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Abstract

In a neighbourhood of stable equilibrium, we consider the dynamics for at least three
degrees-of-freedom (dof) Hamiltonian systems (two dof systems are not ergodic in this
case). A complication is that the recurrence properties depend strongly on the resonances
of the corresponding linearised system and on quasi-trapping. In contrast to the classi-
cal FPU chain, the inhomogeneous FPU-chain shows nearly all the principal resonances.
Using this fact, we construct a periodic FPU-chain of low dimension, called a FPU-cell.
Such a cell can be used as a building block for a chain of FPU-cells, called a cell-chain.
Recurrence phenomena depend strongly on the physical assumptions producing specific
Hamiltonians; we demonstrate this for the 1 : 2 : 5 resonance, both general and for the
FPU case; this resonance shows dynamics on different timescales. In addition we will
study the relations and recurrence differences between several FPU-cells and a few cell-
chains in the case of the classical near-integrable FPU-cell and of chaotic cellsin 3 :2: 1
resonance.

1 Introduction

The purpose of this paper is to study recurrence in Hamiltonian systems with three or more
dof near stable equilibrium. We will show that near-integrability, i.e. integrability of a certain
normal form, will produce more regular recurrence phenomena than chaotic behaviour of
the corresponding normal form. Our paper is focused on connected, low-dimensional FPU-
cells and, only for comparison, on a few more general Hamiltonians. The analysis can be
turned around to use recurrence phenomena as a “smoking gun” for phase-space diffusion
and prominent chaotic behaviour.

The Fermi-Pasta-Ulam (FPU) chain or lattice is an n dof Hamiltonian system that models
a chain of oscillators with nearest-neighbour interaction, see Fermi et al. [7] and Ford [8], and
for recent references Christodoulidi et al. [4]. In the classical case, also called the symmetric
case in Bruggeman and Verhulst [1], all the masses m;,i = 1,...,n of the chain are equal. In
a seminal paper Chechin and Sakhnenko [2] group-theoretical methods were used for sys-
tems with certain symmetries. From irreducible representations of the symmetry group the
authors conclude to the existence of specific dynamical regimes (called bushes) of essentially
lower dimension than the dimension of the original systems. The theory was developed
in Chechin and Sakhnenko [2] both for Hamiltonian and non-Hamiltonian systems with a



number of physical applications.

Independently, in Poggi and Ruffo [12] the periodic FPU B-chain was considered for which
special periodic solutions and two-mode invariant manifolds were found. The paper Chechin
and Sakhnenko [2] was continued in Chechin et al. [3] to find invariant manifolds (bushes)
in classical periodic, monatomic FPU-chains. The analysis leads to the existence of a wide
range of multimode invariant manifolds that includes the results in Poggi and Ruffo [12].
Exploiting symmetries, a number of new invariant manifolds for the classical, periodic FPU-
chain were given in Rink [15]; the presence of invariant manifolds imposes restrictions on
the phase-flow and so influences the recurrence properties.

Inhomogeneous nonlinear FPU-chains were studied in Bruggeman and Verhulst [1] with
as a start emphasis on the case of four particles in a so-called a-chain with mass distribution
producing the 3 : 2 : 1 resonance. We will call such a FPU-chain of low dimension a FPU-
cell and, following Verhulst [19], we will connect these cells producing a cell-chain; for an
example see fig. 1, but we will restrict ourselves in the explicit examples to at most two cells.
More complicated chains are to be considered in future explorations.

The Hamiltonian depends on momenta p and positions g; it is of the form:

H(p,q) = Ha(p,q) +eHs(q),

with quadratic Hy, cubic H3 and where the usual « is replaced by the small parameter e. The
expression for the quadratic part of the Hamiltonian H is in the case of a FPU-cell with four
degrees-of-freedom (dof):

Za pi+5[(q2 — 31)* + (93 — 92)° + (94 — 93)° + (q1 — q4)%]. (1)

The cubic terms are in this case:
1
Hs = 3 {(q2 — 71)° + (93— 92)° + (92 — 3)° + (g1 — 94)°). )

Then, for one periodic inhomogeneous FPU a-chain with masses m;, i = 1,...,4 and four
dof we have, putting a; = 1/m;, the FPU-cell described by the equations of motion:
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fi =01, 0= [201+ 92+ 91— e((q1 — 94)° — (92 — q1))] a1,
G2 =02, 02 = [-202+q3+q1 — (g2 — 1) — (93 — 92)%)]a2, 3)
43 =03, 03 = [~2q3+qs +q2 — (93 — 92)* — (94 — 93)%)]a3,
s =04, 04 = [-2q2+q1 + g5 — e((92 — 43)* — (q1 — 44)*)] s

We find it convenient to use the velocity v; with p; = m;v;, € is a positive, small parameter.
Apart from the Hamiltonian H we have as a second (translational) momentum integral
of system (3):
myv1 + mpvy + m3vz 4 myvs = constant. (4)

H, is a first integral of system (3) linearised near the origin, but it is also a first integral of
the normal form of the full system (3). This means that when using H from the solutions
of the truncated normal form indicated by: H(p,q) = Ha(p,q) + ¢H3(p,q), we obtain an
O(e) approximation of the (exact) Hy(p(t),q(t)) valid for all time; for a proof see Sanders et
al. [16] chapter 10. Using the expression Hy(p(t),q(t)) for the solutions of the full system
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(3) demonstrates the accuracy of the normal form solutions and gives an impression of the
nature of the dynamics. For an illustration by geometric numerical integration see Hairer et
al. [9] p. 479.

Choosing the initial conditions assigns a value to an integral. For the Hamiltonian this con-
stant value will be indicated by E (energy), for H, we use Ey, for other integrals we use
Ei, Ep, ...

It was shown in Rink and Verhulst [14], that in the classical periodic FPU problem with
four identical particles the normal form of the system is integrable, see also Rink [15]. The
implication is that for e small, the Lebesgue measure of chaos is O(¢) in this classical case.

In the sequel we will discuss a FPU chain with 4 particles as a FPU-cell, and we will
construct several FPU cell-chains. Depending on the choice of interactions and the number
of cells, many cell-chains are possible. We show an example consisting of three cells depicted

in fig. 1.
3 5 9
4 12
1 7 11

Figure 1: A cell-chain of three FPU-cells, each consisting of four particles.

Most Hamiltonian systems are non-integrable but to characterise their dynamics this con-
cept is too general. For instance near stable equilibrium, two dof systems will be non-
integrable but the chaotic orbits are restricted to exponentially small sets with respect to
the energy; on the other hand, the 3 : 2 : 1 resonance to be discussed later shows large-scale
chaos near stable equilibrium. Tools to describe non-integrable systems are the asymptotic
behaviour of normal form integrals like H» as used in Verhulst [18] and the recurrence the-
orem. In section 3 we will discuss this theorem. In section 4 we will consider recurrence for
the 1 : 2 : 5 resonance as a perturbed integrable system both for the general case and for a
FPU-cell. This resonance is of special interest as it shows dynamics on more than one long
timescale. In section 5 we will discuss classical FPU-cells (equal masses) to demonstrate the
relation between near-integrability and recurrence. Section 6 discusses the case of a chaotic
FPU-cell that arises for the 3 : 2 : 1 resonance.

A remark about numerics and precision. We have used ode78 of MATCONT under MAT-
LAB for our numerical integrations. The integrations were repeated with increasing accuracy
until a stable picture appeared; for most integrations relative precision e~'7, absolute preci-
sion e were needed. Another check is the calculation of the normal form integral Hp
mentioned above and discussed in section 3. This quantity is conserved to O(e) for all time
and can serve as an additional check on the accuracy of integration, see Sanders et al. [16]
and Hairer et al. [9].

2 The equations of motion for a cell-chain

Consider a FPU-cell with four dof and as an example the arrangement of fig. 1. The three
cells interact by the mass points 2, 6,8,10 with displacements g2, g6, 48, 910 and a choice of
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masses m;,i = 1,...,4. When considering a special resonance in a cell, like the 3 : 2 : 1
resonance, the interaction of the cells should result only in a slight detuning. The quadratic
part of the Hamiltonian (1) transformed to (g, v) coordinates for two cells extends to:

112 B A N2 2 2 N2
{Hz = sLisio tal(g2—q)" + (93— q2)" + (94 — 93)" + (1 — q4)°]+ 5)
secr(q2 — q6)? + 3[(q6 — 45)* + (97 — q6)* + (98 — q7)* + (95 — q8)°]

with a; = a;44,1 = 1,...,4; € scales the nonlinearities, ec; determines the magnitude of
interaction. The cubic part for one cell is:

e & 3
Hs = 3 Y (qiv1—ai)°. (6)

i=1

The equations of motion become for two cells:

1 =01, v =201 +q+qa—e((q1—q0)%— (52 — q1)?)]ar,
o =0y, U2 =[-20+qg3+q1 —eci(q2— %) —e((q2 — qm)* — (g3 — q2)%)] a2,
G =v3, U3 =[-2q3+qs+qo—e((gs—q2)* — (Q4—EI3) )las,
s =04, O =[-20+q+05—e((qs—93)> — (1 — q4)?)] s, %
gs =vs, 05 =[-2q5+q6+qs —e((45 —g5)* — (96 — 175)2)]ﬂ1/
d6 =Us, Vs = [—2q6+q7+qs5+eci(q2— %) —e((96 — %)2 (97 — q6)%)] a2,
g7 =v7, U7 =[-2q97+qs+q6 —e((97 — 96)* — (g5 — 47)*)]as,
( g8 =us, Us = [-2gs+q5+q7 —eca(qs — q10) — (98 — 97)* — (45 — 48)*)] aa.
The momentum integral for this system is:
8
Zmivi = constant. (8)

1

This integral can be used to reduce system (7) by one dof.

3 The recurrence theorem

The recurrence theorem for volume-preserving maps was formulated by Poincaré in 1890 in
his prize essay for king Oscar II of Sweden and Norway; it can also be found in Poincaré [13]
vol. 3. Modern formulations are in terms of measure-preserving maps.

3.1 Hamiltonian systems

The phase-flow induced by a time-independent Hamiltonian is volume-preserving. The re-
currence theorem implies, loosely formulated, that for Hamiltonian systems on a bounded
energy manifold, nearly all solutions return after a finite time T, arbitrarily close to their
original position in phase-space. Analysis of recurrence adds to our understanding of the
dynamics; we will restrict ourselves to time-independent Hamiltonian systems. A more pre-
cise formulation in this case is:



Proposition 3.1

The Poincaré recurrence theorem

Consider the phase-flow F of a dynamical system induced by the Hamiltonian function
H(p,q), (p,q) € R*. A bounded energy manifold M determined by H(p,q) = E (real
constant) has a subset Dy C M with positive measure. Nearly all points P in Dy (in the sense
of measure theory) will return under the map F after a finite time arbitrarily close to P in Dy.

Remark

A set W C M consisting of points that do not return to W under the map F has measure zero.
Examples are homoclinic and heteroclinic solutions. Other solutions with this property will
be called wandering.

For a one dof system on a bounded domain recurrence is trivial as under these condi-
tions nearly all solutions are periodic. For two dof systems that are integrable, recurrence
behaviour is relatively simple near a stable periodic solution. In nearly-integrable two dof
systems a similar result can be obtained using the KAM theorem, but in general this is al-
ready not so easy for chaotic two dof systems.

3.2 A crude upper bound for recurrence

To measure recurrence for a system of FPU-cells we will start with positive energy only in
the first cell and consider recurrence within this cell and energy exchange between the FPU-
cells. We will use the Euclidean norm; for a system of two cells this becomes:

{d = (X1 (gi(t) — :(0))* + (0i(t) — vi(0))*) +
e1 5 5((9:(t) — qi(0))? + (0i(t) — v;(0))?).

In the sequel we will put v;(0) = 0,i = 1,...,8; one can choose to have initial velocity
conditions nonzero, but it makes sense to keep the momentum integral (8) zero. In the
case of one cell, e; = 0, for two cells e; = 1. It would be natural to apply weights, based
on the masses, to the displacements in the distance 4 but this does not change the picture
qualitatively. Another aspect is that the Euclidean distance d does not present a fixed time
of recurrence. For a fixed value of d we will find a number of times for which the domain
with size d is traversed. If the initial conditions are very close to stable equilibrium or, with
respect to Hamiltonian (10), if the nonlinear terms scaled by ¢ are very small, this number of
times of passage through the domain with size d will be larger. We shall see in our examples,
for instance in fig. 2, that for small nonlinearities the orbital behaviour that corresponds with
approach to the d = 0 axis is located in V-shaped domains, they become larger as € decreases.
This is natural as for ¢ = 0 the system is linear and recurrent on an O(1) timescale. As we
shall see, in systems with integrable normal form, the drift along the torus is characterized
by a timescale of order 1/¢" (r a real positive number). So for very small values of ¢ we
should adjust our criterion allowing for the size of the V-shaped regions; in the sequel we
will not pursue this idea. For values of ¢ that are not extremely small, the V-shaped regions
will be thin tongues that easily produce a recurrence estimate (see for instance figs. 4 and 5).

We conclude that the recurrence time T, for a given Hamiltonian system is not a fixed
number, it depends on its specific phase-flow, the initial conditions and the recurrence ac-
curacy d (corresponding with a sphere around the initial position). It is possible to give an
upper bound for the values of T, but, as we shall see, this is not always helpful. We stress
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that these qualifications about recurrence were known to Poincaré and that the upper bound
to be derived below should not be called “Poincaré recurrence time”.
Consider a time-independent Hamiltonian expanded in the form

H(p,q) = Ha(p,q) + eHs(p,q) + €H(p,q) + ..., (10)

where the index i indicates the degree of the homogeneous polynomials H;(p,q),i = 2,3, ...
Assume that H(p, q) is Morse at (p,q) = (0,0) and that the origin is a stable equilibrium of
the equations of motion.

The parameter ¢ usually arises by scaling p — ¢p,q — &g and dividing by ¢2. For many
applications of n dof time-independent Hamiltonians near stable equilibrium with phase-
flow on a compact energy manifold such as (10) with energy E = Ej + O(e), this manifold
is topologically s2n=1 a sphere in R?" with radius R = /Eg + O(e). The compactness holds
in general below a certain critical value of the energy. If the eigenvalues of equilibrium are
all of the same magnitude, the actual energy manifold is approximated by this hypersphere.
Such a sphere has an area proportional to R>"~1. To approximate the energy manifold by
a hypersphere makes sense only if we are not too far from stable equilibrium and if the
spectrum near equilibrium has not extremely large or small elements. A hypersphere with
dimension (2n — 1) embedded in the energy manifold around the initial conditions with
radius d < R, has a volume proportional to d?"=1_ We summarize the results near stable
equilibrium:

Proposition 3.2

If an orbit of the system induced by Hamiltonian (10) reaches a size d neighborhood of each
point on a bounded energy manifold near stable equilibrium (the worst case), we have for
the upper bound L of the recurrence time Tj:

R2n—1 n—1/2
L:O(dZn—l>0rL:O % asd—>0. (11)

We assume that the approximate energy Ej is an O(1) quantity. The estimate (11) does not
take into account that possibly additional integrals of the Hamiltonian exist or that we are
in a near-integrable case; in such a case the estimate for L is too pessimistic. For instance in
the case of a chain of FPU-cells as in fig. 1 we have the additional integral (8) which enables
us to reduce the system with one dof.

So for one FPU-cell of 4 dof we reduce to 3 dof and L = O(1/d>), for two cells to 7 dof
and L = O(1/d"®), for three cells to 11 dof and L = O(1/d?!). These estimates are valid
without any additional knowledge about the dynamics of the FPU-cells; we will see that in
the near-integrable cases like the classical one the estimates are far too crude.

3.3 Dynamics affecting recurrence

The recurrence depends on the number of dof, the initial conditions and the particular dy-
namics of the system under consideration. We will compare cell-chains built from classical,
near-integrable FPU-cells and chains built from chaotic FPU-cells. In the near-integrable
cases (eg. the classical FPU-cell) the recurrence times are smaller as the invariant manifolds
restrict the drifting off of the solutions. However, increasing the number of dof weakens this
argument because of quasi-trapping. We discuss the two mechanisms:



1. Separation by invariant manifolds.
There is a large qualitative and quantitative difference between two and more dof, so
calculations for two dof are only to some extent typical. Consider as an example:

71 +4q1 = eq3, (12)
Go+q = 2eq192.

It is well-known that for € small, the normal form of system (12) is integrable but still
chaotic on a very small scale, see Sanders et al. [16] for references. We consider a near-
integrable case (¢ = 0.05) and a chaotic case (¢ = 1.5) for system (12). The energy
manifold of system (12) is compact for energy values 0 < E < H, with H. = 1/(2¢?).
In the chaotic case ¢ = 1.5 we have E = 0.1925, H. = 0.2222.

Figure 2: The Euclidean distance for system (12) with initial conditions ¢1(0) = 0.3,41(0) =
0,92(0) = 0.5,42(0) = 0. Left the near-integrable case ¢ = 0.05, right the chaotic case ¢ = 1.5.

In the near-integrable case, the recurrence takes for Euclidean distance d = 0.1 an in-
terval of time around 300, in the chaotic case most tori have been destroyed and we
have to integrate till t+ = 2500 to find recurrence, see fig. 2.

The stable solutions in one FPU-cell with 4 particles and so 3 dof after reduction, are
surrounded by 2-tori or 3-tori (dimension 3). The energy manifold near stable equi-
librium is 5-dimensional (S°) which means that even the 3-tori do not separate S%in
phase-space. The implication is that the solutions between the tori can move off into
phase-space, they are only to some extent restricted by invariant manifolds. This is
sometimes called Arnold-diffusion but we will not use this term as it is not specific
enough, there are different forms of diffusion in Hamiltonian systems. An increase of
dimension by connecting two cells strengthens diffusion. For two cells we have 8 par-
ticles and after reduction 7 dof or phase-space dimension 14. The energy manifold is
S13 with at most tori of dimension 7, there is no separation at all.

If the normal form of the system is integrable as is the case for the classical FPU-cell,
this reduces diffusion as approximate integral manifolds are present. In the case of the
chaotic 3 : 2 : 1 resonance which contains horseshoe dynamics and an infinite number
of close unstable periodic solutions on the energy manifold, longer recurrence times
can be expected.



2. Quasi-trapping in resonance zones.

Quasi-trapping is qualitatively discussed in Zaslavsky [20]. Near stable equilibrium
there exist periodic solutions with many different periods; the stable ones are asso-
ciated with invariant tori that exist in resonance zones. The solutions starting outside
such a zone can not be trapped in such a zone because of the recurrence theorem but its
passage can take long intervals of time; we call this quasi-trapping. This phenomenon
explains to some extent the much longer recurrence times obtained for a number of
systems.

4 Example: thel:2:5 resonance

This resonance is typical for the case that the normal form to first order (Hs) is integrable
and that the next order changes the dynamics qualitatively. Its normal form was analyzed
to Hs in Van der Aa and De Winkel [17]; there exist four or six families of short-periodic
solutions depending on the parameters and no general position short-periodic orbits. The
normal form Hj + ¢Hj is integrable. In Haller and Wiggins [10] the analysis was brought a
large step further by analyzing the geometry of the perturbed integrable structure proving
the existence of 3-tori and whiskered 2-tori with nearby chaotic dynamics. These phenomena
have to appear as O(¢?) effects. As in this resonance case various timescales play a part, we
consider it again from the point of view of recurrence. We restrict ourselves to potential
problems as this saves parameters while keeping most of the qualitative phenomena.

In the description of tori one uses often action-angle coordinates I = (I,...,I,), ¢ =

(¢p1,...,¢n) given by:
pi = v/2ljcos¢;, qi = \/2L;sing;, i =1,2,...,n. (13)

The normal form of the 1 : 2 : 5 resonance to Hy will contain the actions I, I, Is and two
combination angles, x1 = 2¢1 — ¢ and x2 = ¢3 — 2¢» — ¢1; eHs will depend on I, I, x1,
while adding to the normal form €2Hy we find it depends on the variables I, I, I, x2. From
Van der Aa and De Winkel [17] we have (with constants a4, by, ..., by) for the Hamiltonian
normal forms:

Hy =1 +2+5I,
H3 = 25[111 \/2[2 COS X1, (14)
Hy =4} +boli L + b3li I3 + byl3 + bshL I3 + bel3 + byIby/I1 I3 cos x»).

The normal form equations of motion based on system (14) are:

Ii  =4ea11\/2Isin x1 — 4e?b; L/ Ti zsinx, + € ...,

I, = —2ea;1\/2Lsinx; — 8¢2by Iy /Tilzsinyo + €. .,

Iy =4e’b;Ih\/I1Izsiny, +¢€3..., (15)
fi = e (4h —h)cosyi+ 2.,

X2 :—s%(b—i—h)cosm—i—sz...

The O(£2) terms of the equations for x1, x» contain cos x> but not x;. Short-periodic solutions
correspond with constant actions and constant combination angles (x1, x2). For the normal
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Figure 3: The energy simplex for the Hamiltonian 1 : 2 : 5 resonance. Short-periodic solu-
tions on the energy manifold are indicated by black dots. The small black dots on the sides
(right) correspond with short-periodic solutions with identical actions but different phase.
The (in)stability characteristics are indicated by H (two real eigenvalues), E (two imaginary
eigenvalues) and 0 (zero eigenvalues). The actions are displayed in the front triangle, the an-
gles have been omitted to keep the figure 3-dimensional. On the left the simplex is based on
the dynamics of H, + Hj, the invariant manifolds IM; and IM, consist of continuous fami-
lies of periodic solutions. On the right the simplex based on H, + ¢H3 + ¢2H,, the continuous
families have broken up.

form Hj + eHj the periodic solutions and invariant manifolds IM; and IM, are displayed in
fig. 3 (left). Using system (15) they are described by respectively:

L =0, I, = L(0), I = I5(0), (IM;)

and
L =40, I3 = I3(0), (IMy).

Note that in the case of vanishing action, as in the case of IMj, for the analysis the normal
form (14) should be replaced by an expression in co-moving coordinates. The invariant
manifolds IM; and IM; of the normal form H, + eHj3 are nonhyperbolic slow manifolds
of the system generated by the normal form H, + ¢Hj + €2H,. They do not persist under
the perturbation O(e2) as shown in fig. 3 (right). These manifolds break up with a few
periodic solutions persisting whereas an intricate analysis in Haller and Wiggins [10] shows
the presence of horseshoe maps and chaotic dynamics at O(¢?) level. We can analyze the
behaviour of the solutions in a boundary layer near IM; by rescaling I; — ¢I;. The resulting
dynamics (of which we omit the details) is that in this boundary layer, I and I3 remain
bounded while the first degree of freedom becomes parametrically excited, forcing escape
from the boundary layer. This agrees with the stability analysis of Van der Aa and De Winkel
[17].

We summarize the results for the Hamiltonian 1 : 2 : 5 resonance without additional
assumptions:

¢ On the righthand side of the simplex, at I; = 0, we find unstable periodic solutions.
Near IM; we have the possibility of homoclinic and heteroclinic tangles as described
in Haller and Wiggins [10], so this part of phase-space will be our focus of attention.

 The normal form H, + Hj is integrable with accuracy O(e) and validity for all time for
the integrals Hy and H, + Hs; we have the third integral I3 with accuracy O(e) and
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validity on the timescale 1/¢. So to O(¢) the dynamics in phase-space is dominated by
the 1 : 2 resonance (see Van der Aa and De Winkel [17]).

» Without additional assumptions, the normal form H; + H3 + e2H, is not integrable, see
Haller and Wiggins [10].

¢ The solutions induced by the normal form (14) are describing the flow of the original
Hamiltonian with accuracy O(e?) on the timescale 1/«.

¢ The recurrence times will depend on the initial conditions and also on the choice of
e < d (d from (9)) or d < ¢; the third degree of freedom may come into play especially
near IM;.

4.1 Numerical experiments for the 1: 2 : 5 resonance

We will study recurrence behaviour for a Hamiltonian that is typical for the general case
discussed above; this is followed by recurrence in a FPU-cell with the same (1 : 2 : 5) reso-
nance. It turns out that the numerics of the normal forms produces O(e) precision of H; as
predicted by the theory. As an additional check of numerical accuracy we have calculated
the energy given by the Hamiltonian which yields even better precision.

An example of the general case

We choose as a typical case:
Hs = —Pa, Hy = — 2010205 — ~gb — o 16
3= —q42, Ha = —5019503 — 505 — 4. (16)
The equations of motion in quasi-harmonic form become:

fi+q = 2eqmge + 3824595,
f2+4q2 = eqi + € (5010205 +293), (17)
G +25q3 = (30195 + 4q3).

nnnnn

Figure 4: The recurrence distance (9) with time 0 < t < 10000 based on system (17) when
starting not far of the stable periodic solutions on the I3 = 0 side of fig. 3 of the Hamiltonian
1:2:5resonance; q1(0) = 1.4,42(0) = 0.5,43(0) = 0.2. Left the case ¢ = 0.1, right ¢ = 0.3;
Ey = 1.98. The recurrence time decreases if ¢ increases; I3(0) = 0.5, I3(t) varies for ¢ = 0.1
(left) between 0.481 and 0.5, for € = 0.3 (right) between 0.435 and 0.5.
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The Hamiltonian is intermediate in the sense that its terms still have to be transformed
by the normalization but all of them survive the averaging-normalization process. Apart
from the two normal modes we have two stable periodic solutions near g3(t) = 43(t) = 0
and two unstable periodic solutions near g1 (t) = 41 (t) = 0; see fig. 3.

The location of the periodic solutions will guide our choice of initial conditions. We start,
see fig. 4, in general position not too far from stable periodic solutions where the 1 : 2 reso-
nance dominates. As indicated in the caption, the recurrence time decreases with increasing
¢, a phenomenon that is typical for the near-integrable 1 : 2 resonance. It turns out that near
these stable periodic solutions, I3, which is an integral of the first order normal form valid
on the time interval O(1/¢) is clearly approximately conserved in this part of phase-space
for much longer times.

I i - | ] .
T aw ww  mw mw mw mwmmwmm WA W ww mw W mw wmw
‘ ‘

Figure 5: The recurrence distance (9) with time 0 < t < 10000 based on system (17)
when starting near the I; = 0 side of fig. 3 of the Hamiltonian 1 : 2 : 5 resonance;
71(0) = 0.04,42(0) = 04,43(0) = 0.3683, H»(0) = 1.98. From left to right we have
e = 0.1,0.2,0.3. The recurrence time decreases with increasing ¢ as expected.

Starting near the g, normal mode we find similar results with I(0) = 0.5 and I3(t) vary-
ing between 0.35 and 0.55 (¢ = 0.2 or 0.3), so it might be more interesting to start with larger
values of g3.

Near the I; = 0 side on the simplex of fig. 3 we choose the initial values q1(0) = 0.04,42(0) =

0.4,493(0) = 0.3683. As before the recurrence times become shorter with increasing ¢; see
fig. 5.

e s
o
1 40 ‘/ q
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Figure 6: The variations of H, and I3 with time 0 < ¢ < 10000 based on system (17)
when starting near the I; = 0 side of fig. 3 of the Hamiltonian 1 : 2 : 5 resonance;
71(0) = 0.04,42(0) = 04,43(0) = 0.3683, Hy(0) = 1.98. From left to right we have
e = 0.1,0.2,0.3, the variations of I3() are respectively between 1.63 and 1.7, between 0.2
and 1.7 and between 1 and 1.75.
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Figure 7: The variations of H, and I; with time 0 < ¢t < 10000 based on system (17) with the
same data as in fig. 6. From left to right we have ¢ = 0.1, 0.2, 0.3, the variations of I (t) are of
much higher frequency than of I3(t), especially for e = 0.2.

However, the variations of the actions present a surprise. Consider fig. 6 where I3(t)
and H» are displayed for ¢ = 0.1,0.2,0.3 (from left to right on the same scale 0 — 2.5). For
¢ = 0.1 the variation of the action I3 is O(e); this can be understood from fig. 5 where the
recurrence clearly takes a longer time than t = 10000. For ¢ = 0.3 (on the right) the variation
is clearly larger, but remarkably enough it is much larger for ¢ = 0.2 (between 0.2 and 1.7).
For comparison we display also the behaviour of I1(t) and Hy(t). This shows that near the
unstable periodic solutions starting for a small value of I;, we experience fast and strong
oscillations of I (#). These variations can be associated with the homoclinic and heteroclinic
tangles resulting in chaotic behaviour in small subsets as predicted in Haller and Wiggins
[10].

411 TheFPU1:2:5resonance

Inspired by Bruggeman and Verhulst [1] table 1, we will study a FPU-cell from system (3)
with inverse masses:

a; = 0.00587407, a; = 0.0213455, az = 0.0813377, a4 = 0.391443. (18)

The (inverse) masses were chosen in an open parameter subset characterized by qualitatively
similar dynamics so this choice is typical. As the ay,...,a4 are fairly small, we will take ¢
around or at 0.5 as this produces already small righthand sides in system (3). It turns out
that starting near particles 1, 3 or 4 in the FPU-cell, the recurrence is quite similar (fig. 8, left);
however, starting near particle 2 the recurrence is delayed, see fig. 8, right.

The numerical results of fig. 8 suggest that the dynamics of the FPU-cell is similar to the
behaviour of the general 1 : 2 : 5 resonance described above in this subsection. To check this
conjecture we perform a symplectic transformation to reduce the 4-dimensional FPU-cell to
a 3-dimensional system using the momentum integral; see for the procedure Bruggeman
and Verhulst [1]. With the choice of masses (18) we find in the notation of Bruggeman and

Verhulst [1]:
3

1
Ha(x,y) = 5 ) (i + wixg),
1

with
w? = 0.0333334, w3 = 0.1333334, w3 = 0.833334.
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Figure 8: The recurrence distance (9) with time 0 < t < 10000 when starting in a FPU-cell
described by system (3) near the 4th particle (left) and the 2nd one (right). We have chosen
e = 0.5, 41(0) = 0.1,92(0) = —0.1,43(0) = 0.15,44(0) = 1 (left) and 41(0) = 0.1,42(0) =
1,43(0) = —0.1,44(0) = 0.15 (right).

The calculation for H3 produces:

Hs = —0.00107405x3 4 0.00216916x2x; + 0.000202739x2x3 + 0.00432288x; x2
—0.00231034x; X213 + 0.0535357x22 — 0.00833532x3 — 0.0144427x2x3  (19)
++0.102058x2x% 4 0.0283995x3.

The equations of motion will be compared with system (17) of the general case so we replace
positions x by g and rescale time to obtain:

G1+q1 = e(0.096664q% — 0.2602994192 — 0.0121644145 — 0.12968643+
0.0693109295 — 1.60606843),

Go+4q2 = e(—0.065075q7 — 0.2593729142 + 0.0693104143 + 0.75017745+
0.8665607245 — 3.06173443),

G§s + 2595 = e(—0.0060824% + 0.0693104142 — 3.2121364193 + 0.43328043
—6.1234684245 — 2.55595043).

(20)

As we have seen in system (14), normalization of Hj leaves only the term g2, in H;. We
checked that normalizing to Hy of the FPU Hj given in (19) produces interaction with the
third degree of freedom as in the general case of system (14); we will not present the full
calculation of Hy but restrict ourselves to a few illustrations. Based on system (20) we start
near the I; = 0 side of the simplex of fig. 3. The recurrence as shown in fig. 9 has been
delayed.

The action I3 and the normal form integral H; of this case are shown in fig. 10. Remark-

ably enough I3(t) varies with O(¢) far beyond its interval of validity but it still represents
a drift away from the dominating 1 : 2 resonance of the first two modes; see the note on
quasi-trapping in subsection 3.3. Repeating the integration near the I3 normal mode shows
stable behaviour as expected from the simplex in fig. 3.
For reasons of comparison we also consider initial conditions in general position directly in
system (7) with the 1 : 2 : 3 resonance condition from (18). The Euclidean distance d for one
and two cells are shown in fig. 11. For the chosen initial conditions the recurrence in one cell
is fairly good, linking to a second cell we have larger and more frequent fluctuations of d.
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Figure 9: Left the recurrence distance (9) with time 0 < t < 10000 when starting in a FPU-
cell described by system (20) near the action I; = 0. We have chosen ¢ = 0.1, 41(0) =
0.04,42(0) = 0.25,43(0) = 0.1. The recurrence takes place near t = 10000 but is far from
complete; compare also the recurrence in the two dof 1 : 2 resonance for which distance 4
is shown in fig. 2. Right for 0 < t < 4000 the behaviour of the actions I; 4 I, which are in
primary resonance 1 : 2 whereas as a secondary effect the action I5 feeds energy into the 1 : 2
resonance causing a drift in phase-space.

A remarkable feature is that the action I3 varies again very little and that the recurrence
when starting near I; = 0 as in fig. 9 takes much longer than starting in general position.
This can be explained by the chaos phenomena in small subsets as shown in Haller and
Wiggins [10] and for the 1 : 2 : 5 resonance as a secondary effect quasi-trapping in the form
of drifting around the 1 : 2 resonance.

0.126

0.125

0.124 ¢

0123+

0122t

0121+

012t

0.118

1 1000 2000 3000 4000 5000 600D 7000 000 4000 10000 1 1000 2000 3000 4000 5000 OO0 7000 8000 9000 10000
t t

Figure 10: Time series for the action I3 and for H, with time 0 < ¢t < 10000 when starting in
a FPU-cell described by system (20) near the action I; = 0. ¢ = 0.1, the initial conditions are
as in fig. 9. I3(0) = 0.125 and I5 varies between 0.119 and 0.126 (far beyond its interval of
validity); Eg = 0.251, H, varies between 0.251 and 0.38.

14



| I I I | | | | I I I |
5000 6000 000 B000 4000 10000 nU 1000 2000 3000 4000 5000 6000 To00 8000 4000 10000
t t

| | | I
1] 1000 2000 3000 4000

Figure 11: The recurrence distance (9) with time 0 < t < 10000 when starting in a FPU-cell
in1:2:5resonance described by system (7) with masses from (18). We have chosen ¢ = 0.5
and ¢1(0) = 0.05,42(0) = 0.2,43(0) = 0.1,44(0) = 0.3, zero for the other positions and the
velocities. Left the case of one cell (c; = 0), right two cells (c; = 0.1).

5 The classical, near-integrable FPU case of equal masses

The normal form used in this section for one cell was derived in Rink and Verhulst [14]
(section 4.2). Inspection of system (3) shows that three exact periodic solutions exist corre-
sponding with normal modes (motion restricted to one dof) in the classical case (a; = 1). As
we shall see, using the normal form, the symmetry of system (3) produces 4 quasi-periodic
families of solutions in general position (away from the normal modes). So, the classical
case has in addition four families of stable quasi-periodic solutions with basic frequencies

V2,2,V/2.

5.1 The phase-flow in one cell

Considering one cell, one can reduce the number of dof to three by using the momentum
integral (4). Using a suitable symplectic transformation system (3) as in Bruggeman and
Verhulst [1] we find with a; = 1 the symmetric looking system:

¥ +2x1 = 4dexpxs,
¥o +4xy, = 4dexixs, (21)
X3+ 2x3 = 4dexixo.

An important difference with the 1 : 2 : 5 resonance is that in this case the integrable struc-
ture of the 1 : 1 resonance is not resonantly perturbed by the higher order normal forms.
The normal modes described above are now found as harmonic functions on the coordinate
axes. It is also clear (because of the symmetry) that x; (f) = £x3(t) satisfies system (21).

Normalization of system (21) produces more details of the flow. In action-angle coordi-
nates (I, ) with as usual dI/dt = —0H /oy, dy/dt = dH /0l the expression for Hj is:

Hy = V21 4+ 21, + V2I3.
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Figure 12: The energy simplex for the classical FPU-cell; w; = V2, wy = 2,w3 = /2. Short-
periodic solutions on the energy manifold are indicated by black dots. The (in)stability is
indicated by H (two real eigenvalues), E (two imaginary eigenvalues) and 0 (zero eigenval-
ues). The actions are displayed in the front triangle, the angles have been omitted to keep
the figure 3-dimensional. The w» normal mode is stable, the w; and w3 normal modes are
unstable with two real eigenvalues. At I = 0 there are 4 stable short-periodic solutions,
The curves connecting these 4 solutions with the w, normal mode represent 4 families of
quasi-periodic solutions.

We have H; = 0, Hy is non-trivial. In action-angle coordinates the normal form becomes to
O(&?):

2
) 1
Hy + Hy = V2L + 2L + V215 — %1113 cos2y + 3 V2h(h+ L), x =1~ ¢s. (22)

The phase-flow of system (3) in the classical case is approximated to O(e) on the timescale
1/€* by the flow of the normal form. The discussion and approximation of the normalized
flow follows the reasoning of Sanders et al. [16] and Verhulst [18]. In action-angle coordinates
and truncated at O(e®), the normalized equations of motion are:

dh — &L Iysin2y, W = /2 — £ (I;cos2x — V21),
dh — 0,8 — 9 12\/3(I; + Iy) (23)

% — 821113 sin2)(, % - \/E_ %(Il COSZX - \/512)]

The normal form equations (23) are integrable with integrals I; + I3 = E;, [, = E; and
H, + Hy with Eq, E; constants determined by the initial conditions. As the normalized sys-
tem is integrable, the original system (3) is near-integrable in this classical case. The flow on
the energy manifold (a deformation of S°) of the reduced system is relatively simple. The
normal modes x; and x3 are linked on S° in 1 : 1 resonance. Starting near one of these un-
stable periodic solutions, the trajectory will move on a torus surrounding a stable periodic
solution while I, is constant to O(e); it will then return near its starting point in a typical in-
terval of time O(1/¢?), see also fig. 13. The amount of chaos between the tori of the original
system (3) is O(e).

Apart from the three normal modes we have from system (23) constant actions if sin 2y =
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0 for t > 0. We have

d
E(ZX) = ¢%(I; — I3) cos 2y,

so these solution exist if
T 3

L=05= %ELX = 0/5/”/71
corresponding with 4 periodic solutions if I = 0 in system (23). If I,(0) > 0 we have 4 con-
tinuous families of quasi-periodic solutions with frequencies near /2 and 2 on the energy
manifold. The presence of these continuous families is connected with the existence of the
third integral I, in the normal form. The four quasi-periodic families are linking their posi-
tion in the I = 0 coordinate plane with the x; (second) normal mode. When normalizing to
higher order, these families of quasi-periodic solutions do not break-up for € small enough
as the frequency ratio v/2 : 2 is irrational. This irrationality makes also for the stability of the
quasi-periodic solutions. The results are displayed in the action-simplex of fig. 12.

(24)

5.2 Numerical calculation of recurrence

When calculating the Euclidean distance (9) for one cell starting near the stable normal mode
2, choosing d = 0.01 and Ey = 1.2721, the upper bound L of the recurrence time will be
O(10'%). However, on the interval of time [0,12000] the distance d to the initial phase-point
is 15 times smaller than 0.01. This is caused by the stability of the normal mode in this
near-integrable system. In (fig. 13) we started near an unstable normal mode.

Figure 13: The Euclidean distance d, see (9), for one cell in the classical case with initial con-
ditions near the unstable normal mode 1: 4; = 0.1,v;(0) = 0,i = 1,...,4;41(0) = 0.6,42(0) =
0,43(0) = —0.65,44(0) = 0;. The interval of time is [0, 12000], The recurrence time decreases
with increasing ¢; the distance d is near to zero for t € [2000,2500] if ¢ = 0.3 (left). If ¢ = 0.2
the recurrence takes place for t € [6000,7000] (middle); if ¢ = 0.15 the recurrence needs
t € [11000, 12000] (right).

Starting near the unstable normal mode 1 in fig. 13, the solution moves away on a torus
around another, stable periodic solution. The recurrence time depends on the approximate
energy Ey = 0.847917 if ¢ = 0.2 and the distance to the unstable normal mode. The upper
bound of the recurrence time is again O(10'?) but the recurrence is much faster because of
the near-integrability of the classical FPU-cell to arbitrary order (in contrast to the 1 : 2 : 5
resonance where the near-integrability breaks up at second order). Motion on the torus will
take a time interval O(1/¢?) and the recurrence time will be proportional to a power of 1/d
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and O(1/¢?), see fig. 13. The recurrence time decreases with ¢ as this increases the interac-
tion of the modes, see again fig. 13.

5.3 Linking n cells

As mentioned before, cells can be linked in various ways. Here, we will follow the set-up of
section 1 and fig. 1, connecting n identical four dof cells by particles 2 — 6, 8 — 10, 12 — 14,
etc. We start with the case of two cells.

Linking two cells (c; # 0,c; = 0) we increase the dimension and we expect longer recur-
rence times; see fig. 14 where the initial energy is restricted to the first cell. We can find the
following exact solutions:

1. The periodic solutions given by: g1 +g93 = 0,95 +97 =0, §; +29;, = 0,i = 1,3,5,7,
g2 = g4 = g6 = gs = 0. Starting with this harmonic solution (frequency v/2) there will
be no energy transfer between the cells.

2. The quasi-periodic solutions givenby: g2 + 94 =0, g6 + 98 = 0, g1 = g3 = g5 = q7 = 0;
the four dof subsystem has frequencies v/2, /2(1 + ecy).
If g» = ge, the solution becomes periodic but in this case there is no exchange of energy
between the cells.

3. The quasi-periodic solution involving the 8 dof given by: g1 = —q2 = g3 = —q4,
g5 = —qe¢ = q7 = —qg with frequencies 2 and 2 + O(e).
If 9o = ge, the solution becomes periodic but in this case there is no exchange of energy
between the cells.

Consider now the case of n cells with linking as chosen above. We generalize easily to:

1. A \@-periodic solution exists under the conditions q14; +¢q3+; = 0,1 = 0,4,8,... and
all modes with even index (42, 44,, g6, - - .) zero.

2. A quasi-periodic solution exists with frequency v/2 and (n — 1) frequencies v/2 + O(¢)
ifgoyi+qa4i=0,1=0,4,8,... and all modes with odd index (41, 43,, 95, - . .) zero.

3. The quasi-periodic solution involving the 41 dof given by:

q1 = —q2 =43 = —q44,95 = —q6 = 47 = —48,-- -, J4n—-3 = —G4n—-2 = J4n—1 = —4n

with frequency 2 and (n — 1) frequencies 2 + O(g).
Under additional assumptions the solution will be periodic.

The extension of the recurrence time when using two cells is caused by quasi-trapping
(subsection 3.3). We illustrate this in fig. 15 where we observe the interaction between g5 and
g7 in the second cell. On the time interval [0,2500] we observe behaviour near a 1 : 1 reso-
nance, on the interval [0,12500] g5 and g7 increase their range to [—0.6,0.6]. The recurrence
theorem guarantees that the solutions will leave this quasi-trapping region after some time.

6 Chaoticcellsin 3 :2: 1 resonance

As a last and very different FPU-cell we consider a chain with unequal masses leading to
chaotic dynamics in the first order normal form.
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Figure 14: The Euclidean distance (9) for two cells (c; = 0.1) in the classical case with initial
conditions near the unstable normal mode 1 in cell 1, zero initial energy in the second cell;
v;(0) =0,i=1,...,4,91(0) = 0.6,42(0) = 0,43(0) = —0.65,44(0) = 0;. The interval of time
is [0,2500], Clearly the recurrence time increases as the number of dof has been increased.
Left the Euclidean distance in the case ¢ = 0.2, right ¢ = 0.3; in both cases vertical scale
[0,1.8].

Figure 15: The 1 : 1 resonance arising in the second cell (c; = 0.1) in the classical case with
initial conditions near the unstable normal mode 1 in cell 1, zero initial energy in the second
cel; v;(0) =0,i =1,...,4,41(0) = 0.6,92(0) = 0,93(0) = —0.65,44(0) = 0;. The interval of
time left is [0,2500] (range [—0.4,0.4]) and right [0, 12500] (range [—0.6,0.6]); ¢ = 0.3. Quasi-
trapping takes longer than 12500 time steps.
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6.1 Transformation to a quasi-harmonic form

The presence of the momentum integral enables us to reduce system (3) to a three dof system.
It has been shown in Bruggeman and Verhulst [1] that the w; : wp : w3 = 3 : 2 : 1 resonance
arises as a one-parameter family of Hamiltonians; many other resonances can be found.
Without loss of generality we choose

2 9 L, 4 1
1 2

2
— T a7 — A7 PV E 2
VU VRV (25)

The one-parameter family of 3 : 2 : 1 resonances is characterized by the real parameter
u € [0,1] with i@ = 0.887732... In an application later on we will choose a particular value
of u, called case 1 in Bruggeman and Verhulst [1], that is typical. To put system (3) in the
standard form of quasi-harmonic equations we have to apply a suitable symplectic transfor-
mation L(u)~! : p,q — y, x with x the vector of the new position variables. This leads to a
transformed Hamiltonian, again of polynomial form H; + eH3 with

1. 9 . 4 _ 1
H, = E(x% + ﬁx% + 45+ ﬁxg + X5+ ﬁxg)
and H3 a cubic expression containing 10 terms, see for details Bruggeman and Verhulst [1].
Because of the 3 : 2 : 1 resonance, only two terms will be active in the normalized Hj3; leaving
out the 8 terms that play no part in the normalized H3 we have an intermediate normal form
of the equations of motion:

¥+ gx1 = —edexoxs,
Xy + %XZ = —S(d6X1X3 + dgxg), (26)
X3 + ﬁx?, = —€(d6X1x2 + ZdQXZX3),

It was shown in Bruggeman and Verhulst [1] that for 0 < u < @ we have d¢ < 0,dy <
0 and one of the short-periodic solutions is complex unstable. This is highly relevant for
the characterization of the chaotic dynamics of the system as it was shown in Hoveijn and
Verhulst [11] that a Shilnikov-Devaney bifurcation Devaney [6] will take placeinthe3:2:1
resonance.

The analysis in Hoveijn and Verhulst [11] is valid for the general time-independent Hamil-
tonian in 3 : 2 : 1 resonance. In the case of the special system (26) we give the following,
simpler analysis. As discussed in Bruggeman and Verhulst [1] we have directly from the
intermediate normal form (26) the two normal modes:

1. x1(t) non-trivial harmonic, x(t) = x3(t) = 0,¢ > 0; stability HH (4 real eigenvalues).

2. x(t) = 1o COS(\/%t + o)), x1(t) = x3(t) = 0,¢ > 0; stability C (4 complex eigenval-

ues).

Also from Bruggeman and Verhulst [1] we have four periodic solutions in general position,
two stable and two unstable. In Hoveijn and Verhulst [11] it is shown that there exist a family
of homoclinic solutions of x, when normalizing to Hz. Also, that when normalizing to Hy
this family of homoclinic solutions breaks up into one transversal homoclinic producing the
Shilnikov-Devaney result Devaney [6] of a horseshoe map in the flow. The action simplex is
shown in fig. 16.
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Figure 16: The energy simplex for the 3 : 2 : 1 resonance; w; = 3/ V14, w0, = 2/V14, w5 =
1/+/14. Short-periodic solutions on the energy manifold are indicated by black dots. The
x> normal mode is complex unstable, the x3 normal mode is unstable with real eigenvalues.
The short-periodic solution at x, = 0is stable. Of the four general position periodic solutions
two are stable, two unstable.

6.2 Numerical experiments for chaotic FPU-cells

Guided by the normal form of the 3 : 2 : 1 resonance we will demonstrate numerically a
number of recurrence results for the original system of FPU-cells (7). We will choose par-
ticular but typical values for the masses, denoted in Bruggeman and Verhulst [1] by “case
17

a1 = 0.00510292, a, = 0.117265, a3 = 0.0854008, a4 = 0.292231,
leading to the frequencies (25). With these mass (a;) values the symplectic transformation of
the four-particles system in Bruggeman and Verhulst [1] produces :

de = —0.0306229, dg = —0.0089438.

We will start with one cell; using the inverse symplectic transformation we have for the x;
normal mode at a fixed energy value:

x2 : q1(0) = 0.00315777, 42(0) = —0.297518, q3(0) = 0.126704, q4(0) = 0.127029. (27)
For the x3 normal mode we have:
x3 :q1(0) = —0.0228266, 2 (0) = 0.152804, q3(0) = 0.235358, 74(0) = 0.121061. (28)

For the set-up of the numerical experiments we make the following observations. We will
start with initial values in cell 1 and will be interested in recurrence and the energy transfer to
cell 2. As the chain is Hamiltonian, the flow is recurrent, but we expect differences between
the classical case of equal masses and the case of the 3 : 2 : 1 resonance where the flow is
chaotic. We restrict ourselves to initial values in a neighbourhood of the complex unstable
normal mode.

The symplectic transformation L(u) from Bruggeman and Verhulst [1] discussed in sec-
tion 6.1 gives us the relation between the normal modes of the system in quasi-harmonic
coordinates (x, x) and the initial conditions in the variables (g, v) of system (7). This means
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Figure 17: Time series for the Euclidean distance in one and two cells based on system (3).
Starting near the complex unstable normal mode, the initial conditions given by (27), e = 1,t €
[0,10000]; if d = 0.1, L ~ 10°. Left one cell; first the normal mode is more or less followed for
3000 time steps, then the orbit wanders off; the accuracy (rel. error e~ 17, abs. error e~2°) does
not permit continuation; H, varies between 0.13 and 0.21. Recurrence will take a longer time.
Right the case of two cells; the 1 : 2 : 3 resonance is slightly detuned by choosing ec; = 0.1.
With d = 0.1, L = 10'3. The recurrence is delayed.
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Figure 18: Time series for the Euclidean distance in the second cell with initial conditions
near the complex unstable normal mode and parameters as in fig. 17. The energy transfer
is quite strong but if ec; = 1 (left) it is often exchanged with the first cell. Right the case of
slightly detuned and still chaotic 1 : 2 : 3 resonance ec; = 0.1.
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that a given position vector (q1,42,43,94) = q is obtained from the x normal modes by
putting q = L(u)x. See for the initial data of our numerical experiments eq. (27). The
3 : 2 : 1 resonance will be detuned by the interaction between the cells. Keeping the interac-
tion small by choosing ec; = 0.1, the detuning does not disturb the qualitative picture of the
flow. With the mass distribution of case 1 we have for the frequencies of the linearized sys-
tem w1 = 0.8018 (0.8018), wy = 0.5354 (0.5345), w3 = 0.2677 (0.2673) with between brackets
the frequencies of isolated cells (c; = 0). For reasons of comparison we also give the results
when ec; = 1; in that case the 1 : 2 : 3 resonance of the first cell is heavily perturbed by link-
ing it to the second cell. The strong perturbation of the resonance causes the energy obtained
by the second cell to be more often returned to the first cell, see fig. 18 (left).

7 Conclusions

1. It is easy to give a crude upper bound for the recurrence time on a bounded energy
manifold near stable equilibrium of a Hamiltonian system. However, realistic bounds
are strongly dependent on the resonances of the system and its near-integrability fea-
tures. Normal forms play an essential part in identifying the near-integrability features
showing strong differences between the cases of two and more dof. In a number of
cases the recurrence time decreases with the energy but conjectures about recurrence
times based on two dof experiments can be misleading for more dof.

2. We have considered FPU-cells and FPU cell-chains (not to be confused with FPU chains).
Three cases with different characteristics were considered.

¢ The FPU-cell with equal masses (the classical case) which is near-integrable. As
expected this leads to relative short recurrence timescales for one cell. In the case
of two cells quasi-trapping phenomena strongly delays recurrence.

¢ The Hamiltonian 1 : 2 : 5 resonance is an example of interesting behaviour on
different timescales. In the normal form to cubic terms of the Hamiltonian the two
dof 1 : 2 resonance dominates, to first order this system is near-integrable. When
normalizing to second order (the quartic terms) the third dof plays a part and this
normal form is non-integrable. In the case of a FPU-cell in 1 : 2 : 5 resonance
this special Hamiltonian has similar features as the general case in Haller and
Wiggins [10].

e The FPU-cell in 3 : 2 : 1 resonance on the other hand has a chaotic first order
normal form, resulting in much longer timescales.

¢ The fundamental concept of recurrence in Hamiltonian systems is not easy to use
because of resonances and quasi-trapping. It would be interesting to explore the
statistics of recurrence as discussed in Zaslavsky [20] chs. 6-7 for our three cases.
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