
J. Symbolic Computation (2000) 11, 1{000

Complexity of the Havas, Majewski, Matthews LLL

Hermite Normal Form algorithm

WILBERD VAN DER KALLEN

Mathematisch Instituut, Universiteit Utrecht

P.O. Box 80.010

NL-3508 TA Utrecht, The Netherlands

(Received Januari 1999; revised July 1999; accepted April 2000)

We consider the complexity of the LLL HNF algorithm (Havas et al. 1998, Algorithm 4).

This algorithm takes as input an m by n matrix G of integers and produces as output

a matrix b 2 GL

m

(Z) so that A = bG is in Hermite normal form (upside down). The

analysis is similar to that of an extended LLL algorithm as given in (van der Kallen

1998).

1. The result

Let B � 2 be such that the rows of the input matrix G have squared length at most B.

Our main result is

Theorem 1.1. All through the algorithm all entries have bit length O(m log(mB)).

We do not care about the constants in this estimate. We leave to the reader the easy

task of estimating the number of operations on the entries in the manner of (Lenstra et

al. 1982). One �nds that O((m + n)

4

log(mB)) such operations will do.

Our result should be compared with the estimate O(m log(B)) of (Lenstra et al. 1982).

The reason our estimate is a little worse is the presence of the transformation matrix b.

The theorem should also be compared with the result of (Kannan and Bachem 1979),

where again it is the transformation matrix which gives the worst estimate, namely

basically O(m

4

log(mB)). (For the matrix A they need only O(m

3

log(mB)).)

2. Notations

We have tried to use notations that are consistent with the literature, but the B of

(Havas et al. 1998) clashes with the B of (Lenstra et al. 1982), which is why we have

rebaptized it b. For a proper understanding the reader should keep (Lenstra et al. 1982)

and (Havas et al. 1998) at hand. See also (Cohen 1993). Here are our main notations.

hv; wi = (vG;wG).

(v; w)

mix

= (pr

iso

v; pr

iso

w) + hv; wi, see section 6.

0747{7171/90/000000 + 00 $03.00/0
c
 2000 Academic Press Limited

2 WILBERD VAN DER KALLEN

A A = bG is eventually in upside down Hermite normal form, see abstract.

B integer so that B � 2 and (e

i

G; e

i

G) � B for all i.

b The transformation matrix, see abstract.

b

i

i-th row of b.

b

�

i

i-th Gram-Schmidt vector of the rows of b, with respect to (;)

mix

, see section 4.

C integer so that j�

ij

j

2

� C.

d

i

d

i

=

Q

i

j=1

hb

�

j+m

iso

; b

�

j+m

iso

i.

d

iso

i

d

iso

i

=

Q

i

j=1

(b

�

j

; b

�

j

) for i � m

iso

.

e

i

element of standard basis of R

m

.

gram Gram matrix of h ; i: gram

ij

= he

i

; e

j

i.

k index pointing at the row b

k

.

k

max

maximum value that k has attained.

G the submatrix of the input matrix consisting of the columns that correspond with

columns of A in which a pivot has already appeared, see section 6.

m the number of rows of the input matrix.

m

iso

the number of zero rows with which A starts presently.

�

ij

b

i

= b

�

i

+

P

i�1

j=1

�

i;j

b

�

j

:

n the number of columns of the input matrix.

pr

iso

orthogonal projection of R

m

onto the computed part of the isotropic subspace, see

section 6.

rank the rank of G.

r

k

the index ofZin Z+Z�

k;k�1

in a trickledown step, see section 9.

z a nonzero vector in trickledown with (z; z)

mix

= 0.

3. Introduction

The proof is a rather technical modi�cation of the proof in (Lenstra et al. 1982). We

will describe the situation in gradually increasing detail.

The main issue is whether we can estimate the entries of b in terms of B, m, n during

the algorithm. The entries of A can then be estimated through A = bG. As they do

not a�ect b, we may remove from G all columns that do not contribute a pivot to the

Hermite normal form. Once that is done, A has as many columns as its rank, and at the

end of the algorithm the product of its pivots is the covolume of the lattice spanned by

its rows. This covolume can be estimated in terms of any non-vanishing maximal minor

of G, which by Hadamard is of size at most B

rank=2

. This is analogous to the estimate

d

i

� B

i

of (Lenstra et al. 1982).

As in (van der Kallen 1998) we use the ordinary Euclidean inner product (;) for the

rows of b, but also an inner product hv; wi = (vG;wG). (For the new G which has a rank

equal to its number of columns.) The vectors v with hv; vi = 0 are called isotropic. We

let pr

iso

be the orthogonal projection according to (;) of R

m

onto the isotropic subspace

and put

(v; w)

mix

= (pr

iso

v; pr

iso

w) + hv; wi:

(Compare (Pohst 1987).) One can estimate the ratio between (v; v) and (v; v)

mix

. The

problem then becomes to estimate (b

i

; b

i

)

mix

for any row b

i

of b.

The algorithm computes a Hermite normal form �rst for the top k

max

rows of G,

starting with k

max

= 1, and increasing k

max

in steps of one. Each time just before one

wants to increase k

max

the situation looks like the one at the end, but now only for the

Complexity of the Havas, Majewski, Matthews LLL Hermite Normal Form algorithm 3

�rst k

max

rows. Right after one wants to increase k

max

we enter a stage which we will

emulate with a procedure called trickledown, which we analyze as in (van der Kallen

1998). This is where we have to deviate most from (Lenstra et al. 1982). The trickledown

stage is followed by an ordinary LLL stage and then we get back to increasing k

max

. For

all these stages and the transitions between them we have to give estimates.

4. The analogy with an extended LLL algorithm

The LLL HNF algorithm (Havas et al. 1998, Algorithm 4) is based on lattice basis

reduction. For us this will be much more important than the fact that it computes a

Hermite normal form. Our task is to give estimates as long as the while loop of (Havas

et al. 1998) runs. To emphasize the LLL nature of their algorithm, we now describe

properties of its output in terms familiar from (Lenstra et al. 1982), (van der Kallen

1998). It is only because of the close similarity with the extended LLL algorithm of (van

der Kallen 1998) that we can prove the present theorem.

Let e

1

,. . . ,e

m

be the standard basis of R

m

. The Gram matrix gram = (he

i

; e

j

i)

m

i;j=1

belongs to a positive semide�nite inner product h ; i on R

m

. Note that gram has integer

entries. Let rank be the rank of G and assume that we have removed from G the columns

that do not contribute a pivot. (In this paper a pivot is an entry of A that is the �rst

nonzero entry in its row and also in its column.) Put m

iso

= m� rank and let b

�

i

denote

the i-th Gram-Schmidt vector with respect to (;)

mix

. We may characterize the b

�

i

as

follows. Firstly, b

�

i

lies in (b

i

+

P

i�1

j=1

Rb

i

). Secondly, if 1 � j < i � m and j � m

iso

then

(b

�

i

; b

j

) = 0, but if 1 � j < i � m and j > m

iso

then hb

�

i

; b

j

i = 0.

With those notations the output satis�es:

1 The �rst m

iso

rows b

i

of b are isotropic.

2 With respect to (;) the �rst m

iso

rows of b form an LLL reduced basis of

P

m

iso

j=1

Zb

i

.

3 The last rank rows of b form a basis of the lattice they span, and this lattice contains

no nonzero isotropic vector.

4 If m

iso

+ 1 � i < j � m then jhb

�

i

; b

j

ij � hb

�

i

; b

i

i.

5 If 1 � i � m

iso

and i < j � m then we have j(b

�

i

; b

j

)j � 1=2(b

�

i

; b

i

).

The proof is clear.

5. Stages of the algorithm

Now that we have described a way to look at the �nal result, let us discuss how we

view things along the way. We need to cut the algorithm into many stages. This despite

the fact that one keeps running one and the same while loop. Our estimates are simply

di�erent for the di�erent stages. The stages are separated by certain key events. One

such key event is when k wants to go beyond k

max

. (As in (Cohen 1993) we use k

max

to

denote the maximum value that k has attained.) The event is followed by a stage which

we emulate by the procedure trickledown, which ends when a new pivot appears in A

or a new zero row appears in A (in the actual Havas, Majewski, Matthews LLL Hermite

Normal Form algorithm). During this stage we estimate b in the same manner as in (van

der Kallen 1998).

Thereafter one turns back to a stage which we call an ordinary LLL stage. One basically

runs an ordinary LLL algorithm for the inner product (;)

mix

until k wants to go beyond

4 WILBERD VAN DER KALLEN

k

max

again. Then one turns to trickledown again, and so on. So the ordinary LLL stages

alternate with trickledown stages.

What makes it all rather technical is that (;)

mix

depends on the stage. For instance, if

at the end of trickledown a new zero row appears in A, then we have to change pr

iso

to

take the newly found isotropic vector into account. But that means that (;)

mix

changes

meaning.

During trickledown another technical di�culty is that one is dealing not just with

an MLLL in the sense of (Pohst 1987), but even with an extended MLLL algorithm, i.e.

one also requires the transformation matrix b. It is the latter which makes that one can

not refer to (Pohst 1987) for the analysis.

6. An ordinary LLL stage

We now describe the situation during an ordinary LLL stage, after any execution of

the body of the while loop. We leave the checks to the reader. One should assume for

now that all claims hold when entering the present ordinary LLL stage. This should be

checked after the discussion of trickledown below.

In the de�nition of the inner product h ; i we work with a G from which all columns

have been removed where no pivot has been found yet in A. We have

1 An integer matrix b of determinant �1,

2 Integers k, k

max

, 1 � k � k

max

� m,

3 An integer m

iso

� 0, so that the �rst m

iso

rows b

i

of b span the isotropic subspace

of

P

k

max

j=1

Rb

j

.

For i > k

max

we have b

i

= e

i

, the i-th row of the identity matrix.

Let pr

iso

be the orthogonal projection according to (;) of R

m

onto

P

m

iso

j=1

Rb

j

and

put

(v; w)

mix

= (pr

iso

v; pr

iso

w) + hv; wi:

Let b

�

i

denote the i-th Gram-Schmidt vector with respect to (;)

mix

, as in section 4. Let

�

i;j

be de�ned for i > j so that

b

i

= b

�

i

+

i�1

X

j=1

�

i;j

b

�

j

:

The �rst standard fact is then that, with respect to (;)

mix

, the �rst k � 1 rows of b

form an LLL reduced basis of

P

k�1

j=1

Zb

j

, except that one does not require

jb

�

i

+ �

i;i�1

b

�

i�1

j

2

mix

� 3=4jb

�

i�1

j

2

mix

when i > m

iso

, and that the usual condition j�

i;j

j � 1=2 is weakened to j�

i;j

j � 1 for

j > m

iso

. And the second standard fact is that, as in (Cohen 1993), the �rst k

max

rows

of b form a basis of

P

k

max

j=1

Ze

i

.

During the ordinary LLL stage we run the LLL algorithm with respect to (;)

mix

,

except that one leaves out many swaps. (From now on we suppress mentioning the an-

noying weakening of the condition on the �

i;j

.) Leaving out swaps will be harmless for

our estimates, as the size estimates in (Lenstra et al. 1982) for the �

ij

etcetera do not

require that one executes a swap whenever such is recommended by the LLL test.

Complexity of the Havas, Majewski, Matthews LLL Hermite Normal Form algorithm 5

Running LLL with respect to (;)

mix

roughly amounts to running two LLL algorithms,

one for (;) and one for h ; i. That is why the pseudo-code in (Havas et al. 1998) makes

the distinction between col1 = n+ 1 and col1 � n.

One runs LLL until k tries to go to k

max

+ 1. If k

max

= m we are through. If

k

max

< m then one should realize that because of the removal of columns from G the row

e

k

max

+1

G will be dependent on the earlier rows. That makes that (;)

mix

is degenerate

on

P

k

max

+1

j=1

Rb

j

, so that we enter an MLLL situation if we do not adapt (;)

mix

. But

we cannot adapt (;)

mix

yet, as this would destroy the link with what the algorithm

of (Havas et al. 1998) actually does. That is why we will switch to trickledown at this

point. One may see trickledown as the search for the missing isotropic vector.

7. Estimates

We keep the notations of section 6. We want to give estimates by changing (van der

Kallen 1998) minimally. Recall that B � 2 is such that the entries of gram = (he

i

; e

j

i)

are at most B. We start with investigating the connection between (;) and (;)

mix

.

7.1. determinants

Let gram

mix

be the Gram matrix ((e

i

; e

j

)

mix

) with respect to e

1

, . . . , e

k

max

. Its entries

are at most B + 1. With Hadamard this gives

j det(gram

mix

)j � (

p

m(B + 1))

m

and the same estimate holds for its subdeterminants. We claim that the determinant of

gram

mix

is an integer, so that we also get this upper bound for the entries of gram

�1

mix

.

To see the claim, consider as in (Pohst 1987) the inner product (;)

�

given by (v; w)

�

=

�(v; w)+ hv; wi. Its Gram matrix has a determinant which is a polynomial det

�

of � with

integer coe�cients. One may also compute det

�

with respect to a basis which is obtained

from e

1

, . . . , e

k

max

through an orthogonal transformation matrix. By diagonalizing the

Gram matrix of h ; i we see that det(gram

mix

) is the coe�cient of �

m

iso

in det

�

. 2

7.2. lengths of vectors

Lemma 7.1. For v 2 R

m

one has

(v; v)

mix

� m(B + 1)(v; v)

and for v 2

P

k

max

j=1

Re

j

one has

(v; v) � m(

p

m(B + 1))

m

(v; v)

mix

:

Proof. The supremum of f (v; v)

mix

j (v; v) = 1 g is the largest eigenvalue of the gram

matrix of (;)

mix

with respect to e

1

; : : : ; e

m

. The largest eigenvalue is no larger than

the trace of this matrix. So it is at most m(B + 1). Similarly the largest eigenvalue of

gram

�1

mix

it is at most m(

p

m(B + 1))

m

by subsection 7.1. 2

6 WILBERD VAN DER KALLEN

7.3. discriminants

Now put

d

iso

i

=

i

Y

j=1

(b

�

j

; b

�

j

)

for i � m

iso

and

d

i

=

i

Y

j=1

hb

�

j+m

iso

; b

�

j+m

iso

i

for i � rank . As far as d

i

is concerned we may compute modulo isotropic vectors, or also

with (;)

mix

. Indeed

hb

�

j+m

iso

; b

�

j+m

iso

i = (b

�

j+m

iso

; b

�

j+m

iso

)

mix

for 1 � j � rank . Both d

iso

i

and d

j

are integers and they descend when applying LLL.

(Throughout we must assume familiarity with the arguments in (Lenstra et al. 1982).)

In fact the hb

�

j+m

iso

; b

�

j+m

iso

i are themselves squares of integers. (Squares of the pivots of

the moment.) And they do not change during an ordinary LLL stage, because the swaps

that would make them descend have been deleted.

One may also compute det(gram

mix

) with the b

�

i

basis, as the transition matrix from the

e

i

basis to the b

�

i

basis has determinant �1. From that one sees that it is just d

iso

m

iso

d

rank

.

So we get from subsection 7.1 that d

iso

m

iso

� (

p

m(B + 1))

m

. In fact, for i � m

iso

one has

the same estimate

d

iso

i

� (

p

m(B + 1))

m

because i was equal to m

iso

earlier in the algorithm and LLL only makes d

iso

i

go down.

(trickledown will not touch it.)

Recall from section 3 that the pivots are integers whose product is at most B

rank=2

. It

follows that

d

i

� B

rank

for i � rank .

Lemma 7.2. Let 1 � i � k

max

. Then

(

p

m(B + 1))

�m

� (b

�

i

; b

�

i

)

mix

� (

p

m(B + 1))

m

and if C � 1 is such that j�

ij

j

2

� C for 1 � j < i then

(b

i

; b

i

)

mix

� mC(

p

m(B + 1))

m

Proof. Use the estimates of d

iso

i

, d

i

. 2

7.4. preserved estimates

Put C = (4mB)

5m

. We will see in subsection 9.1 that

j�

i;j

j

2

� C for 1 � j < i � k

max

at the start of an ordinary LLL stage.

Complexity of the Havas, Majewski, Matthews LLL Hermite Normal Form algorithm 7

Lemma 7.3. The following estimates hold after each execution of the body of the while

loop in an ordinary LLL stage.

1 d

iso

i

� (

p

m(B + 1))

m

for i � m

iso

,

2 d

i

� B

rank

for i � rank ,

3 (b

i

; b

i

)

mix

� mC(

p

m(B + 1))

m

if i 6= k and i � k

max

,

4 (b

k

; b

k

)

mix

� m

2

9

m

C(

p

m(B + 1))

3m

,

5 j�

i;j

j � 1 for 1 � j < i < k,

6 j�

k;j

j � 3

m�k

p

mC(

p

m(B + 1))

m

for 1 � j < k,

7 j�

i;j

j �

p

mC(

p

m(B + 1))

m

if 1 � j < i and k < i � k

max

.

Proof. That these are preserved under LLL follows as in (Lenstra et al. 1982), so

one has to check that they hold right after trickledown. Given the above this will be

straightforward. Note that one could insert reduction steps in the algorithm to get C = 1

instead of the outrageously pessimistic C = (4mB)

5m

. 2

8. Description of trickledown

Before we can do estimates concerning trickledown we must describe it. One starts

with having k = k

max

+1 � m. (So we look at the moment that k

max

should be increased,

but we do not increase it yet.) Consider the lattice generated by b

1

; : : : ; b

k

max

+1

where

b

k

max

+1

= e

k

max

+1

. As e

k

max

+1

G is dependent on the earlier rows of G now, this lattice

contains a nonzero vector z with (z; z)

mix

= 0. Modulo Rz the vector b

k

is linearly

dependent on the b

i

with i < k. Changing the basis of Zb

k�1

+Zb

k

we can achieve that

modulo Rz the vector b

k�1

is linearly dependent on the b

i

with i < k � 1. Then lower

k by one and repeat until k = m

iso

+ 1, where m

iso

is the one from before the present

trickledown. Or stop when the Havas, Majewski, Matthews LLL Hermite Normal Form

algorithm produces a new pivot (in a column of A corresponding with one that we have

removed from G). If a new pivot has been created we add back the relevant column to

G and pass to a new (;)

mix

. If b

k

= b

m

iso

+1

is itself isotropic we increase m

iso

by one

and again pass to a new (;)

mix

. This describes trickledown.

One may worry about the fact that trickledown does not trace the Havas, Majewski,

Matthews LLL Hermite Normal Form algorithm faithfully. We are close enough though.

(And our replacement has worse estimates than the original.) We are just leaving out

some size reductions and we are taking together some swaps and reductions that make

up the required change of basis of Zb

k�1

+Zb

k

. The change of basis is the one coming

from an extended euclidean algorithm. Thus we will further ignore that trickledown,

which we took from (van der Kallen 1998), does not quite trace this stage of the Havas,

Majewski, Matthews algorithm. We simply blame their algorithm.

9. Estimates during trickledown

We look in more detail. Upon entering trickledownwe change notation and freeze the

old m

iso

, k

max

and the b

�

i

, even though the b

i

will change. We also do not change (;)

mix

.

Let �

i;0

stand for (e

k

max

+1

; b

i

) and let �

i;j

stand for (b

�

j

; b

i

)

mix

=(b

�

j

; b

�

j

)

mix

if j > 0. Note

that initially j�

i;j

j � 1 for 0 � j � i � k

max

. We will estimate j�

i;j

j as k descends. The

key point is that we can also estimate �

i;0

. This compensates for the fact that (;)

mix

is

8 WILBERD VAN DER KALLEN

degenerate on

P

k

max

+1

i=1

Re

i

. By combining �

i;0

with (;)

mix

we will be able to estimate

(b

i

; b

i

). It is to explain the estimate of �

i;0

that we prefer to work with trickledown.

Say k > m

iso

+ 1 and modulo Rz the vector b

k

is linearly dependent on the b

i

with i < k. Let us compute with b

k

, b

k�1

modulo V = Rz +

P

k�2

i=1

Rb

i

. We have

b

k

� �

k;k�1

b

�

k�1

and b

k�1

� b

�

k�1

modulo V . With the extended euclidean algo-

rithm of (Cohen 1993) we �nd an integer matrix

�

� �

 �

�

of determinant one so that

�

� �

 �

��

1

�

k;k�1

�

=

�

0

�1=r

k

�

where r

k

is the index ofZinZ+Z�

k;k�1

. More specif-

ically, one has

�

� ��

� �

��

0

�1=r

k

�

=

�

1

�

k;k�1

�

so � = r

k

and � = �r

k

�

k;k�1

. By

(Cohen 1993) we have jj � j�

k;k�1

r

k

j and j�j � r

k

. (Actually this is wrong. Indeed

(Cohen 1993) only claims it when �

k;k�1

is nonzero. We leave the modi�cations for the

case �

k;k�1

= 0 as an exercise.)

Now put c

k�1

= �b

k�1

+ �b

k

and c

k

= b

k�1

+ �b

k

. The algorithm trickledown tells

us to replace b

k

with c

k

and b

k�1

with c

k�1

. We want to estimate the resulting new

�

i;j

, which we call �

i;j

. For i di�erent from k, k � 1, nothing changes. (By convention

the b

�

j

are frozen.) Further j�

k�1;j

j = j��

k�1;j

+ ��

k;j

j � r

k

j�

k;k�1

�

k�1;j

j+ r

k

j�

k;j

j and

j�

k;j

j = j�

k�1;j

+ ��

k;j

j � r

k

j�

k;k�1

�

k�1;j

j+ r

k

j�

k;j

j, which is the same bound.

Lemma 9.1. As k descends we have

1 j�

k;j

j �

p

B

Q

k

max

+1

i=k+1

(2r

i

) for k > j � 0,

2 j�

i;j

j � 1 when k > i � j � 0,

3 j�

i;j

j � 2

m

(

p

B)

rank+1

if k � i � k

max

+ 1 and k

max

� j � 0.

Proof. Initially we have k = k

max

+ 1 and j�

k;j

j

2

� B. Now assume the estimates

are true for the present k. If j < k � 1, we get j�

k�1;j

j � r

k

j�

k;k�1

�

k�1;j

j + r

k

j�

k;j

j �

2r

k

max

i

j�

k;i

j which takes care of j�

k�1;j

j. This will be the new �

k;j

after the lowering of

k. Recall j�

k;j

j satis�es the same bound. Let us forget to interrupt trickledown in case a

new pivot is produced. Then

Q

k

max

+1

k=m

iso

+2

r

k

is the ratio by which the covolume drops when

adding e

k

max

+1

G to the lattice spanned by e

1

G, . . . , e

k

max

G. So it is at most (

p

B)

rank

.

Thus j�

k;j

j � 2

m

(

p

B)

rank+1

and j�

k�1;j

j � 2

m

(

p

B)

rank+1

. Finally j�

k;k�1

j = 1=r

k

and

�

k�1;k�1

= �

k;j

= 0 for k

max

� j > k. 2

9.1. bailing out of trickledown

When k has reached m

iso

+ 1 or a new pivot has been created, it is time to forget

the old (;)

mix

. But �rst use lemma 7.2 and the estimates of the �

i;j

to estimate, for

i � k

max

+ 1,

(b

i

; b

i

)

mix

� m4

m

B

rank+1

(

p

m(B + 1))

m

:

Similarly we have

(�

i;0

e

k

max

+1

; �

i;0

e

k

max

+1

)

mix

� (B + 1)4

m

B

rank+1

;

and thus

(b

i

� �

i;0

e

k

max

+1

; b

i

� �

i;0

e

k

max

+1

) � m

2

(

p

m(B + 1))

2m

4

m+1

B

rank+1

Complexity of the Havas, Majewski, Matthews LLL Hermite Normal Form algorithm 9

by means of Lemma 7.1, and �nally

(b

i

; b

i

) � (4mB)

4m

say. These estimates hold all through trickledown and thus in particular at its end.

Now update G,m

iso

, k

max

, (;)

mix

, b

�

i

and so on. We have to estimate the new �

j;i

. This

is easy, as we have an estimate for (b

j

; b

j

)

mix

by lemma 7.1 and also one for (b

�

i

; b

�

i

)

�1

mix

by lemma 7.2. We get the estimate j�

j;i

j

2

� (4mB)

5m

, which was needed in subsection

7.4. Now go check that the description in section 6 is satis�ed at the beginning of the

subsequent ordinary LLL stage.

10. The actual entries

Now that we can estimate the b

i

and d

iso

i

all through the algorithm, it is time to

consider the entries in the pseudo-code of Algorithm 4 in (Havas et al. 1998). It is clear

how to estimate the entries of A, and their B is our b. The D

r

require more care. They

may be de�ned as in (Lenstra et al. 1982, (1.24)) by

D

r

= det((b

i

; b

j

)

1�i;j�r

):

It will su�ce to estimate them during the ordinary LLL stages, as during trickledown

D

r

changes just once, from the value at the end of the previous stage to the value at

the start of the subsequent stage. (Of course trickledown is only an emulation, but by

means of D

r

� D

r�1

(b

r

; b

r

) one can easily deal with the di�erence.)

Now for r � m

iso

we have D

r

= d

iso

r

, whence

D

r

� (

p

m(B + 1))

m

by subsection 7.3. But the pseudo-code also uses D

r

for larger r. (We suspect that this

may be costly.) For r � k

max

we have D

r

= 1. For m

iso

< r < k

max

we may use the

following trick. Remove from G the columns corresponding with the pivots in b

i

G for

m

iso

< i � r. That does not a�ect D

r

, but it makes m

iso

become equal to r. So then the

above estimate miraculously applies.

Finally we have the �

ij

of the pseudo-code to deal with. One estimates them through

�

2

ij

� (b

i

; b

i

)(b

j

; b

j

)D

2

j�1

:

11. Conclusion

We have proved the theorem by exploiting the analogy with the extended LLL al-

gorithm of (van der Kallen 1998) for which a similar result holds with a similar proof.

Indeed the main di�erence with the analysis of that algorithm is that there one does not

remove any columns fromG before de�ning hv; wi. And one executes all swaps that make

d

i

go down. The output then also satis�es the properties of section 4 and on top of that

the last rank rows of bG are LLL reduced. We refer to (van der Kallen 1998) for further

details of analysis and implementation.

References

Cohen H. (1993).A course in computational Algebraic Number Theory, Graduate Texts in Mathematics

138, Berlin: Springer.

Havas G., Majewski B.S., Matthews K.R. (1998). Extended gcd and Hermite normal form algorithms

via lattice basis reduction, Experimental Mathematics , 7, 125{136.

10 WILBERD VAN DER KALLEN

Kannan R., Bachem A. (1979). Polynomial algorithms for computing the Smith and Hermite normal

forms of an integer matrix, SIAM J. Comput. 8, 499-507.

Lenstra A.K., Lenstra H.W. Jr., Lov�asz L. (1982). Factoring polynomialswith rational coe�cients,Math.

Ann. 261, 515{534.

Pohst M. (1987). A modi�cation of the LLL-algorithm, J. Symb. Comp. 4, 123{128.

Van der Kallen W. (1998). Complexity of an extended lattice reduction algorithm, electronic note

http://www.math.uu.nl/people/vdkallen/

