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Abstract
We formulate the periodic FPU problem with four alternating masses which is the

simplest nontrivial version. The analysis involves normal form calculations to second
order producing integrable normal forms with three timescales. In the case of large al-
ternating mass the system is an example of dynamics with widely separated frequencies
and three timescales. The presence of approximate integrals and the stability character-
istics of the periodic solutions lead to weak interaction of the modes of the system.

1 Introduction

For the mono-atomic case of the original periodic FPU-problem (Fermi-Pasta-Ulam problem)
with all masses (or particles) equal it was shown in [4] for up to six degrees-of-freedom (dof)
and for an arbitrary number of dof in [5], that the corresponding normal forms are governed
by 1 : 1 resonances and that these Hamiltonian normal forms are integrable. This explains
the recurrence phenomena near stable equilibrium for long intervals of time.

In [1] we have studied the inhomogeneous FPU-problem which contains many different
resonance cases. In [9] and [10] recurrence and near-integrability aspects of FPU cells were
studied. The alternating case was studied in [2] for a FPU chain with fixed end-points using
analytic and numerical tools to obtain insight in the equipartition of energy, in particular
between the low (acoustic) frequency and the high (optical) frequency part. A preliminary
but important conclusion in [2] is that for the masses considered and on long timescales no
equipartition takes place; the evidence is numerical. Inspired by [2] we will study the pe-
riodic FPU-problem in the case of alternating masses. The simplest nontrivial form of this
problem is for four particles, it is necessary to understand this problem first. In a subse-
quent paper we will study the more general problem with an even number of particles. The
emphasis will be on periodic solutions, integrability of the normal forms (near-integrability
of the original system), invariant manifolds and recurrence phenomena; for recurrence see
also [9].

In a periodic chain, for (even) n particles with arbitrary masses mj > 0, position qj and
momentum pj = mjq̇j, j = 1 . . . n, the Hamiltonian (see [1]) is of the form:

H(p, q) =
n

∑
j=1

(
1

2mj
p2

j + V(qj+1 − qj)) with V(z) =
1
2

z2 +
α

3
z3 +

β

4
z4. (1)
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If α = 1, β = 0 we will call this an α-chain, if α = 0, β = 1 a β-chain. The quadratic part of
the Hamiltonian is not in diagonal form; for n = 4 the linearized equations of motion can be
written as: 

m1q̈1 + 2q1 − q2 − q4 = 0,
m2q̈2 + 2q2 − q3 − q1 = 0,
m3q̈3 + 2q3 − q4 − q2 = 0,
m4q̈4 + 2q4 − q1 − q3 = 0.

(2)

In system (2) the 4 alternating masses are 1, m, 1, m, with m > 1. Although this number
of particles is small, the problem of the dynamics of such a periodic chain is by no means
trivial. Moreover we will indicate that the dynamics of a small number of particles in the
chain is in a certain sense typical for much larger systems.

The mass ratio m : 1 is the important parameter, we put a = 1/m, 0 < a < 1.
The eigenvalues of system (2) will be indicated by λi, i = 1, . . . , 4, the corresponding fre-
quencies of the linear normal modes are ωi =

√
λi. The numerical value of H2 for given

initial conditions is indicated by E0. We will use symplectic transformation to put the linear
part of the equations of motion in quasi-harmonic form. The solutions in the eigendirections
of the equations of motion linearized near the origin are called the linear normal modes of
the system, they can be continued for the nonlinear system. The transformation to quasi-
harmonic form is natural but introduces an interpretation problem. Intuitively we expect
the masses 1 to be more excitable than the masses m. However, after symplectic transfor-
mation we have in the resulting equations of motion a mix of both sets of particles and at
the same time a splitting of the spectrum in O(1) frequencies with modes that we will call
‘optical’ and O(

√
a) frequencies called ‘acoustical’. The behaviour of the solutions within

the two sets of particles can not in a simple way be identified with the normal mode (quasi-
harmonic) equations corresponding with the optical and acoustical part of the spectrum.

In the following sections the analysis by averaging-normal forms is a basic tool. For the
general theory and results in the case of Hamiltonian systems see [6]. Resonances in the
frequency-spectrum of the linearized equations of motion, generated by the quadratic part
of the Hamiltonian H2, play a fundamental part in the analysis. The cubic part H3 and if
necessary the quartic part H4 will be normalized to H̄3, H̄4.

In [1] we have discussed a number of technical normal form aspects of averaging for
Hamiltonian systems. In a system of n perturbed harmonic equations we will often trans-
form to polar coordinates. If the frequencies are ωj, 1 ≤ j ≤ n we introduce

xj = rj cos(ωjt + ϕj) , yj = −rj ωj sin(ωjt + ϕj) (1 ≤ j ≤ 7) (3)

to produce an equivalent first-order system in the variables

X = (r1, r2, . . . , rn, ϕ1, . . . , ϕn) .

This system is equivalent with the n dof system of perturbed harmonic equations outside
the normal mode planes.

The numerical experiments were carried out by MATCONT under MATLAB with ode
solver 78. The precision was increased until the picture did not change anymore with typical
relative error e−15, absolute error e−17. A number of algebraic manipulations were carried
out using MATHEMATICA.

2



It will turn out that for the α- and β-chain especially the analysis for large mass is inter-
esting. The normal form systems are in this case examples of integrable systems with widely
separated frequencies. The dynamics involves periodic solutions, among which three nor-
mal modes; their stability can be established from the equations and the integrals. The nor-
mal form analysis has to be carried out to second order and uses three timescales. Using
these results we can sketch a global picture of the phase-flow with a number of characteris-
tic examples of recurrence phenomena. In the discussion we will mention the relevance of
our results for FPU-systems with many more particles.

2 Periodic FPU chains with 4 alternating masses

We find from the equations of motion, both for an α- and for a β-chain, the momentum
integral:

q̇1 + mq̇2 + q̇3 + mq̇4 = constant. (4)

For the linear system (2) we find the 4 eigenvalues:

λi = 2(a + 1), 2, 2a, 0.

with frequencies ω2
i = λi, i = 1, . . . , 4. We perform a symplectic transformation to eigen-

modes of the form q = Lax, p = Kay, with the matrices

La =


− 1√

2a+2
− 1√

2
0

√
a

2 a+2
a√

2a+2
0 −

√
a√
2

√
a

2a+2

− 1√
2a+2

1√
2

0
√

a
2 a+2

a√
2a+2

0
√

a√
2

√
a

2a+2

 , (5)

Ka =


− 1√

2a+2
− 1√

2
0

√
a

2 a+2
1√

2a+2
0 − 1√

2
√

a
1√

a
√

2a+2

− 1√
2a+2

1√
2

0
√

a
2 a+2

1√
2a+2

0 1√
2
√

a
1√

a
√

2a+2

 . (6)

The coordinates (x4, y4) correspond to the momentum integral (4). We proceed with the
reduced system (xj, yj), 1 ≤ j ≤ 3, in which the components of the Hamiltonian take the
following form:

H2 = (1 + a)x2
1 + x2

2 + ax2
3 +

1
2 (y

2
1 + y2

2 + y2
3),

H3 = −2
√

2a(1 + a)x1x2x3,
H4 = 1

4 ((1 + a)2x4
1 + x4

2 + 6ax2
2x2

3 + a2x4
3 + 6(1 + a)x2

1(x2
2 + ax2

3)).

(7)

The usual procedure for normalization as an approximation procedure is to rescale in a
neighborhood of equilibrium, in this case xi → εxi, yi → εyi, i = 1, 2, 3 with ε a small posi-
tive parameter. This procedure yields, after dividing by ε2 in the Hamiltonian a system with
a small parameter which is a measure for the distance to equilibrium. The procedure will be
implicit in our statements in the case that a is not a small parameter. If 0 < a� 1 (large mass
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m) we will also leave out the scaling with ε as a will be a natural small parameter. Still, also
in this case, we will assume for the solutions to be in a neighborhood of equilibrium; when
starting closer to equilibrium (small energy) the normal form results will improve.

3 The α-chain

The equations of motion are for the α-chain with γ = 2
√

2a(1 + a):
ẍ1 + 2(1 + a)x1 = γx2x3,
ẍ2 + 2x2 = γx1x3,
ẍ3 + 2ax3 = γx1x2.

(8)

Special solutions are the normal modes associated with the eigenvalues 2(1 + a), 2 and 2a .
These exact solutions are harmonic for an α-chain. The equilibria of system (8) are the origin
in phase-space and the points with coordinates:

(x1, x2, x3, y1, y2, y3) = (
δ1√

2(1 + a)
,

δ2√
2

,
δ3√
2a

, 0, 0, 0) ,

with δi = ±1, i = 1, 2, 3 with δ1δ2δ3 = 1. The energy value of the four equilibria outside the
origin is in all cases 0.5. The energy manifold bifurcates geometrically in the critical points of
the energy manifold, the corresponding equilibria of the equations of motion are unstable.
For values of the energy between 0 and 0.5, the energy manifold is compact.

The first order resonances in a three dof system like (8) are 1 : 2 : 1, 1 : 2 : 2, 1 : 2 : 3
and 1 : 2 : 4. Considering the spectrum of the linearized system (8) we find no three dof first
order resonances in a cell with four particles.
Two dof first order resonances occur if a = 1

4 , 1
3 . Second order resonances arise if a = 1

8 , 1
9 and

if 0 < a� 1. It was shown in [6] section 10.4, that the normal form of a two dof Hamiltonian
system is integrable. Adding a third dof with non-commensurable third frequency as is
the case here keeps to high order these normal forms integrable as the added terms remain
separated from the resonant two dof.

We conclude that for 0 < a < 1 a periodic FPU α-chain with four alternating masses is in
normal form near-integrable. The dynamics (periodic solutions and stability) of the two dof
cases can be found in the literature (for references see [6]) but is in this case fairly degenerate.
The case of values of a very close to zero have to be considered separately.

3.1 The α-chain for large mass m

For large values of the mass we have a in a neighborhood of zero. Two of the frequencies will
be near

√
2, one will be

√
2a, the associated modes will be called the optical group (x1, x2)

and the acoustical group (x3). System (8) is an example of a system with widely separated
frequencies, see [7] and further references there. Following the analysis in [7] we apply
normalization considering x3 as slowly varying. The slow dynamics of x3 becomes more
transparent when rescaling the Hamiltonian to a related standard form by

x3 → (2a)−
1
4 x3, y3 → (2a)+

1
4 y3. (9)
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This results in:
H2 = (1 + a)x2

1 + x2
2 +

1
2
(y2

1 + y2
2) +

1
2

√
2a(x2

3 + y2
3)

and
H3 = −γ̄x1x2x3, γ̄ = 2

5
4
√

1 + a a
1
4 .

In the equations of motion we rescale xi → a
1
8 xi, i = 1, 2; this choice is optimal for keeping

as many interactive terms in the approximations as possible. In [8] this is called a significant
degeneration of the differential operator. System (8) becomes with the rescalings:

ẍ1 + 2x1 = γ̄x2x3 − 2ax1,
ẍ2 + 2x2 = γ̄x1x3,
ẋ3 =

√
2ay3, ẏ3 = γ̄a

1
4 x1x2 −

√
2ax3.

(10)

The terms with small parameter γ̄ = O(a
1
4 ) dominate. Introducing polar coordinates

x1 = r1 cos(
√

2t + φ1), ẋ1 = −
√

2r1 sin(
√

2t + φ1),

x2 = r2 cos(
√

2t + φ2), ẋ2 = −
√

2r2 sin(
√

2t + φ2),

we find after transformation and normalization to O(γ̄):
ṙ1 = − γ̄

2
√

2
r2 sin(φ1 − φ2)x3, φ̇1 = − γ̄

2
√

2
r2
r1

cos(φ1 − φ2)x3,

ṙ2 = + γ̄

2
√

2
r1 sin(φ1 − φ2)x3, φ̇2 = − γ̄

2
√

2
r1
r2

cos(φ1 − φ2)x3,

ẋ3 = 0, ẏ3 = 0.

(11)

For the third mode we find with y3(0) = 0:

x3 = x3(0), y3 = 0.

We put χ = φ1 − φ2. The solutions of the normal form have error O(a
1
4 ) on the timescale

a−
1
4 , see the appendix.

Integrals of the normalization. System (11) has the integral of motion E3 = 1
2

√
2a(x2

3 + y2
3) and

the second integral
1
2
(r2

1 + r2
2) = E1 (12)

with E1 a positive constant. This integral is valid with error O(a
1
4 ). The choice of polar

coordinates means that we have to exclude normal modes, but we know already that the
original system (8) has three normal mode solutions. We have

d
dt

χ = − γ̄

2
√

2

(
r2

r1
− r1

r2

)
x3 cos χ.

From the equations for r1 in system (11) and the equation for χ we find

dr1

dχ
= r2

sin χ(
r2
r1
− r1

r2

)
cos χ

.
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Figure 1: Interactions with the x3 mode for a = 0.01 in system (8). Left the action I3 =
1
2 (ẋ2

3 + 2ax2
3) with initial conditions x1(0) = x2(0) = 0.5, x3(0) = 0.1 and initial velocities

zero so I1(0) = I2(0) = 0.25, I3(0) = 10−4 resulting in 0 < I3 < 0.18. Right I3 if x1(0) =
0.1, x2(0) = 0.5, x3(0) = 0.1 so I1(0) = 0.01, I2(0) = 0.25, I3(0) = 10−4 resulting in (much
smaller) 0 < I3 < 0.005.

Eliminating r2 with integral (12) the equation becomes separable. We find:

r1r2 cos χ = C, (13)

which is a third integral of motion of system (11); C is a constant determined by the initial
conditions. We conclude that to first order of approximation we have no interaction between
the first two modes (the optical part) and the third mode (the acoustical part). However, a
numerical experiment suggests that the x3 mode is interacting with the other modes, see
fig. 1, so to show this analytically we will compute a second order approximation later on.
Periodic solutions. At first order a special solution arises if

χ = 0, π.

This is possible if
d
dt

χ = − γ̄

2
√

2

(
r2

r1
− r1

r2

)
x3 cos χ = 0. (14)

We conclude for this special solution r1 = r2 with solutions for x1, x2 given by:

x1(t) =
√

E1 cos(
√

2t + φ0), x1(t) = ±x2(t), (15)

an approximation valid on the timescale a−1/4. Choosing x3(0), y3(0), solutions (15) are
determined uniquely. These solutions (xi, yi, i = 1, 2, 3) form manifold M1 embedded in the
energy manifold defined by the quadratic integrals E3 and E1 of system (11).

Another special solution of (14) arises if

χ =
π

2
, 3

π

2
.
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Figure 2: Recurrence indicated by the Euclidean distance d with respect to the initial values
as a function of time in the α-chain with the conditions as in fig. 1. If x1(0) 6= x2(0) (right)
the recurrence takes longer.

In this case the solutions of system (11) are determined by:{
r1(t) = A cos( γ̄

2
√

2
x3(0)t) + B sin( γ̄

2
√

2
x3(0)t),

r2(t) = ∓A γ̄

2
√

2
x3(0) sin( γ̄

2
√

2
x3(0)t)± B γ̄

2
√

2
x3(0) cos( γ̄

2
√

2
x3(0)t),

(16)

with x3(t) = x3(0), φ1(0)− φ2(0) = π/2, 3π/2 and constants A, B; analogously to the case
of M1, the solutions xi, yi, i = 1, 2, 3 form manifold M2 embedded in the energy manifold.

Both for special solution (15) and (16) we have families of periodic solutions on the en-
ergy manifold. This may signal a degeneration of the normal form at first order in the sense
of Poincaré [3] vol. 1. This gives another reason to compute a second order approximation.

Integrability and recurrence. The normal form (11) of the α-chain for large mass is clearly
integrable. The three normal form integrals can be written as quadratic expressions:

1
2

√
2a(x2

3 + y2
3) = E3, ẋ2

1 + 2x2
1 + ẋ2

2 + 2x2
2 = 2E1, 2x1x2 + ẋ1 ẋ2 = 2C. (17)

The three integrals are exact integrals of the normal form equations (11) and approximate
integrals of the original equations (10). Remarkably enough the recurrence properties of the
phase flow are different in the two cases of fig. 1. In the case where x1(0) = x2(0) = 0.5,
we have rather strong recurrence, see fig. 2 left, in the case x1(0) = 0.1, x2(0) = 0.5 the
recurrence times are longer; see fig. 2. The two special solutions obtained above suggest
an explanation. Starting at the first special solution we have to first approximation period-
icity with period

√
2π, for the second special solution we find a modulation of the period

O(γ̄x3(0)).
We conclude that even if we have a system with integrable normal form, its recurrence prop-
erties depend strongly on the initial conditions. We will return to this in section 6.
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3.2 Second order approximation for the α-chain

A second order approximation according to [6] can be computed using MATHEMATICA. As
before we do not change the notation for the variables r1, φ1 etc. to avoid too many new
symbols. We find with γ̄ = O(a

1
4 ) (and a mix of variables):

ṙ1 = − γ̄

2
√

2
r2x3 sin χ, φ̇1 = − γ̄

2
√

2
r2
r1

x3 cos χ− 1
4 a

1
2 x2

3,

ṙ2 = + γ̄

2
√

2
r1x3 sin χ, φ̇2 = − γ̄

2
√

2
r1
r2

x3 cos χ− 1
4 a

1
2 x2

3,

ẋ3 = (2a)
1
2 y3, ẏ3 = −(2a)

1
2 x3 + (2)

1
4 (a)

1
2 r1r2 cos χ.

(18)

We deduce from system (18) that the quadratic integral (12) persists; dχ/dt does not change
at second order, so also the quadratic integral (13) persists. The two special solutions (15)
and (16) are slightly modified but correspond at second order still with manifolds of special
solutions. For x3, y3 we can write

ẍ3 + 2ax3 = 2ar1r2 cos χ.

Using integral (13) we have with y3(0) = 0 as second order approximation:

x3(t) = (x3(0)− C) cos(
√

2a t) + C (19)

with C = r1(0)r2(0) cos χ(0).This establishes the interaction with the x3 normal mode as for
initial values of x1, x2 producing an O(1) value of C, the amplitude of x3 will grow even if
x3(0) is small.
From system (8), so before rescaling, we can find the equivalent integral equation for x3(t)
which also holds for the rescaled quantities:

x3(t) = x3(0) cos
√

2at + 2
√

1 + a
∫ t

0
x1(τ)x2(τ) sin(

√
2a(t− τ))dτ, (20)

where we have chosen ẋ3(0) = 0. The oscillating integral can be evaluated using approx-
imations for x1(t), x2(t) for instance the special solutions (15) (interaction timescales t and
a1/2t) and (16) (interaction timescales t, a1/4t and a1/2t).
Note that inspection of system (10) shows that neglecting terms O(a), we have x1(t) =
±x2(t) exactly. This means that in this particular case x1(t)x2(t) will be sign definite in
the integral of (20) at this level of approximation.

4 The β-chain for large mass m

The Hamiltonian given by (7) is positive definite outside the origin, so the origin is the only
equilibrium. The energy manifolds are compact. The remarks on the possible resonances of
the α-chain apply also to the β-chain. So we restrict ourselves to the case of large mass m.
The equations of motion are more complicated and are without scaling of the coordinates:

ẍ1 + 2(1 + a)x1 = −(1 + a)2x3
1 − 3(1 + a)x1(x2

2 + ax2
3),

ẍ2 + 2x2 = −x3
2 − 3ax2x2

3 − 3(1 + a)x2
1x2,

ẍ3 + 2ax3 = −3ax2
2x3 − a2x3

3 − 3a(1 + a)x2
1x3.

(21)
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The three normal modes are exact solutions (elliptic functions) of the system. To apply nor-
malization we will assume that a is small and will rescale with respect to equilibrium:

(xi, yi)→ a
1
4 (xi, yi)i = 1, 2, x3 → (2a)−

1
4 x3, y3 → (2a)+

1
4 y3.

This scaling keeps as many interaction terms as possible. We find after scaling:
ẍ1 + 2x1 = −2ax1 −

√
a(1 + a)2x3

1 − 3
√

a(1 + a)x1(x2
2 +

1
2

√
2x2

3)),
ẍ2 + 2x2 = −

√
ax3

2 − 3
2

√
2ax2x2

3 − 3
√

a(1 + a)x2
1x2,

ẋ3 =
√

2ay3, ẏ3 = −
√

2ax3 − a( 3
2

√
2x2

2x3 +
1
2 x3

3 +
3
2

√
2(1 + a)x2

1x3).

(22)

Neglecting terms O(a) we find with χ = φ1 − φ2 the normal form:
ṙ1 = + 3

√
a

8
√

2
r1r2

2 sin 2χ, φ̇1 =
√

a
16

(
3
√

2(r2
2 cos 2χ + 2r2

2 + r2
1) + 12x2

3

)
,

ṙ2 = − 3
√

a
8
√

2
r2

1r2 sin 2χ, φ̇2 =
√

a
16

(
3
√

2(r2
1 cos 2χ + 2r2

1 + r2
2) + 12x2

3

)
,

ẋ3 =
√

2ay3, ẏ3 = −
√

2ax3.

(23)

We find again the integral E3 = 1
2

√
2a(x2

3 + y2
3) and the second normal form integral (12).

The equation for χ becomes

d
dt

χ = −3
√

2
8
√

a(r2
1 − r2

2) cos2 χ.

From system (23) we find also the third integral (13):

r1r2 cos χ = C,

with C determined by the initial conditions.
A special solution with constant amplitudes r1 and r2 may arise if

χ = ϕ1 − φ2 = 0, π/2, π, 3π/2.

From the equation for χ = φ1 − φ2 we find the requirement r1 = r2 corresponding with four
periodic solutions of the first order normal form. The initial values x3(0), y3(0) are still free,
the solutions xi, yi, i = 1, 2, 3 produce manifold M1 embedded in the energy manifold.
Analogous to the case of the α-chain we find solutions from the equation for dχ/dt with
constant phase difference. These are found if

r1 6= r2, χ =
π

2
, 3

π

2
.

For r1(t), r2(t) we find in this case goniometric functions of
√

at and, as for the α-chain, a
manifold M2 of special solutions xi, yi, i = 1, 2, 3 embedded in the energy manifold.

At this level of approximation we find no interaction between the optical and the acous-
tical group. This motivates us to compute the second order normal form.
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4.1 Second order approximation for the β-chain

A second order approximation according to [6] can be computed using again MATHEMAT-
ICA. We do not change the notation for the variables r1, φ1 etc. to avoid too many new
symbols. We find for the O(a)-terms to be added to the derivatives ṙ1, φ̇1, ṙ2, φ̇2, ẋ3, ẏ3 in the
normal form of system (23):

− 3
512 r1r2

2 sin(2χ)
(

17
√

2
(

r2
1 + r2

2

)
+ 48x2

3

)
−288x2

3

(
r2

2(cos(2χ)+2)+r2
1

)
−51
√

2
(

2r2
2r2

1(2 cos(2χ)+3)+r4
2(2 cos(2χ)+3)+r4

1

)
−144

√
2x4

3

1024 + 1√
2

3
512 r2

1r2 sin(2χ)
(

17
√

2
(

r2
1 + r2

2

)
+ 48x2

3

)
−288 x2

3

(
r2

1(cos(2χ)+2)+r2
2

)
−51
√

2
(

r4
1(2 cos(2χ)+3)+2r2

2r2
1(2 cos(2χ)+3)+r4

2

)
−144

√
2x4

3

1024

0

− 1
4 x3

(
3
√

2
(

r2
1 + r2

2

)
+ 2x2

3

)
(24)

Integral (12) is conserved again to second order. The condition for constant amplitudes r1
and r2 is again

χ = ϕ1 − φ2 = 0, π/2, π, 3π/2.

The requirement dχ/dt = 0 is satisfied for r1 = r2 + O(
√

a), producing four periodic solu-
tions.
For the third mode we find with integral (12) the equation:

ẍ3 + (2a + 3a
3
2 E1)x3 = −1

2

√
2a

3
2 x3

3. (25)

The only critical point (equilibrium) is (0, 0) which is stable. This means that starting near the
origin, the solution will not move away. The results show for the β-chain weak interaction
between acoustical and optical group and dependence on the initial conditions. In general
the solutions for the β-chain depend on the timescales t,

√
at, at.

5 Stability of the periodic solutions for large mass m

The first and second order normal form analysis enables us to establish the stability of the
periodic solutions. Note however that for three and more dof instability in Hamiltonian
systems from a perturbation (normal form) analysis is conclusive, stability is not. Purely
imaginary eigenvalues guarantee ‘stability on a certain timescale’.

• The x1 and x2 normal modes.
If either x1(0) or x2(0) is small, we conclude with integral (13) that C is small. For the α-
and the β-chain this implies with eqs. (19) and (25) that if x3(0) is small, x3(t) remains
small.
Consider now a neighborhood of the x1 normal mode for the α-chain.
Choose x3(0) > 0, χ(0) = 0 and ε > 0 such that if r2(0) = ε we have C = x3(0)/2.
From integral (13) we have that cos χ(t) can not vanish so that χ(t) has to oscillate
between −π/2 and +π/2. As x3(t) may only change sign on the timescale 1/

√
a, we

10



have that dχ/dt is sign definite unless r2(t) grows. We conclude to instability of the x1
normal mode.
The same reasoning applies to the x2 normal mode of the α-chain.

For the β-chain the reasoning is similar but simpler as the equation for χ does not
depend on x3. With χ(0) = 0 we have that χ(t) has to oscillate between −π/2 and
+π/2. The second order normal form for dχ/dt can only change sign if r2

1 − r2
2 +

O(
√

a) changes sign. Both normal modes are unstable for the β-chain.

• The x3 normal mode.
If both x1 and x2 are small we conclude with integral (12) that these modes remain
small. The normal mode x3 is stable both for the α- and the β-chain.

• The solution manifold M1 for r1 = r2, χ = 0, π.
We will use the first order approximations as using the second order does not change
the results qualitatively. We can consider the stability behavior with respect to the
x1, x2 modes and the x3 mode in the first order approximations separately.

The α-chain. Regarding the behaviour with respect to the x1, x2 modes we eliminate
r2 with integral (12) after which we linearize the normal form equations of motion (11)
and (23) in a neighborhood of r1 = r2, χ = 0, π. For the α-chain we have the system:

ṙ1 = − γ̄

2
√

2
x3

√
2E1 − r2

1 sin χ), χ̇ =
γ̄

2
√

2
x3


√

2E1 − r2
1

r1
− r1√

2E1 − r2
1

 cos χ. (26)

The Jacobian matrix yields if r1 = r2 =
√

E1, χ = 0, π the eigenvalue equation:

λ2 − 4
γ̄2

2
x2

3 = 0.

This produces eigenvalues with opposite signs, we have instability.
From integral (12) we find C = ±E1. The approximation for x3 of the α-chain (19)
shows that also x3 will grow in size.

The β-chain. Repeating the analysis for the β-chain we find for the x1, x2 modes the
corresponding equations:

ṙ1 = +
3
√

a
8
√

2
r1(2E1 − r2

1) sin 2χ, χ̇ = −3
√

2
4
√

a(r2
1 − E1) cos2 χ.

The Jacobian matrix yields if r1 = r2 =
√

E1, χ = 0, π the eigenvalue equation:

λ2 +
9
8

aE2
1 = 0

and purely imaginary eigenvalues; the second order does not change this.
The second order approximation of x3 for the β-chain described by eq. (25) does not
grow in size; we have stability of M1 for the β-chain.

11



• The solution manifold M2 for χ = π/2, 3π/2.
In this case there is no restriction on r1, r2. We can expand the normal form equation
for χ near χ = π/2, 3π/2. We find from the equations obtained above for dχ/dt that
if r1 6= r2, χ will change. The case r1 = r2 produces eigenvalues zero and is left as a
degenerate case. Both for the α-chain and the β-chain we find instability if r1 6= r2.

6 The global picture for large mass

unstable

r

r

r

M

M

stable

unstable

1

2

3

1

2

unstable

1 r   =  r2

unstable

Figure 3: The amplitude-symplex for the α-chain that is a projection omitting the phases (or
angles). The front triangle corresponds with H2 = constant. The dots at the vertices indicate
normal mode periodic solutions. The manifolds M1 (r1 = r2) corresponds with tori that are
unstable in the case of the α-chain, stable for the β-chain. M2 is unstable if r1 6= r2 with
r1 = r2 undecided.

We consider compact energy manifolds for the α-chain (energy between 0 and 0.5) and
the β-chain not too far from the origin of phase-space. The energy manifolds and of course
the manifold corresponding with H2 = E0 (constant), are topologically the sphere S5. Both
for the α- and the β-chain, we have that the x1 and x2 modes for fixed E1 are restricted to the
ellipsoid M12 which is S3 described by integral (12) and is embedded in the energy manifold
with in general 0 < E1 < E0.
A transversal of the flow on S5 will be 4-dimensional. Consider the transversal D determined
by y3 = 0 with x3 eliminated using the integral H2 = E0. The coordinate plane x1, y1 is
located in D containing as boundary the x1 normal mode which is S1. Perpendicular to
this plane is the coordinate plane x2, y2 in D with as a boundary the normal mode x2; the
boundary does not belong to the transversal. As for the x2 normal mode we have x1 = y1 =
0, the x2 normal mode will go through this point in the centre of the x1, y1 coordinate plane.
This means that the x1 and x2 normal modes are linked. We can repeat this reasoning for a
transversal containing the x3 normal mode. We conclude that the three normal modes are
linked on S5. The stable normal modes are surrounded by invariant tori embedded in the
energy manifold.
The x3 mode plays a special part. The dynamics on M12 is still determined by the third mode

12



through the phases (or angles in action-angle representation). The integral (13) restricts the
dynamics on manifold M12. The solutions around the x3 normal mode move on tori on the
5-dimensional energy manifold that extend to the normal modes x1 and x2 and of which the
size depends on the initial conditions of all variables.

The special solution (15) produces a torus M1 on the energy manifold with r1 = r2 and
shrinking diameter as x3(t) becomes more prominent. For the α-chain, the torus is unstable,
for the β-chain we have stability if x3(0) is small enough.

The special solution (16) of the normal form produces a torus M2 for which in general
r1 6= r2. It is unstable and may not persist under higher order perturbations. For the α-
chain the instability poses a problem when connecting the stable normal mode x3 with the
unstable tori. Note however that the instability of M1 arises only if C of integral (13) is not
small which it is near the x3 normal mode. As a further illustration consider the linearization
of the normal form equations (26). If r1, r2 = O(a

1
4 ) and r1 6= r2 we have near the x3 normal

mode that ṙ1 = O(
√

a), χ̇ = O(a
1
4 ) which is an obstruction to the validity of linearization.

For an illustration of the stability results by an amplitude-simplex see fig. 3.

Consequences for recurrence

Figure 4: Recurrence for 1000 timesteps indicated by the Euclidean distance d with respect
to the initial values as a function of time in the α-chain with a = 0.04, energy 0.1762. Left
the conditions x1(0) = 0.05, x2(0) = 0.4168, x3(0) = 0.01 near the x2 normal mode; we have
recurrence with 0 ≤ d ≤ 0.9. Right the case where x3(0) is also small but more removed
from the normal modes with x1(0) = 0.4, x2(0) = 0.1, x3(0) = 0.01; the instability weakens
the recurrence (0 ≤ d ≤ 0.9).

Recurrence of the flow as guaranteed by the Poincaré recurrence theorem, provides us with
additional information about the dynamics in phase-space. We will consider some aspects
for the α-chain as this chain has most instability. In fig. 4 we start near the stable x2 normal
mode which results in relatively strong recurrent motion, as expected. The result is rather
different when starting away from the normal modes with x1(0) 6= x2(0); the recurrence is
weakened by the instability of M2 although the normal form is integrable.
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Figure 5: Recurrence for 1000 timesteps indicated by the Euclidean distance d with respect
to the initial values as a function of time in the α-chain with a = 0.04, energy 0.1762. Left
the conditions x1(0) = 0.2943, x2(0) = 0.2943, x3(0) = 0.01; starting near M1 we have fairly
good recurrence with 0 ≤ d ≤ 1.1. Right the case where x1(0) = 0.37, x2(0) = 0.2167 and
x3(0) = 0.5, away from the normal modes; the motion along the tori weakens the recurrence
(0 ≤ d ≤ 1.1). Extending the picture to 5000 time steps does not improve the recurrence.

In fig. 5 we start near manifold M1 to observe good short-time recurrence. Right we move to
more general position on the energy manifold with x1(0) 6= x2(0); this produces rather bad
recurrence.

7 Conclusions and discussion

1. The periodic FPU-problem with 4 particles and alternating masses can be reduced to a
three dof Hamiltonian problem. The normal modes are exact periodic solutions of the
reduced system both for the α- and the β-chain.

2. Normal form calculations lead to an integrable system with three normal form inte-
grals and additional periodic solutions.

3. A second order normal form calculation is necessary to characterize the phase-flow.
This involves three timescales with the conclusion that we have weak interaction be-
tween the acoustical and the optical part of the system.

4. The integrability of the normal form, corresponding with approximate integrability of
the original system, keeps the system recurrent with fairly short intervals of time.

5. We will show in a subsequent paper the important fact that the dynamics of the four
particles problem is in a certain sense typical for periodic FPU problems with alternat-
ing masses and many more particles.

8 Appendix

In the error estimates of the normal form analysis integral inequalities can be useful. We will
use the specific Gronwall lemma formulated in [6], lemma 1.3.3.

14



Lemma 8.1
Let φ be a real-valued continuous (or piecewise continuous) functions on a real t interval I : t0 ≤ t ≤
T. Assume φ(t) > 0 on I and δ1(ε), δ2(ε) positive order functions (ε a small, positive parameter). If
the inequality

φ(t) ≤ δ2(ε)(t− t0) + δ1(ε)
∫ t

t0

φ(s)ds,

holds on I, then

φ(t) ≤ δ2(ε)

δ1(ε)
eδ1(ε)(t−t0).

We apply the specific Gronwall lemma to obtain:

Lemma 8.2
Consider the perturbation problem:

ẋ = δ1(ε) f (t, x) + δ2(ε)R(t, x), x(t0) = x0,

for I : t0 ≤ t ≤ T, x ∈ D ⊂ Rn, δ1, δ2, δ3(ε) order functions with δ2(ε) = o(δ1(ε)) as ε → 0
and continuous differentiability of the vector fields f , R on I×D; in particular we have ||R(t, x)|| ≤
M, M > 0 for t ≥ 0. We neglect small terms to consider the solution of

ẏ = δ1(ε) f (t, y), y(t0) = x0

and we approximate y(t) by a procedure (averaging) for which we know that ||y(t) − ȳ(t)|| =
O(δ3(ε)) on the timescale 1/δ1(ε). Then we have on the timescale 1/δ1(ε) the estimate

x(t)− y(t) = O(
δ2(ε)

δ1(ε)
+ δ3(ε)) on the timescale 1/δ1(ε).

Proof We formulate the equivalent integral equations for x(t), y(t):

x(t) = x0 + δ1(ε)
∫ t

t0

f (x(s), s)ds + δ2(ε)
∫ t

t0

R(x(s), s)ds, y(t) = x0 + δ1(ε)
∫ t

t0

f (y(s), s)ds.

Subtracting the two equations we have:

x(t)− y(t) = δ1(ε)
∫ t

0
( f (x(s), s)− f (y(s), s))ds + δ2(ε)

∫ t

0
R(x(s), s)ds.

Using the Lipschitz continuity of f (Lipschitz constant L) and the estimate for R we have:

||x(t)− y(t)|| ≤ δ1(ε)L
∫ t

t0

||x(s)− y(s)||ds + δ2(ε)Mt,

and with lemma 8.1:

||x(t)− y(t)|| ≤ δ1(ε)
M
L

eδ1(ε)Lt − δ2(ε)

δ1(ε)

M
L

.

We conclude that y(t) approximates x(t) with error O( δ2(ε)
δ1(ε)

) on the timescale 1/δ1(ε). We
conclude with the triangle inequality that

||x(t)− ȳ(t)|| = ||x(t)− y(t) + y(t)− ȳ(t)|| ≤ ||x(t)− y(t)||+ ||y(t)− ȳ(t)||,
or

||x(t)− ȳ(t)|| ≤ O(
δ2(ε)

δ1(ε)
) + O(δ3(ε))

on the timescale 1/δ1(ε). �
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