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Summary. We start with a tutorial description of averaging-normalization for
parabolic and hyperbolic PDEs on bounded domains. As an example of the parabolic
case, we review results on advection-di�usion problems. New results are presented
for linear and nonlinear wave equations with parametric excitation. Surprisingly
enough, the normalization produces reduction to two-dimensional almost-invariant
manifolds and no modal interaction at leading order.

1.1 Introduction
Normalization and normal forms play an important part in mathematical
analysis and algebra. For instance n×n-matrices can be put in Jordan normal
form. Such an example also makes clear that normalization is not a unique
procedure as the choice of normalization of matrices depends on its purpose.
In the case of matrices there is a vast literature with many possibilities, but
in all special cases and in other mathematical problems as well, the general
aim of normalization is a simpli�cation of the object by transformation.

In the case of ODEs of the form

ẋ = εf(t, x),

with ε a small positive parameter, averaging normalization can be summarized
as follows. Assume that the limit

f0(z) = lim
T→∞

1
T

∫ T

0

f(z, s)ds

exists. Introduce the averaging normalization transformation

x(t) = z(t) + ε

∫ t

0

(f(z, s)− f0(z))ds.

With a few assumptions and using elementary calculations one �nds for z the
equation
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ż = εf0(z) + ε2f1(t, z, ε).

The equation has been normalized to O(ε), the simpli�cation is the removal
of the variable t and so-called nonresonant terms from the equation to O(ε).
With additional assumptions one can extend the normalization to O(ε2) and
higher order.

This procedure for ODEs is well-known, for a description and references
see [SVM]. The aim of the present paper is to describe in a tutorial way the
normalization procedure for a number of PDEs (sections 2-4) and to discuss a
few new examples. Averaging normalization for PDEs is of more recent date
and the theory is far from complete. Additional material on this topic can be
found in [Verhulst2005].

1.2 Normal forms for parabolic equations
A typical problem formulation is to consider an equation of the form

ut + Lu = εf(u), t ≥ 0, (1.1)

with given initial and boundary values, L a linear operator, u an element
of a suitable function space, and f(u) representing the linear and nonlinear
perturbation terms.

The �rst step is to solve the `unperturbed' problem
∂u0

∂t
+ Lu0 = 0, t ≥ 0, (1.2)

with the given initial and boundary values. If the domain has a simple geo-
metrical shape like a circle or a rectangle, this may not present di�culties. In
real-life problems, the domain is more complicated and one has to resort to
numerical methods.

One may well ask: if we have to use numerical methods for the unper-
turbed problem, why would I not use these methods directly for the perturbed
problem. The answer is that in evolution equations, long time numerical inte-
grations may present a big obstacle. Averaging weeds out the short-periodic or
short-oscillatory terms and this improves the interval of validity of the com-
putations enormously. So, even if we have to perform numerical integration of
the unperturbed and the normalized equation(s), this may still be an e�ective
procedure.

1.2.1 Advection

To focus the discussion we consider a problem from [Krol91]. In this case, the
domain is two-dimensional, the unperturbed equation is

∂C0

∂t
+∇(v0.C0) = 0, t ≥ 0. (1.3)
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The equation describes advection for transport problems. We will consider the
application to tidal basins like the North-Sea. In this case, the two-dimensional
vector v0 = v0(x, y, t) is the basic periodic �ow due to tidal currents that is
supposed to be known. The transportation of material, sediment or chemicals,
is represented by the concentration C0, the term ∇(v0.C0) represents the
advection with the �ow.

In the application to tidal basins one often considers the basic �ow to be
divergence free, so

∇.v0 = 0.

The unperturbed equation becomes

∂C0

∂t
+ v0.∇C0 = 0, t ≥ 0. (1.4)

Eq. (1.4) is a �rst order equation which can be integrated along the charac-
teristics P (t)(x, y), in this case also called streamlines. Due to the unique-
ness of the solutions of eq. (1.4), P (t)(x, y) is an invertible map with inverse
Q(t)(x, y).

The solution C0 is constant along the characteristics, so on adding initial
condition

C0(x, y, 0) = γ(x, y),

we �nd the solution
C0(P (t)(x, y), t) = γ(x, y),

so that
C0(x, y, t) = γ(Q(t)(x, y)). (1.5)

1.2.2 Advection-di�usion

Several types of perturbations of advection are possible. For the application
in [Krol91] one considers the fact that tidal basins are open. This results in a
small rest stream so that the tidal current is perturbed:

v(x, y, t) = v0(x, y, t) + εv1(x, y).

The rest stream is assumed to be divergence free: ∇.v1 = 0.
A second perturbation arises from di�usion in the basin, expressed by the

term ε∆C. The equation to be studied is then

∂C

∂t
+ v0.∇C + εv1.∇C = ε∆C, t ≥ 0. (1.6)

with given initial condition C(x, y, 0) = γ(x, y). This is still a linear problem.
One should note that the tidal current has a period of nearly 12 hours, the
e�ect of small di�usion entails a timescale of 6− 12 months.
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1.2.3 The standard form for averaging

Using variation of constants we obtains a slowly varying system. The trans-
formation is

C(x, y, t) = F (Q(t)(x, y), t).

If ε = 0, we have C = C0, F = γ and C0 is constant on the characteristics.
If ε > 0 and small, this results in a slowly varying F . By di�erentiation we
obtain an equation of the form

∂F

∂t
= εL(t)F

with initial condition F (x, y, 0) = γ(x, y). The linear operator L(t) is com-
puted using the perturbation terms and the unperturbed solution (from P and
Q). In this problem L(t) is uniformly elliptic and T−periodic in t. Averaging
over t produces the approximating system

∂F̄

∂t
= εL0F̄

with initial value F̄ (x, y, 0) = γ(x, y) and

L0 =
1
T

∫ T

0

L(t)dt.

In [Krol91] it is proved that ||F − F̄ ||∞ = O(ε) on the long timescale 1/ε.
For the corresponding approximation C̄ of C, we have the same estimate. In
[Krol91] also a number of extensions of the theory are indicated.

1.2.4 Reactions and sources

An extension with interesting aspects is to consider reactions of chemicals
or sediment using a reaction term f(C). Secondly it is natural to include
localized sources indicated by B(x, y, t) which in the case of tidal basins can
be interpreted as periodic dumping of chemicals or sediment in the basin.
Following [HKV] the equation becomes

∂C

∂t
+ v0.∇C + εv1.∇C = ε∆C + εf(C) + εB(x, y, t), t ≥ 0. (1.7)

with given initial condition C(x, y, 0) = γ(x, y). The reaction term will in
general be nonlinear, for instance f(C) = aC2 or f(C) = aC5, depending
on the type of reaction. B(x, y, t) is periodic in t. Using again variation of
constants, we obtain from eq. (1.7) a perturbation equation in the same way
as shown above, but with a more complicated operator L(t).

As the tidal period of v0(x, y, t) is near to 12 hours, it is natural to assume a
common period T with the dumping process indicated by B(x, y, t). Averaging
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produces an approximation C̄ of the solution C of the initial value problem
for eq. (1.7). Interestingly, the result is stronger than in the case without the
source term. One can prove that C̄ converges to the solution C̄0 of a time-
independent boundary value problem, while C converges to a T−periodic
solution which is ε−close to C̄0 for all time. The proof is based on a maximum
principle and the use of suitable sub- and supersolutions of eq. (1.7). For
details see [HKV].

1.3 Two basic normal form theorems
Consider the semilinear initial value problem

dw

dt
+Aw = εf(w, t, ε), w(0) = w0, (1.8)

where −A generates a uniformly bounded C0-group G(t),−∞ < t < +∞,
on the Banach space X. We assumed the presence of a group instead of a
semi-group as our attention will now be turned at hyperbolic problems.

We assume the usual regularity conditions:
• f is continuously di�erentiable and uniformly bounded on D̄ × [0,∞) ×

[0, ε0], where D is an open, bounded set in X.
• f can be expanded with respect to ε in a Taylor series, at least to some

order.
The group G(t) generates a generalized solution of eq. (1.8) as a solution

of the integral equation:

w(t) = G(t)w0 + ε

∫ t

0

G(t− s)f(w(s), s, ε)ds.

Using the variation of constants transformation w(t) = G(t)z(t) for eq. (1.8),
we �nd the so-called standard form (see [SVM] or [Verhulst2005])

dz

dt
= εF (z, s, ε), F (z, s, ε) = G(−s)f(G(s)z, s, ε). (1.9)

In what follows we assume that F (z, s, ε) is an almost-periodic function in
a Banach space, satisfying Bochner's criterion, see for instance [Verhulst2005].
The average F 0 is de�ned by:

F 0(z) = lim
T→∞

1
T

∫ T

0

F (z, s, 0)ds. (1.10)

Applying normalization by the averaging transformation

z(t) = v(t) + ε

∫ t

0

(
F (v, s, 0)− F 0(v)

)
ds, v(0) = w0, (1.11)
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produces the normal form equation

dv

dt
= εF 0(v) +O(ε2)

with O(ε2)-term still time-dependent. There are at least two problems here:
the generalized Fourier spectrum of the almost-periodic function F contains
an in�nite number of frequencies and the integral in eq. (1.11) may not be
bounded for all time as is the case for periodic functions.

1.3.1 Averaging theorem

The averaging approximation z̄(t) of z(t) is obtained by omitting the O(ε2)-
terms:

dz̄

dt
= εF 0(z̄), z̄(0) = w0. (1.12)

Under these rather general conditions, [Buit93] (or [Verhulst2005]) provides
the following theorem:

Theorem 1. (general averaging)
Consider eq. (1.8) and the corresponding z(t), z̄(t) given by eqs. (1.9) and
(1.12) under the basic conditions stated above. If G(t)z̄(t) exists in an interior
subset of D on the timescale 1/ε, we have v(t)− z̄(t) = o(1) and

z(t)− z̄(t) = o(1) as ε→ 0

on the timescale 1/ε. If F (z, t, 0) is periodic in t, the error is O(ε).

1.3.2 Approximations for all time

In the case of attraction, averaging-normalization leads to stronger approxi-
mation results. The results can be described as follows. Consider the initial
value problem in a Banach space

ẋ = εf(x, t), x(0) = x0.

Suppose that we can average the vector �eld:

f0(z) = lim
T→∞

1
T

∫ T

0

f(z, s)ds

and thus can consider the averaged equation

ż = εf0(z), z(0) = x0.

We have the following result by Sanchez-Palencia ([SP1] and [SP2]):
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Theorem 2. Suppose that the vector �elds f and f0 are continuously di�er-
entiable and that z = a is an asymptotically stable critical point (in linear
approximation) of the averaged equation. If x0 lies within the domain of at-
traction of a, we have

x(t)− z(t) = o(1) as ε→ 0

for t ≥ 0. If the vector �eld f is periodic in t, the error is O(ε) for all time.

1.4 Normal forms for hyperbolic equations

A straightforward application is to consider semilinear initial value problems
of hyperbolic type,

utt +Au = εf(u, ut, t, ε), u(0) = u0, ut(0) = v0, (1.13)

where A is a positive, self-adjoint linear operator on a separable Hilbert space
and f satis�es the basic conditions. In our applications later on, we will be
concerned with the case that we have one space dimension and that for ε = 0
we have a linear, dispersive wave equation by choosing:

Au = −uxx + u.

To make the relation with Eq. (1.8) explicit, one writes u1 = u, u2 = ut and

∂u1

∂t
= u2,

∂u2

∂t
= −Au1 + εf(u1, u2, t, ε).

One uses the operator (with eigenvalues and eigenfunctions) associated with
this system.

In particular and to focus ideas, consider the case of the boundary condi-
tions u(0, t) = u(π, t) = 0.

In this case, a suitable domain for the eigenfunctions is {u ∈ W 1,2(0, π) :
u(0) = u(π) = 0}. HereW 1,2(0, π) is the Sobolev space consisting of functions
u ∈ L2(0, π) that have �rst-order generalised derivatives in L2(0, π). The
eigenvalues are λn =

√
n2 + 1, n = 1, 2, · · · and the spectrum is nonresonant.

The implication is that F (z, s, 0) in expression (1.10) is almost-periodic.
Assume now for Eq. (1.13) homogeneous Dirichlet conditions or homo-

geneous Neumann conditions. The denumerable eigenvalues in this case are
λn = ω2

n and the corresponding eigenfunctions vn(x). Substitution of the ex-
pansion

u(x, t) =
∑

un(t)vn(x) (1.14)
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into eq. (1.13) and taking inner products with the eigenfunctions vn(x), pro-
duces the in�nite set of coupled second-order equations

ün + ω2
nun = εF (u, t, ε), (1.15)

with u representing the in�nite set un, u̇n with n = 1, 2, 3, . . . in the Dirichlet
case, n = 0, 1, 2, . . . in the Neumann case.

We shall discuss the procedure for a few examples. The variation of con-
stants transformation, introduced in the preceding sections, takes in the case
of the in�nite-dimensional system (1.15) the following form. The standard
transformation un, u̇n → yn1 , yn2 of the form

un = yn1 cosωnt+
yn2

ωn
sinωnt,

u̇n = −ωnyn1 sinωnt+ yn2 cosωnt,

is introduced in system (1.15), followed by averaging. An alternative trans-
formation to the standard form, un, u̇n → rn, ψn, employs amplitude-phase
coordinates:

un = rn cos(ωnt+ ψn), u̇n = −rnωn sin(ωnt+ ψn). (1.16)
In general, averaging leaves us with an in�nite-dimensional system that may
still be di�cult to analyze. In principle however, it is simpler and will admit
analysis.

In our analysis of hyperbolic PDEs, we will be interested in the case that
we have a resonance between a �nite number of modes k and that the in�nite
number of other, non-resonant modes are attracted to a stationary solution.
To �x ideas, assume that these stationary states correspond with the trivial
solutions of the modes as will be the case in our examples. The attraction is
produced by dissipation.

With these assumptions, we shall split system (1.15) into two subsystems,
a �nite-dimensional resonant system and an in�nite-dimensional non-resonant
system.

1.5 Linear waves with parametric excitation
Consider the linear wave equation

utt − c2uxx + εkβut + (ω2
0 + εγφ(t))u = 0, t ≥ 0, 0 < x < π, (1.17)

with boundary conditions ux(0, t) = ux(π, t) = 0, small, periodic or almost-
periodic parametric excitation εγφ(t) and small damping (β > 0); also ω0 > 0.
The positive parameter k ∈ N indicates the size of the damping. For ε = 0
the model reduces to the dispersive wave equation of section 1.4. In [Rand]
the experimental motivation for this model is discussed, for instance a line of
coupled pendula with vertical (parametric) forcing or the linearized behavior
of water waves in a vertically forced channel. Related mechanical problems
can be found in [SeM].
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1.5.1 Modal expansion

Using the eigenfunctions for the Neumann problem vn(x) = cosnx, and eigen-
values ω2

n = ω2
0 + n2c2, n = 0, 1, 2, · · · , we expand the solution as

u(x, t) =
∞∑
0

un(t) cosnx.

Taking L2-inner products with vn(x) produces the in�nite dimensional system

ün + ω2
nun = −εkβu̇n − εγunφ(t), n = 0, 1, 2, · · · , (1.18)

with suitable initial conditions. System (1.18) is fully equivalent with eq.
(1.17). Note that the normal mode solutions do satisfy system (1.18), en-
abling the existence of an in�nite number of �nite- and in�nite-dimensional
invariant manifolds of eq. (1.17). A question that remains is about the overall
dynamics and another about the dynamics within the invariant manifolds. We
will consider a number of cases to illustrate the subtleties involved.

1.5.2 The Mathieu case φ(t) = cos 2t, no resonance

We will show that if no basic frequency of the unperturbed modes, determined
by the eigenvalues ω2

n, resonates with the parametric frequency, all solutions
will decay to zero if ε is small enough. The explicit condition for non-resonance
is that for n = 0, 1, 2, · · ·

ω2
n(= ω2

0 + n2c2) 6= m2, m = 0, 1, 2, · · · .

Assume k = 1.
In the case of non-resonance we have, after introducing variation of constants
as in section 1.4 by un, u̇n → yn1 , yn2 , the averaged normal form

ẏn1 = −1
2
εβyn1 +O(ε2), ẏn2 = −1

2
εβyn2 +O(ε2), n = 0, 1, 2, · · · .

The solutions decay to �rst order to the trivial solution. Omitting the O(ε2)-
terms we obtain approximations for the solutions that are, according to the-
orem 2, valid for all time. We have explicitly

un(t) = e−
1
2 εβt(un(0) cosωnt+

u̇n(0)
ωn

sinωnt) + o(1),

u̇n(t) = e−
1
2 εβt(−un(0)ωn sinωnt+ u̇n(0) cosωnt) + o(1),

n = 0, 1, 2, · · · , with the estimates o(1) as ε→ 0 and validity of the estimates
for all positive time (t ≥ 0). For the energy of the modes of the system we
have
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En(t) =
1
2
(u̇2

n(t) + ω2
nu

2
n(t)) = En(0)e−εβt + o(1)

for all time. This agrees with the standard theory for Mathieu equations.
What happens if the damping is smaller, k > 1? In this case we have to

perform higher order averaging, to O(εk). The results are qualitatively the
same, but the attraction takes place on a longer timescale.

1.5.3 The Mathieu case φ(t) = cos 2t, one Floquet resonance

A nontrivial case arises if one of the eigenvalues equals 1 or is ε-close to it
(this is called the �rst Floquet resonance), and there are no other accidental
resonances. Suppose that ω2

m = 1 + εd, m 6= 0 and k = 1. The parameter d
indicates the detuning from the resonance. Using averaging-normalization in
amplitude-phase variables (1.16), we �nd after averaging, with some abuse of
notation using the same rn, ψn for the variables,

ṙn = −εβ
2
rn +O(ε2), n 6= m,

ψ̇n = O(ε2), n 6= m,

ṙm =
1
2
εrm(−β +

γ

2
sin 2ψm) +O(ε2),

ψ̇m =
1
2
ε(d+

γ

2
cos 2ψm) +O(ε2) (m 6= 0).

The solution decays to the trivial solution if β > |γ|/2 (damping exceeds
excitation). Suppose now that 2β/|γ| < 1 with two solutions for ψm from

sin 2ψm =
2β
γ
.

This value of ψm corresponds with a periodic solution if also

d+
γ

2
cos 2ψm = 0.

This produces the condition

β2 + d2 =
γ2

4
,

representing the �rst order approximation to the well-known Foquet instability
tongue in parameter space.

1.5.4 The case of quasi-periodic resonance

As we have started with an in�nite-dimensional system, there is no end to
the complications that may arise. Take for instance the case of a spectrum



1 Averaging normal forms for PDEs 11

containing the �rst Floquet resonance ωm = 1 and a detuned higher order
resonance, for instance ωj = 4 + δ(ε)d. There are no other resonances.
In this case, all except two modes decay to a neighborhood of the trivial
solution. The two remaining modes are described by

üm + ω2
mum = −εkβu̇m − εγumφ(t),

üj + ω2
juj = −εkβu̇j − εγujφ(t).

The analysis follows again �nite-dimensional Floquet theory and this de-
coupling is in fact typical for the linear parametric wave equation. For a
survey of perturbation methods for such parametric resonance problems see
[Verhulst2009].

1.6 Nonlinear waves with parametric excitation
Consider the wave equation

utt−c2uxx+εβut+(ω2
0 +εγ cos 2t)u = ε(au2+bu3), t ≥ 0, 0 < x < π, (1.19)

with boundary conditions ux(0, t) = ux(π, t) = 0, small, periodic parametric
excitation εγ cos 2t and small damping (β > 0); also ω0 > 0. For ε = 0 the
model reduces again to the dispersive wave equation of section 1.4.
In contrast to the case of a linear PDE, we expect now modal interactions. It
turns out, surprisingly enough, that this is in general not the case.

1.6.1 Modal expansion

Using as before the eigenfunctions for the Neumann problem vn(x) = cosnx,
and eigenvalues ω2

n = ω2
0 + n2c2, n = 0, 1, 2, · · · , we expand the solution as

u(x, t) =
∞∑
0

un(t) cosnx.

Taking L2-inner products with vn(x) produces the in�nite dimensional system

ün + ω2
nun = −εβu̇n − εγun cos 2t+ εfn(u), n = 0, 1, 2, · · · , (1.20)

with suitable initial conditions; u = (u0, u1, u2, · · · ). The nonlinear terms are
quadratic and cubic with constant coe�cients.

System (1.20) is fully equivalent with eq. (1.19). Note that the normal
mode solutions do not satisfy system (1.20), so we have not apriori normal
mode invariant manifolds of eq. (1.19). We will distinguish between the fol-
lowing cases:
• Wave speed and dispersion parameter c and ω0 are O(1) quantities with

respect to ε.
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• The wave speed c is O(ε). In this case we have, assuming that ω0 is an
O(1) quantity, for a �nite number of modes the 1 : 1 : 1 : · · · -resonance.
This case has been discussed in [BMV].

• The dispersion is small: ω0 = O(ε). In this case the system (1.20) is
fully resonant. This problem is unsolved, see for instance the discussion in
[Verhulst2005].

1.6.2 Averaging-normalization

Assuming that c and ω0 are O(1) quantities with respect to ε, we will carry
out the averaging process. The fact that the spatial dimension is 1 means that
all eigenvalues are single; this simpli�es the averaging-normalization.

1.6.3 One Floquet resonance

Assume that one of the eigenvalues is near-resonant with respect to parametric
excitation, for instance

ω2
0 = 1 + εd,

with d the detuning. The equations of motion become for n = 0, 1, 2, · · ·

ün + (1 + n2c2)un = −ε(dun + βu̇n + γun cos 2t) + εfn(u). (1.21)

Assume that there are no other resonances between the frequencies ωn. Intro-
ducing again amplitude-phase variables (1.16), we �nd after averaging, with
some abuse of notation using the same rn, ψn for the variables:

ṙ0 =
1
2
εr0(−β +

1
2
γ sin 2ψ0),

ψ̇0 =
1
2
ε(d+

1
2
γ cos 2ψ0 − 3

4
br20 −

3
4
b

∞∑

k=1

r2k),

ṙn = −1
2
εβrn, n = 1, 2, · · · ,

ψ̇n = εbhn(u).

The righthand sides hn are quadratic in u0, u1, · · · . The modes n = 1, 2, · · ·
are exponentially decreasing, nontrivial behavior can take place in mode 0
governed by

ṙ0 =
1
2
εr0(−β +

1
2
γ sin 2ψ0),

ψ̇0 =
1
2
ε(d+

1
2
γ cos 2ψ0 − 3

4
br20).

For a critical point to exist, we have the condition (as in subsection 1.5.3)
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2β/|γ| < 1.

The solution decays to the trivial solution if β > |γ|/2 (damping exceeds
excitation). Suppose now that we have solutions for ψm from

sin 2ψm =
2β
γ
.

This critical value of ψm corresponds with a periodic solution if also

d+
1
2
γ cos 2ψ0 − 3

4
br20 = 0.

This is a di�erent situation from the linear case discussed earlier, as this
condition also determines r0. Suppose we �nd a positive solution for r20. For
the eigenvalues of the critical point we �nd

λ1,2 = −β ±
√

5β2 − γ2 − 2dγ cos 2ψ0.

From the existence condition we have γ2 > 4β2, so at exact Floquet resonance
(d = 0), we have stability of the periodic solution. If 4β2 < γ2 < 5β2, the
critical point is a node, if γ2 > 5β2, the critical point is a focus and around
the stable periodic solution the solutions are spiralling in.
The picture changes if d 6= 0 and large enough.

1.6.4 Additional low-order resonances

Assuming we have the 1 : 2 parametric resonance in mode 0, the conditions
for a combined low-order resonance in system (1.21) are

1
1 +m2c2

=
1
4
,

1
9
,

for certain mode m. We �nd respectively m2c2 = 3 and m2c2 = 8. These
choices produce a 1 : 2- and a 1 : 3-resonance respectively.

Analysis of the possibility of a �rst- or second-order resonance in three
degrees of freedom according to the resonance classi�cation in [SVM] produces
no positive results, so we will consider two degrees of freedom only. It is no
restriction to choose m = 1 and we will have three frequencies: ω0, ω1 and the
frequency of parametric excitation 2.

1.6.5 Combined Floquet and 1 : 2-resonance

We assume

ω2
0 = 1 + εd1, c

2 = 3 + ε(d2 − d1), ω2
1 = 4 + εd2,

with d1, d2 indicating the detunings of the three frequencies. The equations of
motion from system (1.21) which may show modal interaction become:
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ü0 + ω2
0u0 = −εβu̇0 − εγu0 cos 2t+ εa(u2

0 +
1
2
u2

1) + εbu0(u2
0 +

3
2
u2

1),

ü1 + ω2
1u1 = −εβu̇1 − εγu1 cos 2t+ εa2u0u1 + εbu1(3u2

0 +
3
4
u2

1).

We �nd after averaging, using the same rn, ψn for the variables:

ṙ0 =
1
2
εr0(−β +

1
2
γ sin 2ψ0),

ψ̇0 =
1
2
ε(d1 +

1
2
γ cos 2ψ0 − 3

4
br20 −

3
4
br21),

ṙ1 = −1
2
εβr1,

ψ̇1 = ε
1
4
(d2 − 1

2
b(3r20 +

9
8
r21)).

We conclude that, because of symmetry in the equations of motion, the 1 : 2-
resonance is degenerate in this case. This symmetry degeneration is described
in detail in [TuV].

1.6.6 Combined Floquet and 1 : 3-resonance

We can repeat the analysis, assuming

ω2
0 = 1 + εd1, c

2 = 8 + ε(d2 − d1), ω2
1 = 9 + εd2.

As for the 1 : 2-resonance, we �nd that the 1 : 3-resonance in this case is
degenerate because of symmetry. The only active resonance for system (1.21)
takes place in mode 0.

1.7 Discussion

1. We conclude that after an interval of time, asymptotically larger than 1/ε
(for instance 1/ε2), the righthand sides of the in�nite-dimensional, non-
resonant systems which we encountered in sections 1.5 and 1.6, become
o(1). Starting with o(1) initial conditions, the non-resonant modes remain
o(1).

2. The manifold where the fast dynamics takes place is almost-invariant.
We conjecture that very small �uctuations are possible for the higher or-
der modes, arising from the presence of higher order resonance manifolds
containing stable and unstable periodic solutions with corresponding in-
tersecting stable and unstable manifolds. These resonance manifolds are
of very small size and the analysis to describe them is subtle. For an anal-
ysis of such resonance manifolds in two degrees of freedom Hamiltonian
systems, see [TuV].
A related discussion, for a di�erent PDE, can be found in [Wit].
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3. The parametrically excited wave equation with dispersion and wave speed
independent of ε, displays a remarkable reduction to low-dimensional
(one mode) behavior. This becomes clear by averaging-normalization. The
equation is also of practical interest; applications are cited in [Rand]. A
number of the phenomena we found, periodic and quasi-periodic solutions,
are stable and in this way open for experimental investigation.
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