V

∇|ω1| =
d(τ1/τ2)

τ1/τ2
|ω2| +

d(τ1τ2)

τ1τ2
|ω3| .

In order to get a rank 4 VMHS we must also extend the local system. For
this we use Bloch’s regulator map and some K-theory.

Algebraic K-theory [5] constructs for every scheme X abelian groups
Ki(X ), i≥0. For a commutative ring R with 1 one sets Ki(R) = Ki(SpecR).
Two invertible elements u, v of R determine an element {u, v} of K2(R)
called Steinberg symbol. It satisfies {u−1, v−1} = {u, v} [4]. In particular
one has

{ξ1, ξ2} ∈ K2(A
◦)σ=1 .

Bloch’s regulator map [2] for an open Riemann surface X is defined on the
subgroup of K2(X ) generated by the Steinberg symbols and takes values in
H1(X ,C∗). The construction applies to Steinberg symbols in K2 of the fibres
of the family A◦/B, but the formulas in [2] can easily be re-interpretated so
that they work for {ξ1, ξ2} in K2(A

◦). For this we need the multiplicative
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de Rham complex on A relative to B with at most logarithmic singularities
along S:

Ω×•
A/B(log(S)) = [ j∗O

∗
A◦

dlog
−→ Ω1

A/B(log(S)) ] .

Here j is the inclusion A◦ →֒ A. Let A◦
+ resp. A◦

− ⊂ A◦ be the inverse
image of C \ (−∞, 0] resp. C \ [0,∞) with respect to the function ξ1. Let
log+ resp. log− be a branch of the logarithm on C\(−∞, 0] resp. C\ [0,∞).
Then

ξ
(log−(ξ1)−log+(ξ1))/2πi
2 on A◦

+ ∩ A◦
−

−1
2πi log±(ξ1)

dξ2
ξ2

on A◦
±

(7)

gives a Čech cocycle for Ω×•
A/B(log(S)) and hence represents an element

r{ξ1, ξ2} of its H1. Formula (7) shows that r{ξ1, ξ2} is invariant under
the involution σ :

r{ξ1, ξ2} ∈ H1(A,Ω×•
A/B(log(S)))σ=1 .

One can immitate the Katz-Oda construction for the Gauss-Manin connec-
tion and construct a map

H1(A,Ω×•
A/B(log(S)))

∇
−→ Ω1

B/C ⊗ H1(A,Ω•
A/B(log(S))) (8)

which composes with the map, coming from the exponential sequence,

H1(A,Ω•
A/B(log S))) → H1(A,Ω×•

A/B(log S)) , (9)

to the usual Gauss-Manin connection on H1(A,Ω•
A/B(log S))). One can

easily compute ∇r{ξ1, ξ2} in (8):

2πi∇r{ξ1, ξ2} = −
dξ1

ξ1

dξ2

ξ2
=

d(τ1/τ2)

τ1/τ2
ω2 +

d(τ1τ2)

τ1τ2
ω3 = ∇|ω1| . (10)

Now we need the universal covering space B̃ of B. Let Ã, S̃, Ã◦ be the
fibre products over B of B̃ with A, S, A◦, respectively. The involution σ
lifts to Ã◦/B̃. The obvious analogue of (7) defines an element r̃{ξ1, ξ2} in
H1(Ã,Ω×•

Ã/B̃
(log(S̃)))σ=1. It can be shown (details will appear elsewhere)

that in the analogue of (9) r̃{ξ1, ξ2} can be lifted to an element R in
H1(Ã

B̃
,Ω•

Ã/B̃
(log(S̃)))σ=1. Define

e1 =
1

(2πi)2
|ω1| −

1

2πi
R (11)
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This is a section of the vector bundle Ṽ = V ⊗ O
B̃
. Because of (10) e1 is a

horizontal section:
∇ e1 = 0 .

The vector bundles W1V, W2V pull back to the vector bundles W1V ⊗O
B̃
,

W2V ⊗ O
B̃

on B̃. The local systems W1VZ, W2VZ pull back to constant

sheaves W1ṼZ, W2ṼZ on B̃. Choosing a base point b ∈ B we have

W1ṼZ = H1(Ab,Z)

W2ṼZ = H1(A◦
b,Z)σ=1

where Ab and A◦
b are the fibres over b. We can choose any basis e3, e4 for

the free rank 2 Z-module W1ṼZ and extend to a basis e2, e3, e4 for the free
rank 3 Z-module W2ṼZ so that under the period isomorphism from Hodge
theory W2V ⊗O

B̃
≃ W2ṼZ ⊗O

B̃
we have

|ω2| ≡ 2πie2 mod W1V ⊗O
B̃

Define
ṼZ = Z e1 ⊕ W3ṼZ ⊂ Ṽ

The fundamental group π1 = π1(B, b) acts on B̃, Ã, Ã◦, the various de
Rham complexes and their cohomology. r̃{ξ1, ξ2} is the image of r{ξ1, ξ2}
under the map on cohomology induced by the covering map q : B̃ → B. So
it is invariant under the action of π1. Note also that |ω1| is π1-invariant.
Therefore, for φ ∈ π1,

φ e1 − e1 =
1

2πi
(R − φR) ∈ W3ṼZ

We see that
for the given choice of e1, e2, e3, e4 and ṼZ the monodromy

representation takes values in GL4(Z):

π1(B, b) → AutZ(Ṽ) ≃ GL4(Z) .

This completes the construction of the rank 4 variation of mixed Hodge
structure for Appell’s system of differential equations of type F4 with pa-
rameters 0, 1

2 , 1, 1 and variables τ2
1 , τ2

2 .
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