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SUMMARY

Lyapunov exponents characterize the dynamics of a system near its attractor. For the Van der Pol
oscillator these are quantities for which an approximation should be at hand. Similar to the asymptotic
approximation of amplitude and period, expressions are derived for the non-zero Lyapunov exponent
for both small and large parameter values. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Van der Pol equation is probably the best analysed non-linear second order di�erential
equation having an asymptotically stable periodic solution. Numerical and analytical methods
have been used to approximate its amplitude and period. The equation reads

d2x
dt2

+ �(x2 − 1)dx
dt
+ x=0 (1)

where � is a parameter taking values on the semi-in�nite interval (0;∞), see Reference [1].
The equation was introduced as a model for a self-sustained oscillation in an electric circuit.
It turned out that this equation could serve as a prototype for a non-linear oscillator in many
more applications such as in physiology (heartbeat) and mechanics. From this last �eld of
application the need of computing of the Lyapunov exponents of the Van der Pol equation

∗Correspondence to: Johan Grasman, Group Mathematical and Statistical Methods, Wageningen University,
P.O. Box 100, 6700 AC Wageningen, The Netherlands.

†E-mail: johan.grasman@wur.nl
‡E-mail: f.verhulst@math.uu.nl
§E-mail: sdshih@uwyo.edu

Copyright ? 2005 John Wiley & Sons, Ltd. Received 22 March 2004



1132 J. GRASMAN, F. VERHULST AND S.-D. SHIH

originated: quenching of undesirable oscillations requires quantitative information about these
quantities.
From the asymptotically stable periodic solution of (1), period T and amplitude A can be

computed numerically [2]. Using software packages that can carry out formal computations,
power series expansions of both with respect to the parameter � can be made:

A=2+
1
96
�2 − 1033

552960
�4 + O(�6) for � ↓ 0 (2)

T =2�
[
1 +

1
16
�2 − 5

3072
�4 + O(�6)

]
for � ↓ 0 (3)

see References [3–5]. However, for � large a large number of terms of the expansion is
needed to obtain an approximation of this form with a reasonable accuracy.
The approach for � large should re�ect the particular behaviour of the periodic solution for

� large known as a relaxation oscillation [6]. In this parameter regime the phase, as it runs
through the full period, can be divided in intervals where the solution has its typical behaviour
which can be caught in a locally valid asymptotic solution that is based on the property
that the parameter � is large. Integration constants in such solutions are found by matching
solutions valid for adjacent time intervals. From these solutions asymptotic expressions for
the amplitude and period holding for � ↑ ∞ can be derived:

A=A0 + A2=3�−4=3 + A1(�)�−2 + O(�−8=3) (4)

with

A0 = 2; A2=3 =
1
3
�; A1(�)=−16

27
ln(�) +

2
9
ln(2)− 8

9
ln(3) +

1
3
b1 − 1

9

and

T =T1�+ T−1=3�−1=3 + T−1(�)�−1 + O(�−4=3 ln(�)) (5)

with

T1 = 3− 2 ln(2); T−1=3 = 3�

T−1(�) =−2
3
ln(�) + ln(2)− ln(3) + 3b1 − 1− ln(�)− 2 ln(Ai′(−�))

where � is the �rst zero of the Airy function and b1 is a constant that can be approximated
numerically:

�=2:33810741 and b1 = 0:17235

In addition to the amplitude and the period the non-trivial Lyapunov exponent of the peri-
odic solution can be approximated asymptotically for � small as well as large. In this study
we will construct the �rst few terms of such an asymptotic approximation. Moreover the
result will be compared with numerical values obtained from a numerical approximation of
the periodic solution.
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As we mentioned above stable periodic solutions corresponding with a normal mode in
an engineering system can be undesirable. Well-known examples are �ow-induced vibrations
like the galloping of overhead power lines or violent oscillations of movable dams immersed
in a river or estuary. There are many other examples, for instance heave-roll motion of a
ship, oscillations of masses on transporter belts caused by dry-friction or rotating machinery
which is modelled by a parametrically excited rotor. A survey of such problems and a suitable
analysis is given in Reference [7]. In �ow-induced vibrations self-excitation plays a prominent
part. Such vibrations are usually modelled by the Van der Pol or by the Rayleigh equation.
The engineering treatment makes often use of energy absorbers which means mathematically
that the equation with self-excitation is coupled to an oscillator which destabilizes the self-
excited periodic solution. Two aspects are relevant here. First this coupling requires a speci�c
tuning to the period of the self-excited oscillation. We note that for the Van der Pol equation
the period, as it depends on the parameter, is well-known. A second aspect is the rate of
attraction of the periodic solution that is to be balanced by the coupled oscillator. This rate
of attraction is measured by its Lyapunov exponent which will be studied in this paper. We
note that a �rst-order analysis which aims at destabilization of the Van der Pol relaxation
oscillation is presented by Verhulst and Abadi [8].

2. THE LYAPUNOV EXPONENTS OF A DYNAMICAL SYSTEM

The Lyapunov exponents of a trajectory of a system of n coupled non-linear di�erential
equations are de�ned as follows. Let y(t) be the solution of the following vector di�erential
equation with initial vector value

dy
dt
=f(y); y(0)=y0 (6)

Then we formulate the corresponding tangent linear system by

dv
dt
=F(t)v; F(t)=

[
@fi
@yj
(y(t))

]
(7)

For this system we follow the evolution of the set of initial points forming an n-dimensional
unit sphere changing into an ellipsoid with principal axes pi(t), i=1; 2; : : : ; n. The Lyapunov
exponents follow from the limit:

�i= lim
t ↑ ∞

1
t
ln(pi(t)); i=1; : : : ; n (8)

with an ordering such that �i¿�i+1 [9]. This evolution of the ellipsoid also re�ects the dynam-
ics of the non-linear system near the above trajectory for a su�ciently small initial sphere.
The Lyapunov exponents are a quanti�cation of this local behaviour. It can be proved that at
least one Lyapunov exponent has the value zero.

2.1. The Van der Pol oscillator

For the periodic solution of the Van der Pol equation it means that besides this vanishing
exponent a real Lyapunov exponent with a negative value must exist. It is this exponent that
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will approximated asymptotically in this study. For a periodic solution of a two-dimensional
system with period T the two Lyapunov exponents satisfy

�1 + �2 =
1
T

∫ T

0
traceF(t) dt (9)

[10]. Consequently, the second exponent of the periodic solution x(t) of Van der Pol equation
satis�es

�2 =
1
T

∫ T

0
traceF(t) dt=− �

T

∫ T

0
{x2(t)− 1} dt (10)

This result is found by transforming the second order di�erential equation (1) to a system of
two �rst order di�erential equations.

3. ALMOST LINEAR OSCILLATION

Assuming that the parameter in the di�erential equation is small, ��1, we expand the periodic
solution with respect to this small parameter:

x(t;�)= x0(t) + �x1(t) + �2x2(t) + · · · (11)

Substitution in the di�erential equation (1) yields

d2x0
dt2

+ x0 + �
[
d2x1
dt2

+ x1 + (x20 − 1)dx0
dt

]

+�2
[
d2x2
dt2

+ x2 + (x20 − 1) dx1
dt
+ 2x0x1

dx0
dt

]
+ · · · =0

This equation is satis�ed if the coe�cients of the powers over � vanish leading to a recurrent
system of linear di�erential equations for the coe�cients of (11):

d2x0
dt2

+ x0 = 0

d2x1
dt2

+ x1 =−(x20 − 1) dx0
dt

d2x2
dt2

+ x2 =−(x20 − 1)dx1
dt

− 2x0x1 dx0dt
: : : :

In principle all solutions satisfying an arbitrary initial condition can be approximated asymp-
totically for a large (but �nite) time interval. For approximating the periodic solution special
conditions should be imposed to the di�erential equations for the coe�cients. With the method
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of Poincare-Lindstedt, see Reference [10], the system of equations can be solved recursively.
Carrying out the computations for the �rst three terms we �nd

x(�;�)=2 cos(�) + �x1(�) + �2x2(�) + �3x3(�) + · · · ; �=!t (12)

with

x1(�) =
3
4
sin(�)− 1

4
sin(3�)

x2(�) =−1
8
cos(�) +

3
16
cos(3�)− 5

96
cos(5�)

x3(�) =− 7
256

sin(�) +
21
256

sin(3�)− 35
576

sin(5�) +
7
576

sin(7�)

and

!=1− 1
16
�2 +

17
3072

�4 + · · · (13)

In the literature a number of studies deal with schemes to compute the coe�cients of these
expansions up to a very high order using software packages for symbolic calculations, see
Reference [5]. Substitution of (12) in (10) yields the following asymptotic approximation for
the non-trivial Lyapunov exponent of the periodic solution:

�2 =−� − 1
16
�3 +

263
18432

�5 + O(�7) for � ↓ 0 (14)

4. RELAXATION OSCILLATION

In order to analyse the periodic solution of the di�erential equation (1) for large parameter
values, ��1, we make a transformation in the time scale and introduce a small parameter

�= t=�; �=1=�2 (15)

Then (1) takes the form

�
d2x
d�2

+ (x2 − 1) dx
d�
+ x=0; ��1 (16)

For the almost linear oscillation an asymptotic solution valid over the entire time interval
could be made. For the relaxation oscillation that is not the case: three approximations are
made valid for three time intervals of half the period (symmetry), see Figure 1. These local
solutions should match meaning that in a small domain of overlap where two approximations
are valid the expansions of both solutions should be identical. For a survey of the di�erent
methods in literature that handle this problem we refer to Reference [6]. The method of Carrier
and Lewis [11] suits very well for our purpose of approximating the non-trivial Lyapunov
exponent. Others, e.g. Dorodnicyn [12], put much more e�ort in approximating asymptotically
the period and amplitude of the relaxation oscillation with (4), (5) as result.
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Figure 1. The periodic solution over half a period with the three intervals where
a local asymptotic approximation is made.

The three time intervals mentioned above are separated by the points

�0 =− T
2�
+ ��2=3 + r�; �1 =−p�2=3; �2 = ��2=3 − q� and �3 = ��2=3 + r�

In these expressions p, q and r denote parameters that are large but independent of �. By
varying these parameters the points �1, �2, and �3 move through the domain of overlap. The
three local approximations are as follows [6]:
Interval 1 [�0; �1]:

x(�)= x0(�) + x1(�)�+ · · ·
with the coe�cients satisfying

(x20 − 1) dx0
d�
+ x0 = 0; (x20 − 1)dx1

d�
+ 2x0

dx0
d�
x1 + x1 =−d

2x0
d�2

The �rst equation is not solved but used for the purpose of changing the integration variable
in (10) from t to x0 for the leading term of (10) coming from this interval. Next the second
equation is solved with x0 as the integration variable by eliminating �:

x1(x0)=
x0

x20 − 1
{
1
2
ln(x20 − 1)− 1

2
ln(x20) +

1
x20 − 1

}

Interval 2 [�1; �2]:

x(�)=1 + �1=3v(�) + · · · ; �= �2=3�

with

v(�)=−Ai
′(−�)

Ai(−�) ; v(�)≈
√

−�− 1
4�
+ O(�−5=2) for � ↓ − ∞
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Interval 3 [�2; �3]:

x(�)=w(	) + · · · ; �= �2=3�+ �	

satisfying

dw
d	
+
1
3
w3 − w + 1

3
A3 − A=0

where A is the amplitude given by (4).
The Lyapunov exponent �2 is composed of three components that correspond with the

periodic solution as it holds in the three intervals:

�2 =− �
T

∫ T

0
{x2(t)− 1} dt=−2�

2

T
(I1 + I2 + I3) (17)

with

I1 =
∫ �1

�0
{x2(�)− 1} d�; I2 =

∫ �2

�1
{x2(�)− 1} d�; I3 =

∫ �3

�2
{x2(�)− 1} d�

These integrals can be approximated using the locally valid approximations of the solution:

I1 ≈
∫ 1+�1=3

√
p

Ar
(x20 − 1 + 2�x0x1) d�dx0 dx0; Ar =2+

1
3
��2=3 +

(
1
3
T−1 − 2

3
r
)
�

I2 ≈ −2�
∫ �−q�2=3

−p

Ai′(−�)
Ai(−�) d�

≈ �
[
2 ln(Ai′(−�) + 2 ln(2q) + 2

3
ln(�) + ln(�) +

1
2
ln(p) +

4
3
p3=2

]

I3 ≈ �
∫ −A+s(r)

1−1=q

x2 − 1
x − 1

3x
3 + A− 1

3A
3
dx; s(r)≈ 3�−3r−1

Working out the expression for the local contribution for interval I we obtain the following
result:

I1 = I10 + I11

with

I10 =
∫ 1+�1=3

√
p

Ar
(x20 − 1) d�

dx0
dx0 ≈ ln(2) +

3
4
+
3
2
��2=3 +

(
3
2
T−1 − 4

3
p3=2 − 3r

)
�

and

I11 =
∫ 1+�1=3

√
p

Ar
2�x0x1

d�
dx0

dx0 ≈ −5 ln(2)− 5
2
ln(3)− 1

3
ln(�)− 1

2
ln(p)
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in which the parameters p and q (as well as r) cancel out in the �nal summation,

I1 + I2 + I3 =L0 + L2=3�2=3 + L1(�)�+ o(�)

where

L0 = ln(2) +
3
4
; L2=3 =

3
2
�

L1(�)=
1
3
ln(�) +

3
2
T−1(�)− 3 ln(2) + 2 ln(Ai′(−�)) + ln(�)− 5

2
ln(3)

Consequently, using (5), (15) and (17) we obtain for � ↑ ∞

�2 =−2�
[
L0
T1
+
1
T 21
(T1L2=3 − T−1=3L0)�−4=3 +

1
T 21
(T1L1(�)− T−1(�)L0)�−2 + · · ·

]
(18)

5. COMPARISON WITH THE NUMERICAL APPROXIMATION

The periodic solution can be approximated numerically over its full period T by taking as
starting value

x(0)=A; x′(0)=0 (19)

The numerical value of T , as it depends upon �, is taken over from Reference [2]. In
Figure 2 this numerical approximation of −�2=� is compared with the asymptotic

Figure 2. The dependence of −�2=� upon �: the asymptotic approximations are
compared with the numerical approximation.
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Table I. The Lyapunov exponent �2 for large �: by numerical integration and by
asymptotic approximation (18). The di�erence is R(�)=�−1{�as2 (�)− �num2 (�)}.

� −�num2 =� −�as2 =� R(�)

1 1.0648 2.6957 1.6309
5 1.4724 1.4757 0.0033
10 1.6358 1.6423 0.0065
25 1.7398 1.7418 0.0020
50 1.7691 1.7697 0.0006

expressions (14) and (18). It is noted that both asymptotic approximations breakdown suddenly
and that there is no overlap. Such an overlap comes within reach if in the regular expansion
(12) a larger number of terms is included [5]. The decrease of the remainder term R(�)
for increasing � is as expected. It is remarked that it does not exactly keep pace with the
asymptotic order of the �rst neglected term. From one side this comes from the fact that the
coe�cients of the expansion tend to have larger values for higher order terms. At the other side
the accuracy of the numerical solution tends to decrease slightly because of the increasing
sti�ness of the di�erential equation for increasing �. The di�erence of approximation (18)
with the su�ciently accurate numerical approximation of the Lyapunov exponent is given
in Table I.
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