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Resonance in a Rigid Rotor with Elastic Support

Fiir einen Rotor mit elastischer Halterung in axialer wie auch seitlicher Richtung wird ein Maodell Sformuliert, duas auf das
Stabilitdrsproblem fiir kleine Vertikalschwingungen in senkrechter Position fiihrt. Dies ist ein autoparametrisches Erregungspro-
blem, das in Gestalt zweier gekoppelter Mathieu-dhnlicher Gleichungen formuliert werden kann. Die A nalyse der Spezialfille
ohne und mit (linearer) Dimpfung sowie der Fall nichilinearer Dimpfung werden ausgefithrt, wobei Mittelung und numerische
Bifurkationstechniken angewendet werden, die im nichtlinearen Fall auf Hysteresis und Phasensynchronisierung fiihren.

A model is formulated for a rotor with elastic support in axial and lateral directions which leads to the problem of stability
of small vertical oscillations in the upright pesition. This is an autoparametric excitation problem which can be formulated as
two coupled Muthieu-like equations. The analysis of the cases without and with (linear) damping and the case of nonlinear
damping Is carried out using averaging and numerical bifurcation techniques leading in the nonlinear case 10 hysteresis and

phase-locking.
MSC (1980): 70E05, 70J05, 70J30, 70K 20, 70K 30, 33A55, 3430, 34E10, 58F 14, 65L60

Introduction

Some rotating machines, e.g. centrifuges, can be modelled by a rigid rotor which is elastically mounted in lateral and axial
directions whose axis of rotation is vertical. It is assumed that the axial thrust bearing can be modelled as a joint. The
clastic mounting in axial direction is due to the elasticity of the thrust bearing support. In some cases the elasticity of the
floor on which the machine is situated can influence the elasticity in axial direction.

In this paper we study a basic model for this rigid rotor, which is assumed to be perfectly balanced. In particular,
the stability of small vertical oscillations of the upright position will be considered. Taking the amplitude of this oscillation
as the small parameter, introducing asymptotic expansions around the vertical oscillation leads, to first order, to a system
with two degrees of freedom, consisting of two coupled Mathieu-like equations. Depending on the frequency of the
oscillation and of the model’s parameters (such as mass, moments of inertia, rotational speed) parametric resonance can
occur. Using the method of averaging the frequency-range for which the motion becomes unstable is calculated in section 3.

In section 4 linear damping is added to the model, which leads to interesting changes in the stability domain.

The last two paragraphs are concerned with nonlinear damping. In section 5 the effects of various types of nonlinear
damping on the one degree of freedom Mathieu equations are summarized. Finally, in section 6 nonlinear damping is
added to the model of the rotor. Numerical bifurcation analysis of the averaged equation shows that the system then exhibits
hysteresis and phase-locking.

An interesting aspect is that most of the asymptotic expansions for the stable periodic solutions, obtained by
averaging in these problems, yield approximations which are valid for all time.

L. Models for a rigid rotor with elastic support in axial and lateral directions

The following formulation is based on [10]. Consider a rigid rotor, consisting of a heavy disk of mass M which is rotating
around an axis (Fig 1). The axis of rotation is elastically mounted on a foundation and has a joint in point A4: the
connections which are holding the rotor in an upright position are also elastic. To describe the position of the rotor we
use the axial displacement u in the vertical (z-) direction and the angle of the axis of rotation with the z-axis, #, and
around the z-axis, ¢. See Fig. 1.

The distance between the centre of gravity B of the rotating disk and the point 4 is R. The moments of inertia are
I, 1, and Iy where, because of the symmetry of the rotor, I, = I,. The equations of motion will be derived in a conservative
frame-work, using Lagrange equations, after which we add various kinds of friction. The main purpose will be to study
the stability of the upright position of the rotor. depending on the system’s parameters; so the equations will be linearized
around # = 0, the upright position.

2. The equations of motion
In order to derive the Lagrangean, the kinetic energy with respect to the origin O has to be established. This can be writien as

T =T, £ 'M0% + 4 Y me!, (2.1)
1 2 - ity
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where T, is the kinetic energy with respect to A, and »{® is the z-component of the velocity, with respect to A4, of a particle;
the sum being over all particles in the rotor (see Fig. 1). Because of the symmetry of the rotor, this is equal to the total
mass of the rotor times the z-component of the velocity of the centre of mass, so that

iy mp® = —MRifsin 0, (2.2)

13

We wish to study the stability of the upright position of the rotor by considering small oscillations around 8 = 0. In order
to have the centre of gravity actually passing through 6 = 0, we assume that the angular velocity with respect to the z-axis

remains constant, say « (see [5]). In that case we can write:

T, = 41,(6% + ¢?sin? 0) + $ I, (@ + (cos 6 — 1) ¢)*. (2.3)
The kinetic energy (2.1) with respect to O then becomes:

T =41,(6% + ¢sin?0) + L Iy(w + (cos 6 — 1) ¢)? +  Mu* — MRubisin 0. (2.4)
The potential energy is given by

V = Mg(Rcos 0 + u) + kR?sin® 8 + kyu?, (2.5)

where k and k are the coefficients of the lateral stiffness of the mounting and of the vertical stiffness of the axis, respectively.
We will look at the projection of the centre of gravity on the x,y-plane, given by

x = Rsinfcos ¢, y = Rsinfsing,

which leads to

- xxX 4+ yy q_)_xy—yx
VRE =2 = ) (2 + ) oy

Inserting these expressions into the kinetic and potential energies (2.4 — 5) and retaining the linear and the quadratic terms
around x = y = 0, gives:

] I P Lo RS T ) ,
lin = 7 R (x° + y9) + 5 I3t w? — Py (xy — yx)) + 5 Mu* —~ M 7 (xX + vy, (2.6)

. Mgy b b
bow = Mg(R 4+ 1w} + \k TR (x° 4 37 + kgu” . {2
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d/o 0
The Lagrange equations, 4 <~5~ (T — V)) T e (T —Vy=20,i= 1,2, 3, become:
11 X;

xi i

1% + Loy + (2kR* — MgR) x = MRiix,  I,j — Lo¥ + (2kR* — MgR) y = MRiiy 28)

2’(0 1 ¥y
b —— = — (% + xX 4+ 9P+ y)) — g
v R ¥ ¥y g

i

s . . . . ,  2kR* — MgR
Dividing the first two equations by I, and using the scaling t = Q¢ with Q2 = =57 finally produces:
1
MR MR |
X"+ 2ay + x = ——u'x, y'o—2ax' + y = —u"y,
I 1,
1 g (2.9)
WAty = — (X xx” Y 4y - 2
" R ( Vot ) o
I 2k
with 2 = 2 o, dp? = 20
1,9 QM
A special solution of this equation, oscillation in the upright position, is given by x = y = 0 and
g Mg ;
ug(t) = acos 2nt — =acosnt — — . (2.10)
ol) ] TS n ok,

We will consider the situation that a < 1, and study the stability of this solution by postulating asymptotic expansions
for x, y and u:

M 1
Xx=exy+e%x, 4+ ..., y=ey +EV, 4+ .., u= —fﬁ——j\;{%acos%tﬁ—azulﬁ—..., (2.11)
0

. MR .. . . . . .
with ¢ = @ —— a small positive parameter. Inserting these expressions into (2.9) yields up to first order in ¢:
1

x{ + 2o9] + x; = —4en? cos 2ytx, yi — 2axy + y, = —4en? cos 2nty, . (2.12)

In the equation for u all terms to order ¢ vanish.

3. The linear system (2.12) or (3.1)

We replace (xy, y,) by (x, y). Neglection of O(¢?) terms means neglection of all nonlinear terms in a neighbourhood of the
trivial equilibrium solution (x, X, y, y) = (0, 0, 0, 0) of system (2.9),

X+ 2ay + (1 + den?cos 2nt)x = 0, ¥ — 2ax 4+ (1 + 4en’cos2qt)y = 0. (3.1)

System (3.1) constitutes a system of Mathieu-like equations: note that we have also neglected the effects of damping, see

sections 4 —6. The frequencies of the unperturbed, ¢ = 0, system (3.1) are o, = l,/gz + 1+ xand w, = V/ozz + 1 — o It
is well-known that the frequency of the autoparametric excitation 25 being close to certain resonances with the
cigenfrequencies of the unperturbed system (¢ = 0) causes the trivial solution to be unstable. We shall determine the
instability domains for ¢ small.

Putting z = x -+ iy system (3.1) can be written as

F— 2uiz + (1 + den?cos 2t z = (3.2
Introducing

v =g 2 (3.3)
and putting nt = t we obtain

v+ (IM;—T&Z + 4ecos 21\) v =0, (34

where " denotes differentiation with respect to r. This is the Mathieu equation, see for mstance [6. 11].
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We conclude that the trivial solution is stable for ¢ small enough if V1+ 2+ np, n= 1,23, ... A primary

resonance, n = 1, arises if

V1 +a? =y, (3.5)
If (3.5) is satisfied the trivial solution of equation (3.4) is unstable. So, because of (3.3), the trivial solution of system (3.2)
and (3.1) is unstable. Note that instability arises if

wy + w,y =25,

Le. if the sum of the eigenfrequencies of the unperturbed system equals the autoparametric excitation frequency 2. The
domain of instability can be calculated as in [I1], appendix 2; we find for the boundaries:

n = VT;*;; (1 +2) + 0. (3.6}

It must be kept in mind that « is proportional to the rotating frequency of the disk and to the ratio of the moments of
inertia; see (2.9). A secondary resonance, n = 2, arises if

Ty (3.7)

=L+l (L+5e) +06Y,  21=)1+ (1 — 556 + 0. (3.8)

Higher order resonances can be studied in the same way; the domains of instability in parameter space continue to narrow

as n increases.

4. Effect of linear damping on the instability-interval

Adding small linear damping to‘system (3.1), with positive damping parameter u = 2sx leads to the equation
F— 20z + (1 + den®cos 2yt) z + 2emz = 0. (4.1)

Because of the damping term, we cannot reduce to a single second order real equation.
The solution of the unperturbed (¢ = 0) equation can be written as

z(t) = z, e+ z,e7 ™ 25, eC, (4.2)
. ST T Sy . . . .
with w, = }/a? + 1 + o, w, = [/a? + | — . Applying variation of constants, we find
1 2
P iwt 5 —iwat
e+ Z,e =0
_ . . , , 4 (4.3)
i@, 7, e oy, e TN = (Dl 2y € — dw,zy e ) + den? cos 2tz e 4z, e i),
From (4.3) we get the equations for z; and z,:
: e : ; —i(wy ot 2 —ilwy +wa)r
2y = o — (2xliwyzy — w25 ¢ O 4 dpteos gtz + ze ),
Wy + w, .
(4.4)
; —“ ( ifwy +wzdt : 2 iy bt
3y = e — (2l z, TV — yazn) + 4y cos 2pp(c, e TP 4o 20)) .

oy + o,
We want to calculate the instability-interval around n = 1, = L (w, + w,) = Vozz + 1. To this effect we put

=N+ to, (4.5)
where o s a parameter, independent of ¢, which indicates the distance to exact resonance and calculate the values of o
for which the trivial solution of (4.4) becomes unstable.
Inserting (4.5) into (4.4) yields:
: I : : = 2oty 2 ingt L 2int o 2ieat = 20y o) I
Iy = — (xlimzy — iwyIy e IS Do o S )+ oa(e T e M.
1]
To {4.6)
—io . , e .. L
Iy = e el ny ™ — ez 4 optz (et e ST b e e T
o

[N
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After transforming
zp =0, e oz, = p, i 4.7

we get equations that are in a suitable form for averaging over ¢ (see [7]):

£ . ) ) )
by = — (= (w3 + iane) vy + Xwyv, e 4 iﬂz(vx(ezw +e72m) 4 v(1 + e *my)),

o (4.8)

I

by = — (w0, € — (W, — iong) v, — in(v, (1 + ) 4 v, (e 4 o 2imy)
No
The averaged equations for v; and v, become:
. £ ] . . £ . .
Uy = — (—(wyx + iong) vy, + indv,), Uy = — (—=ingo, — (wyx — ion,) vy). (4.9)
0 (3]

The stability of the trivial solution of (4.9) and therefore of (4.6) is determined by the real parts of the eigenvalues of (4.9).

Let X’ be an eigenvalue of (4.9). Define A by 1’ = £ A. The eigenvalue equation for (4.9) becomes:
No

A%+ 2no%d + %2 — 2iaxon, + o*nd —né =0 (4.10)

which has the roots:

ATT = —nox & V(e + ingo)? + e (4.11)

For % = 0 (no damping), we find that 1+ = I/ns — ond, and so the trivial solution is unstable if [o] < 5, as we already
found in section 3. However, if x > 0 we find after some calculations that Re (A% > 0iff:

o < g — %2 (4.12)

if 5 — %* > 0, otherwise there is stability for all values of o. There is a curious Jump-phenomenon associated with these
results which is connected with non-smooth dependence of parameters in eigenvalue equations. In Fig. 2 we have indicated
the boundaries of stable-unstable behaviour in an ¢n-diagram. If » = 0 equation (3.6) of section 3 applies; if % > 0 we
find with (4.5) and (4.12) to first order (we recall that u = 2ex)

2 2
i1b=]/1+Ot2<1‘f_'6|/1+062-—-%2—+...>= 1+a2<1i|/(1+a2)32—g’7—/ﬁ) +> (4.13)
0 ',,0

It follows from Fig. 2 and F ig. 3, that the domain of instability actually becomes larger when damping is introduced.
We also note that for x — 0, =1 +a?(l +e [/1 + o), which differs from the result we found when x» = 0:

o =11+ a* (1 + ).

Fig. 2. Boundaries for stable-unstable behaviour Fig. 3. Boundary for stable-unstable behaviour; domain of in-
(2 domain of instability if x = 0 stability shaded. Thick line indicates stability interval for x = 0
(3 domain of instability if > 0, fixed
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Another illustration of this phenomenon is given by Figs. 4a and 4b. These figures show the four eigenvalues A, of
the averaged equations for z, and z, in the complex plane, as ¢ is varied. These eigenvalues can be calculated from (4.11)

and transformation (4.7). This yields the four expressions:

. ) w Vo,
A, =¢| —x + ioc + — +ic) +n5.
No

In the figures the factor ¢ is scaled out and « = 1. In Fig 4a we see the situation for » = 0. Starting at ¢ = 0, there are
two double eigenvalues (+#, and —#n,), which split up as o starts to grow. The real parts of the eigenvalues (given by

Rel= +| ng — o) diminish in absolute value until they reach zero when ¢ = 5,. For o > 5, all eigenvalues are purely

imaginary and the zero-solution of (4.9) is stable. In Fig. 4b we see how this situation is perturbed when » > 0. If
2
1+ o? — % > 0, the eigenvalues that split off of the positive eigenvalue reach the stability boundary (the imaginary axis)

No
later than in the case x = 0. This corresponds to the broadening of the instability domain (Fig. 2}. Also, when » > 0, the

imaginary axis is crossed at the origin, whereas when » = 0, the imaginary axis is reached at +in,. This shows that the
point in the complex domain where the real part of the eigenvalue becomes zero, does not depend continuously on .

Mechanically this is caused by the coupling between the two degrees of freedom of the rotor in lateral directions
which arises in the presence of damping. Such phenomena have been noted earlier in the literature, see [1, 2, 3].

We remark finally that it cannot be excluded that the boundary curve in the x,0-diagram (Fig. 3), when nearing
the g-axis if x tends to zero, suddenly bends away from the values ¢ = +#? to approach ¢ = +n,. Because of the
asymptotic validity of our calculations, this bending should take place in a boundary layer of thickness ¢ along the g-axis.
By performing calculations to second order — we omit the technical details — we have shown that the jump phenomenon

is still there to O(g?).

5. One-dimensional autoparametric excitation with nonlinear damping

The one-dimensional case can be seen as the limit case as « tends to zero which decouples the two degrees of freedom of
system (3.1). It can also be seen as a one-dimensional oscillator with variable support.

The one-dimensional case with nonlinear damping is also a prototype for the full system. The results are well-known,
see [9], but as there is no adequate survey available, we summarize the results in three significant cases. Each of them
contains saddle-node bifurcations leading to stable periodic solutions.

a. Quadraticdamping |x| x.

The equation becomes

X4 (1 + dentcos p0) x 4 exx + 8f(x, ¥)x =0 (5.1)
with % > 0, 3 = 0; first we take f(x, x) = |x|, so we have progressive nonlinear damping. Putting again t = 5t we have
o 1 l X, B ,
=l bdecos2rx e X b e —[x[ X =0 (5.2)
1 1 n

with primary resonance if  is near to one:

i=1 4+ so.
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To perform averaging, see [11], we use an amplitude-phase representation x = r cos (t+ ), x' = —rsin(t + )
and to study the trivial equilibrium solution Cartesian coordinates u = r cos ¥, v = rsin p; note that we are not permitted
to use polar coordinates near (0, 0).
Introducing the Lagrange standard form, averaging and omitting the terms of order &? we find

r=elrsin2y —dur —1or%), oy = e(—o + cos 2y). (5.4)

In Cartesian coordinates system (5.4) becomes

W=e(—dou+ (1 +0)v—16w+ 0?2y, } 55)
vVi=e(—$uv + (1 —o)u— 45w + V)2 ).

Apart from the trivial solution (4, v) = (0, 0) two non-trivial equilibrium solutions exist if
o< l—1x2,  §>0. (5.6)

Solution (0, 0) is unstable (2 real eigenvalues) if (5.6) is satisfied; at 62 = | — 1 %* the non-trivial solutions vanish, (0, 0)
becomes asymptotically stable (2 negative eigenvalues) for increasing o.

At the two points 6 = +(1 — 4%%)!2 we have a saddle-node bifurcation producing a stable non-trivial equilibrium
solution. Returning to the original coordinates x, x, equilibrium solutions presented here correspond with 2r-periodic
solutions in 7 of the original rotor system.

What happens mechanically is this. Near the primary resonance (5.3) the basic rotor motion becomes unstable but,
because of progressive nonlinear damping, the motion remains bounded and tends towards a stable periodic solution. An
O(e) approximation valid for all time (see [7], chapter 4) is

2/1 — % —
id %cos @t + v,), cos2yp, =g, sin 2y, > 0 (5.7)

x,(t) =

with two solutions for Wy

b. Cubic damping x3.
In (5.1) we have f(x, %) = %2 Performing averaging to first order near the primary resonance (5.3), only the terms with
coefficients § are changing. In (5.4) the last term in the equation for r becomes — 36r’. In (5.5) the last terms become
— 30 + v)uand — 2 5(u? + v%) v, respectively.

Again we have that apart from the trivial solution (u, v) = (0, 0) two non-trivial equilibrium solutions exist if

o2 <1 —4x?, 6>0. (5.6)

The stability behaviour of the equilibrium solutions is exactly as in the preceding case. If the non-trivial equilibrium
solutions exist, an O(g) approximation of the corresponding periodic solution, valid for all time, is

2] N5 N\
x,(t) =2 (———3—;“1> cos (2nt + ), cos 2y, = o, sin 2y, > 0 (5.8)

with two solutions for ,

¢. Cubic damping x3x.
In (5.1) we have now f(x, %) = x2. Performing averaging near the primary resonance (5.3) again only terms with coefficients
are changing. In (5.4) the last term in the equation for r becomes — #6r’. The bifurcation behaviour, (5.6), and the
stability behaviour is the same as before, If the non-trivial equilibrium solutions exist, an O(g) approximation of the
corresponding periodic solution, valid for all time, is

21/1 — 6 — 3\12
x,{t) = 2( 5 ) Cos (2t + ), cos 2y, = o, sin 2y, > 0 (5.9

with two solutions for Py

6. Hysteresis and phase-locking in two degrees of freedom

We will take as damping function: f(z, 7) = »z + dlz|? 2. After scaling of z by a factor (k/8)V2, the equation becomes

2= 2ioZ + (1 + den’ cos 2n) z + exi(1 + [2%) = 0 (6.1)

and after transforming w = ¢ ™™ - and scaling yt = 1, y = V] + 2% (1 + ¢o):

w iow '
W' w o [4 cos 2t w — 2ow + x (":':T"'t’ + "”’2) (I + Iw|2)J = 0. (6.2)
V1+o? 1+ .
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For & = 0, the solution is w = A& + Be ", 4, Be €. Applying variation of constants to 4 and B leads to the equations

Il

ie . —is .
%»g(A, Booe ™. B = gl B (6.3)

iaw . .
+ ~——»»~7> (1 + |w]?), where for w and w we have to substitute
+ x

Il

with gid, B,1) = dcos2t-w — 20w + X <

w=Ae"+ Be ¥ and w = i(d elt - Be"»ir)'

The right-hand-side of (6.3) is 2n-periodic in 7 and can therefore be averaged over t. This leads to the equations

e ix ; is , L
A= D28 =204+ g b0 Al ) A4 + 22AB) |
né ni
10 To ; (6.4)
i i‘ . 5
p == [2‘4 — 2B — % — 0 B — % (1o — %) BIB]* — 2aB Aiz)},
2 o o
where 1, = Lﬁlﬁ—haz
Introducing polar coordinates, A = r, ¢*’, B = r, e’ yields
) ) 2w, -2 ) ry
Fo=e|rysin(@y — @) — il + ) — oy, @y = 8008 (py — @) =0 |3
205 No . ry ,
(6.5)
, X Xy S HE ) ry
ry=c¢|rysinfe, — @) — — 2l +r3) + =51, @y = &| —cos{py —@3) =07
245 no s

It is easily seen that (6.5) only has a fixed point if (in this point) r, = r,; this can only be the case if % = 0. From the
right-hand-side of (6.5), it is seen that only the phase difference yp = ¢, — @, isrelevant, so we can study the reduced system

) ) )y 7. S
ry=elrpsing — ol +r) = 5
2n5 Mo
. ) ®w, PR 2 ,
ry =¢lrysing — — rol +r3) + 5| (6.6)
215 No
e+
W=¢|-——""cosyp — 20|
rir

Equations (6.6) have been investigated with the help of the software package AUTO [4]. This computer program is, among
other things, able to track the fixed points of a system as a parameter (in our case: o) is changed, calculate its stability
and, most importantly, detect bifurcations. For system (6.6) the results are as follows: the zero solution ry =r; = 0is

unstable iff o] < 6, = [/T%— 2 — Lx?, as we already know [rom linear analysis; for 0 £ |g| < o, there is also an
asymptotically stable fixed point. For |a] > o, (see Figs. 5a and 5b), only the zero-solution is stable, and there are no other
fixed points. For o, < |g| < ¢, we have two non-zero solutions, one asymptotically stable and one unstable.

A o e e
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/ I
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504 NES ] soge 8, 170
(8] 0]
Fig. Su Amplitude r, of the steady-state periodic sohition of 6.ty Fig 5h Amplitude . of the steady-state periodic solution of 16.1)

as function of the detuning o as function of the detuning @
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In Figs. 5a and 5b, the r, and r, components of the fixed points are plotted as a function of . The lower half of
the *fold’, 6, < |o| < 0,, corresponds to the unstable fixed point. This bifurcation diagram shows that there is hysteresis
in system (6.6) and therefore also in systems (6.5) and (6.1). When |g| < oy, system (6.6) will tend to the non-zero fixed
point. As |o] is increased, this fixed point will remain an attractor until o, is reached, after which this fixed point disappears
and the solution will suddenly ‘jump’ to the zero solution. System (6.5) also exhibits phase-locking. When the reduced
system (6.6) tends to a non-trivial fixed point, this implies that the phase difference W = @, — @, will converge to a fixed
(and in general non-zero) value yp,. It then follows from (6.5) that for the asymptotically fixed point we can write:

. r
@.(t) = evt, ©a(t) = vt — p, with v = -Lcos Yo — 0.
Ty
We can now reconstruct the solution of the original equation (6.1) by inverting the various transformations, and
we find that for || < ¢, there exists a stable solution of (6.1) given by

Z(t) =r ei(w;t+sv1t) + r, ei(—w:!*wo**evt) + (0(8) (67)

on time-scale 1/, with w, = }/o® + 1 + o, , = Vo + 1 —aand ry, r, and y, (the fixed points of (6.6)) depending
only on ¢. Solution (6.7) consists of two dominant vibration components, one with forward precession frequency ), the
second with backward precession frequency —w,. For [o| > 0, this solution suddenly disappears and only z(¢) = Oremains
as an asymptotically stable solution.

7. Conclusions

The motion in axial direction can initiate the whirling motion of the rotor around the axis of rotation. This whirling
motion has two components: one consisting of forward, the other of backward precession. The frequencies of these
components are different due to the gyroscopic effect of the rotor.

The models analysed in this paper are of course a simplification of real rotor systems. One of the first extensions
we have in mind, is to include a slight unbalance of the rotor. Furthermore it would be interesting to consider the effects
of autoparametric excitation in other dynamical states of the rotor system, in particular of solutions with precession.

The use of averaging, in combination, at some stage, with a numerical bifurcation analysis to follow the branching
off and stability of periodic solutions, turns out to be very effective in these problems.
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