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Abstract Scaling time and spatial domains often
seem natural in ODEs, but unfortunately, its useful
explicit formdoes not always agreewith intuition.After
reviewing the well-known methods, multiple timing
and averaging, we will show that algebraic timelike
variables may play a part in bifurcations. Part of this
discussion is tied in with the problem of structural sta-
bility in the analysis of matrices, and another part is
determined by bifurcation theory of nonlinear systems.
Secondly, the theory of resonance manifolds for higher
dimensional problems involving at least 2 angles will
show the presence of unexpected small spatial domains
that may emerge involving long timescales and con-
taining interesting phenomena. A number of examples
from mechanics are presented to demonstrate the the-
ory.

Keywords Multiple timing · Timescales · Asymp-
totics · Resonance

1 Introduction

The theme of this paper is to discuss unexpected time-
like and spatial variables in differential equations. Con-
sider ordinary differential equations (ODEs) that con-
tain a small positive parameter ε:
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ẋ = f (t, x, ε), x ∈ R
n (1)

depending to some order smoothly on x and t for t0 ≤
t < ∞ and on the parameter ε for 0 ≤ ε ≤ ε0 and
x ∈ D, D ⊂ R

n ; the dot represents differentiationwith
respect to t . The smoothness implies that we can write
the right-hand side as f (t, x, ε) = f (t, x, 0) + O(ε).
A well-known example is the pendulum with oscillat-
ing support as displayed in Fig. 1.

A much more complicated problem is that of the
rotating flywheel on a vibrating foundation displayed
in Fig. 2. This problem is discussed in Sect. 8.

There are many more physical examples of such
problems, see for instance [18], also [11] and [12].

In modelling the pendulum system of Fig. 1, the
Equation of motion for the angle θ with the vertical
yields after linearisation near θ = 0:

ẍ + (ω2 + ε cos νt)x = 0. (2)

Studying differential equations, in particular initial
value problems, it seems natural to assume the presence
of timelike variables t, εt, ε2t, . . . on which approxi-
mate solutions depend. In other mechanical problems,
we have similar choices by scaling of spatial variables;
as an example, the rotating flywheel problem is dis-
played in Fig. 2, it is discussed in Sect. 8. Contrasting
with the approach of apriori guessing timelike and spa-
tial variables are several other methods like averaging
or renormalisation, normal form methods, where no
apriori assumptions on the form of time-dependence
or hidden spatial scales are made.
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Fig. 1 The pendulum has a
vertical, harmonically
oscillating support P , and it
is described in Sect. 5

φ

x

excentric mass

Fig. 2 A rotating flywheel has a small eccentric mass and is
mounted on a spring. It can move through resonance but it can
also move into a resonance domain and be locked. The analysis
of the model can be found in Sect. 8

The multiple timing idea of assuming the presence
of timelike variables was given already by Krylov and
Bogoliubov in 1935 [13]; an application can be found in
a paper by Kuzmak in 1959 [14]. After that, according
to [15], the Kiev school of mathematics had no interest
in multiple timing.

Much later multiple timing was studied in the 60s
and 70s in [9], [4] and for instance [18]. In these papers,
there is no reference to [13]. Spatial scaling in problems
that did not present itself as singular perturbations with
boundary layers came later. Small domains with differ-
ent qualitative behaviour can be hidden in x-space D
of equations like (1).

The scientific literature is rich on papers on the
approximation of solutions of ODEs like (1), we can
cite only a few of them. A critical comparison of aver-

aging and multiple timing by a number of important
examples can be found in [10]; this was the first paper
to show weak points of multiple timing. In [30], the
relation between averaging, multiple timing and the
renormalisation method was discussed following [2],
[3] and [16]. In [19], the asymptotic equivalence of the
averagingmethod andmultiple timing at first order in ε

was established for standard variational equations like

ẋ = ε f (t, x)

with O(ε) error estimate on intervals of time of order
1/ε. See also the extensive discussions in [17] and [23].

The following concepts and description are based
on [23] ch. 1.
Asymptotic equivalence of methods would imply that,
considering a solution of a differential equation x(t),
expressions x̄1(t) and x̄2(t) obtained by different meth-
odswould both represent an approximation of x(t)with
error δ(ε) = o(1) as ε → 0 on the same interval of time
(for instance of size 1/ε). Asymptotic expansions are
not unique; x̄1(t) and x̄2(t) may be different but both
acceptable approximations.

Following [23], we will indicate that an approxima-
tion with error δ(ε) is valid on an interval of size 1/ε. A
more precise statement is that the error estimate is valid
for t0 ≤ εt ≤ t0 + L with t0, L constants independent
of ε.

1.1 Set-up of the paper

To anticipate simple timelike variables as t and εt is
not a bad idea in the cases that the set of solutions, or
if you wish the dynamics of the problem is studied in a
structural stable setting. We mean by this that there are
no qualitative changes in the behaviour of the solutions;
later we will be more precise about structural stability.
However, if there is a qualitative change in the dynam-
ics, we may find the presence of unusual or unexpected
timelike variables and spatial domains.

A serious point is then that in research, we will
be especially interested in structural changes like the
emergence of periodic solutions, stability changes, the
presence of tipping points in dynamics, etc. Anticipat-
ing the timelike variables of a problem like εt, ε2t , etc.
conflicts with having an open mind about the possible
outcome of research.

In Sects. 2 and 3, we will review multiple timing
and averaging, and we explain the need and presence
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of algebraic timelike variables like εq t with q a ratio-
nal number in Sect. 4. Such variables arise in stability
problems after linearisation at an equilibrium and in
standard bifurcations that are found in many applica-
tions. In Sects. 4 and 5, we show that structural stabil-
ity problems of matrices produce already unexpected
timelike variables in linear ODEs.

Analysingnonlinear perturbationproblems,wehave
to use bifurcation theory, when discussing for instance
the Van der Pol-equation the use of Hopf bifurcation is
natural. Bifurcation theory is a large field, we discuss
only a few prominent cases.

A different topic starts with Sect. 7. In equations like
(1) describing oscillatory behaviour, there may arise
local resonance manifolds in x-space that are charac-
terised by small spatial size and unexpected timelike
variables. The presence of resonance manifolds is not
obvious and requires analysis. These problems are tied
in with passage through resonance and capture into res-
onance. Interestingly, such problems are found in both
conservative and dissipative problems. In Sect. 8, we
consider dissipative ODEs, in Sect. 9 Hamiltonian sys-
tems. A few examples show that we have to develop
fairly high order approximations to characterise the
dynamics.
A short discussion of other methods and some conclu-
sions are given in Sect. 11.

2 The multiple timescale method

Many small ε parameter problems are studied using
timescales like t, εt , ε2t and in general εnt with n ∈ N.
A simple but typical form of multiple timing runs as
follows. Consider the equation

ẋ = ε f (t, x) (3)

with f (t, x) T -periodic in t , the initial value x(0) is
given. We will look for solutions of the form

x(t) = x0(t, τ ) + εx1(t, τ ) + ε2 . . . (4)

with τ = εt , the dots represent the higher order expan-
sion terms. As the unknown functions x0, x1, . . . are
supposed to depend on two variables, we have to trans-
form the differential operator; we have to first order in
ε:

d

dt
= ∂

∂t
+ ε

∂

∂τ
.

Using this differential operator and the expansion, we
find

∂x0
∂t

+ ε
∂x0
∂τ

+ ε
∂x1
∂t

+ ε2 . . .

= ε f (t, x0(t, τ ) + εx1(t, τ ) + ε2 . . .)

Suppose we can Taylor-expand the function f to a cer-
tain order, collecting then the terms of order 1 and ε,
we find the simple partial differential equations

∂x0
∂t

= 0,

∂x1
∂t

= −∂x0
∂τ

+ f (t, x0).

The first equation produces

x0(t, τ ) = A(τ ), A(0) = x(0),

with A(τ ) still an unknown function; A will be deter-
mined in the next step. For x1 we find by integration

x1(t, τ ) =
∫ t

0

(
−∂A(τ )

∂τ
+ f (s, A(τ ))

)
ds + B(τ ).

The function B(τ ) is unknown and has to satisfy
B(0) = 0. If we are looking for bounded solutions
of Eq. (3), or even for periodic solutions, the integral∫ t

0

(
−∂A(τ )

∂τ
+ f (s, A(τ ))

)
ds

has to be bounded. This is called the secularity con-
dition. We can achieve this by determining A(τ ) such
that

dA

dτ
= 1

T

∫ T

0
f (s, A(τ ))ds. (5)

Assuming that f (t, x) has a Fourier expansion, this is
a natural condition as it means that the ‘constant’ term
of the expansion vanishes. The determination of A(τ )

implies that satisfying the secularity condition corre-
sponds with averaging the function f (t, x). The idea
of secularity conditions can be traced to the end of the
18th century, for instance in the writings of Lagrange
and Laplace (see [23]).

Example 1 Consider the Van der Pol-equation

ẍ + x = εẋ(1 − x2), x(0) = r, ẋ(0) = 0.

We will look for solutions of the form (4) in t and
τ = εt ; this leads to the well-known first-order result:

x0(t, τ ) = re
1
2 τ

(1 + r2
4 (eτ − 1))

1
2

cos t.
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If we have initially r = 2, the first-order approximation
is periodic. It has been shown that this first-order term
represents an O(ε) asymptotic approximation, valid on
the timescale 1/ε; see for instance [23] or [27].Multiple
timing and averaging (see next section) produce the
same first-order approximations in this problem.

3 The origin of timelike variables t and εt

Consider Eq. (1) in the expanded form

ẋ = f (x, t, ε) = f0(x, t) + ε f1(x, t) + O(ε2),

As this is supposed to be a perturbation problem, we
should be able to solve the ‘unperturbed’ problem

ẋ0 = f0(x0, t), (6)

to obtain the ‘unperturbed’ solution x0(t) = φ(t,C)

where C is an n-dimensional constant of integration.
Apply variation of constants (Lagrange) by putting

x = φ(t, y).

For y we obtain the equation:

ẏ = εg(y, t) + O(ε2), (7)

a so-called variational or slowly varying system. Note
that variation of constants is in general easier to apply
if the unperturbed problem (6) is linear. Averaging or
using the multiple timescale method produces a trans-
formed (normal form) equation:

˙̄y = εg0(ȳ) + O(ε2), (8)

a slowly varying equation for ȳ. We have transformed
x → y → ȳ without giving the details of the process
and until this point, no approximation has been applied.
Omitting the O(ε2) terms to start the approximation
process, and dividing the equation for ȳ by ε, we note
that the ‘natural’ first-order timelike variable for ȳ is
τ = εt .
Because of the transformation x → y, t is the zero-
order time variable for the original perturbation prob-
lem in x and so we have the variables t, εt .

The only assumptions until now are smoothness of
the vector functions on a suitable domain and the pos-
sibility of inversion of the variation of constants rela-
tions.We conclude that at first order, t and εt are natural
variables.

3.1 Averaging techniques

To explain the emergence of unexpected timelike vari-
ables, it is necessary to discuss briefly second-order
averaging and so we have to begin with first order. Sup-
pose that the variational system (7) has a right-hand side
that is T -periodic in t . We will consider the averaged
vector field

g0(y) = 1

T

∫ T

0
g(y, s)ds, (9)

where we keep y fixed during integration. Omitting the
O(ε2) terms in system (8), we have the approximating
system
˙̄y = εg0(ȳ). (10)

We can derive the error estimate that if y(0) = ȳ(0)we
have |y(t) − ȳ(t)| = O(ε) on the timescale 1/ε. For a
proof see [23] or [26].

To obtain a second-order approximation is much
more work, we will present the idea without all the
details. Consider eq. (7) in the form:

ẏ = εg(y, t) + ε2h(t, y) + O(ε3),

Put h0(y) for the average of h(t, y) over t , in general
we use the superscript 0 for an averaged vector field.
We introduce the n × n Jacobian matrix Dg(y, t) (dif-
ferentiation with respect to y only) and the vector field

u1(t, y) =
∫ t

0
(g(s, y) − g0(y))ds.

We compute the vector field

F1(t, y) = Dg(y, t)u1(t, y),

with average F10. Consider the equation:

ẇ=εg0(w)+ε2F10(w) + ε2h0(w),w(0) = y(0), (11)

then the expressionw(t)+εu1(t, w) approximates y(t)
with error O(ε2) on the timescale 1/ε. For a proof and
discussions see [23].
We gave explicitly these expressions to show that we
made no assumptions on relevant timelike variables.
An O(ε) approximation produces timelike variable εt ;
a subsequent timelike variable will be introduced by
solving the variational Eq. (11). We will see examples
later.

4 Algebraic timescales for bifurcations

One of the basic questions, often unsolved, of math-
ematical physics is to obtain a global picture of the
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behaviour of the dynamical system studied. If the sys-
tem at hand experiences qualitative changes when the
parameters of the systempass certain critical values,we
call them bifurcations. This can involve many causes;
it can be stability changes, emergence or destruction of
solutions, transitions to tori, chaos in its different forms
and other phenomena.

As inmany research problems the unperturbed prob-
lem (6) is linear, we need basic results frommatrix the-
ory. In addition, when we will study a special solution
like an equilibrium of Eqs. (10) or (11), we will usually
linearise near this solution, for instance to determine
stability. This also asks for matrix theory.

A second cause of qualitative changes is the bifur-
cations of a nonlinear part of the vector field when
a parameter varies. Standard cases are co-dimension
1 bifurcations like for instance pitchfork and saddle-
node; see Sect. 6.

A different cause of qualitative changes will be if in
phase-space we find local behaviour as encountered in
boundary layers that is very different from the global
behaviour. The occurrence of such local changes can
be quite unexpected, see Sect. 7.

All this knowledge will help to avoid making incor-
rect apriori assumptions on timelike and spatial vari-
ables.

5 Structural stability of matrices

Part of the (classical) material in this section can be
found in [27], in particular appendix 15.3. Before for-
mulating the theory, we consider as an introduction
the Mathieu equation (2) in its fundamental 1 : 2-
resonance with a slight detuning of the frequency ω.
The equation models the pendulum motion with oscil-
lating support shown in Fig. 1. Near the vertical axis
linearisation and replacing θ by x leads to the equation:

ẍ + (1 + εa + ε2b + ε cos 2t)x = 0, (12)

with ω2 = 1 + εa + ε2b; a and b are free parameters
independent of ε. See also Fig. 1.

Wesummarise the second-order approximation anal-
ysis in [27]. We apply Lagrange variation of constants
x, ẋ �→ y1, y2 to Eq. (12):

x = y1 cos t + y2 sin t, ẋ = −y1 sin t + y2 cos t.

0 1 4 9 16 20

24

ω

ε

2

Fig. 3 The gray Floquet tongues denote for which parameter
values ω and ε the trivial solution of the Mathieu equation is
unstable. In our approximations, we have described the lower
part (ε small) of the tongue emerging from ω = 1 as in Eq. (2),
the tongue shapes for large values of ε and other values ofωwere
obtained numerically

The slowly varying equations for y = (y1, y2) are after
averaging of the form ẏ = A(ε)y;

A(ε) = ε

(
0 1

2 (a − 1
2 )− 1

2 (a + 1
2 ) 0

)
+ O(ε2).

The trivial solution is stable if |a| > 1/2, unstable if
|a| < 1/2. For a = ±1/2,we have a first-order approx-
imation of the curves separating stability and instabil-
ity domains, see Fig. 3. The matrix A(ε) is singular
if a = ±1/2. The Floquet tongues are bounded by the
bifurcation curveswhere the transition fromunstable to
stable solutions takes place in (ω2, ε)-parameter space.

What happens at the tongue boundary, for instance
if ω2 = 1 + εa with a = 1/2 ? In this case we have to
first order:

A1 =
(

0 0
− 1

2 0

)
,

a typical degenerate matrix from bifurcation theory.
Following [23] or [27] we perform second-order aver-
aging following Sect. 3.1 to find as perturbation of A1:
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Fig. 4 The disc rotateswith constant frequency
, its foundation
produces at point P small vibrations of the form ε cosω0t

A2 =
(

0 1
64 + 1

2b
7
64 − 1

2b 0

)
, ẏ = εA1y + ε2A2y

Wefind for the eigenvalues of A(ε) to this second order
of approximation

λ2 = −1

4

(
b + 1

32

)
ε3 + 1

4

(
b + 1

32

) (
7

32
− b

)
ε4.

The O(ε3)-term dominates, b = − 1
32 produces a more

precise location of the Floquet tongue.
Near the boundary of the Floquet tongue we have

that λ2 = O(ε3); ii is remarkable that the timescale
ε

3
2 t plays a part in this problem. The timescales char-

acterising the flow near the Floquet tongue are derived
from second order of the eigenvalues:

t, εt, ε
3
2 t, ε2t.

The presence of the timelike variable ε
3
2 t was noted for

theMathieu equation earlier in [2], using the renormal-
isation method.

5.1 The rotating disc

A heavy disc is rotating on a vertical shaft. The shaft is
fixed at its suspension point P, but the centre of the disc
is free to make small vibrations in the horizontal direc-
tions, see Fig. 4. The point of suspension is elastically
attached to the foundation z = 0. As a first approxi-
mation, we assume that the suspension point oscillates
harmonically in the vertical direction. Following [20],
the equations of motion are as follows:{
ẍ + 2α ẏ + (1 + 4εη2 cos 2ηt)x + εκ ẋ = 0,

ÿ − 2α ẋ + (1 + 4εη2 cos 2ηt)y + εκ ẏ = 0,
(13)

with α dependent on the inertial moments and inverse
proportional to the rotational speed
, for the vibration
of the foundation we have a harmonic function. Damp-
ing is added with positive coefficient κ .
In [20], the case κ = 0, no damping, is analysed first.
The frequencies in the case ε = 0 are as follows:

ω1 =
√
1 + α2 + α, ω2 =

√
1 + α2 − α. (14)

We have a so-called sum resonance if ω1 + ω2 =
2
√
1 + α2 = 2η. Introducing detuning as in Eq. (12),

we obtain the same timelike variables characterising
the dynamics. For stability boundaries for the position
on the vertical axis, we find to first order in ε:

η =
√
1 + α2(1 ± ε). (15)

For the standard calculations onMathieu equations see
also [26]. Mechanical rotation effects in combination
with the parametric resonance produces with κ = 0
an instability tongue depicted in Fig. 5. A remarkable
result is found if we add small damping; if κ > 0, we
find by eigenvalue analysis of the matrices the stability
boundaries to order ε:

η =
√
1 + α2(1 ± ε

√
1 + α2). (16)

As this result is valid for arbitrary positive κ , the
resulting boundaries differ essentially from the sta-
bility boundaries given by (15). The domain of insta-
bility becomes actually larger when damping is intro-
duced. Mathematically, this phenomenon is caused by
the structural instability of matrices as explained in
[8]. Physically, it can be understood from the fact that
damping introduces an extra coupling between the 2
degrees of freedom of the rotating disc. See also Fig. 5.
Instability caused by damping is an important phe-
nomenon in 2 or more degrees-of-freedom systems
with rotating components. For introductory surveys see
[11] and [12].

Remark on weak coupling and damping

It is interesting to consider the case of a weaker cou-
pling of the rotating system by putting α �→ εα. One
can also put κ �→ εκ . With these assumptions, the sta-
bility matrix requires a second-order averaging calcu-
lation, and the resulting 4×4 matrix contains elements
with terms mixed of ε and ε2. To first order, we have
the situation of Fig. 5 (left figure) without damping. It
is not known if adding the terms O(ε2) may produce
qualitative and quantitative changes.
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Fig. 5 In the decoupled
systems (α = 0), we have
the standard instability
tongues where damping
decreases the instability
domain, see left figure. In
the coupled rotating system
(α > 0), the damping κ

increases the instability, see
right figure

5.2 Results on stability of matrices

We start with Eq. (1) of the form ẋ = f (x, t, ε) to
find an equilibrium or special solution ψ(t) and study
the behaviour of this solution as the parameters are
changing; we need to calculate eigenvalues, Lyapunov
exponents or characteristic multipliers. As we saw in
the Mathieu equation and will also see in the examples
later on, bifurcation phenomena in ODEs lead by aver-
aging and local linearisation to studying systems of the
form:

ẋ = A(ε)x .

We assume that we can expand

A(ε) = A0 + εA1 + ε2A2 + ε3 . . .

Then×n-matrices An are independent of ε.Usually,we
have A0 derived from the unperturbed problem, A1 is
produced by perturbation methods, and sometimes we
will have some knowledge about higher order terms.
An important question is then if the eigenvalues of A0

and A0 + εA1 are in a sense typical for the eigenvalues
of A(ε). This question is determined by the structural
stability of the matrices and whether eigenvalues are
single or multiple. Failure of structural stability and
the presence of multiple eigenvalues is characteristic
for bifurcation phenomena.

We give a definition:
A n × n matrix is called structurally stable if it is non-
singular and all eigenvalues have nonzero real part. If
we have a zero eigenvalue or purely imaginary eigen-
values, we can expect bifurcations. As we shall see
later on, multiple eigenvalues may affect the form of
the expansions and timelike variables.

Multiple eigenvalues of the matrix A0 or A0 + εA1

may produce eigenvalues of the order εq with q a ratio-
nal number. Consequently timelike variables like εq t

play a part. We can predict the occurrence of such alge-
braic timescales from the actual eigenvalues. We add
an example.

Example 2 Consider a system that can be obtained
from linearisation near an equilibrium of a chemical
reaction equation or an interacting system in popula-
tion dynamics:

ẋ1 = −εx1 + εx2 + ε2x3, (17)

ẋ2 = εax2 − εax3, (18)

ẋ3 = (εa − ε2b)x2 − εax3, (19)

with constants a, b > 0. The eigenvalues of the coeffi-
cient matrix are as follows:

−ε,±ε3/2
√
ab

with timelike variables εt, ε3/2t.

5.3 Classical results

Results for timelike variables from matrix expansions
are essential for a sound analysis of our problems.
We summarise a few 19th century results referring to
[27] appendix 15.3 for references. Consider the matrix
expansion with A0 structurally stable:

A(ε) = A0 + εA1 + ε2A2 + ε3 . . .

1. If λ0 is single, we have

λ(ε) = λ0 + ελ1 + ε2 . . .

2. According to Newton-Puisieux: If λ0 is multiple,
fractional powers of ε are possible in the expansion
of the eigenvalues.

Example 3 Newton-Puisieux expansion
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Consider again the equation ẋ = A(ε)x with for the
matrix A(ε):

A(ε) = ε

⎛
⎜⎜⎝
1 0 0 0
1 1 0 0
0 −1 1 0
0 0 0 1

⎞
⎟⎟⎠ + ε2

⎛
⎜⎜⎝
0 0 1 0
0 0 0 0
0 0 0 0
0 0 1 0

⎞
⎟⎟⎠

A0 is the matrix with zero elements so we consider A1.
The characteristic equation of εA1 produces 4 equal
eigenvalues ε. The matrix εA1 + ε2A2 has the charac-
teristic equation:

(ε − λ))((ε − λ)3 − ε4) = 0.

The eigenvalues are as follows:

λ1=ε, λ2=ε − ε4/3, λ3,4 = ε − 1

2
(−1 ± i

√
3)ε4/3.

Againwe find timelike variableswith a fractional expo-
nent of ε.

6 Co-dimension 1 bifurcations

The theoryof bifurcations is a large andwell-researched
topic. Bifurcations, qualitative changes in the dynam-
ics, are often found when analysing variational equa-
tions. This leads often to interesting phenomena in a
nonlinear setting where certain parameter values are
identified that may cause qualitative changes We con-
sider here the simplest but often occurring case where
we have one or two parameters involved. The exam-
ples we discuss are low dimensional, so-called co-
dimension 1 bifurcations. Such bifurcations may arise
in subsystems ofODEs after first- or second-order aver-
aging.

A simple example is the saddle-node bifurcation
described by:

ẋ = a − bx2. (20)

If ab < 0, there is no critical point; suppose ab > 0,
then we have the critical points x0 = ±√

a/b. Their
stability and local behaviour with time is described by
the coefficient of linearisation −2bx0 = ∓2

√
ab near

the critical points. If for instance a = ε2, b = ε, the
leading timelike variable is ε3/2t .

Consider the system inspired by the pitchfork bifur-
cation:

ẋ = ε2y − εy3, ẏ = εx . (21)

Three critical points (equilibria) are (x0, y0) = (0, 0),
(0,±√

ε). Linearisation near the critical points (o, y0))
produces:

ẋ = ε2y − 3εy20 y + . . . , ẏ = εx,

where the dots represent the neglected nonlinear terms.
We have the characteristic eigenvalue equations and
timelike variables near the critical points:

(0, 0): λ2 − ε3 = 0, timelike variable ε3/2t .
(0,±√

ε): λ2 − 2ε3 = 0, timelike variable ε3/2t .

In general, we expect in regions where bifurcations
occur and for higher dimensional problems the pres-
ence of timelike variables of the form εq t with q a
positive rational number.

As we will see, an example of the pitchfork bifur-
cation is found for the amplitude in the Van der Pol-
equation.

Example 4 Consider the Van der Pol-equation in the
following form:

ẍ + x = εẋ(a − x2). (22)

If parameter a < 0, the oscillations will be damped,
and there is no periodic solution. With a > 0, we have
after first-order averaging

ṙ = ε

2
r(a − 1

4
r2), φ̇ = 0. (23)

If parameter a starts at a negative value and we let it
increase, it will pass through zero and for a > 0 a
periodic solution emerges with amplitude 2

√
a by a

pitchfork bifurcation. It starts with a being small, say
a = ε. This is the situation where we have the timelike
variable ε3/2t . We improve the reasoning by writing
Eq. (22) as:

ẍ + x = −εẋ x2 + ε2 ẋ .

In amplitude-phase variables r, φ the variational system
to O(ε) becomes:

ṙ = −εr3 sin2(t + φ) cos2(t + φ),

φ̇ = −εr2 sin(t + φ) cos2(t + φ).

First-order averaging produces:

ṙ = −ε
1

8
r3, φ̇ = 0.

Computing the quantities Df and u1 in the notation of
Sect. 3.1, we find an O(ε2) contribution for the phase
and the amplitude; for the amplitude we have:

ṙ = −ε
1

8
r3 + ε2

r

2
. (24)
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We find that the the amplitude of the periodic solution
grows as 2

√
ε.

7 Resonance manifolds

To obtain variational equations can be more difficult if
the unperturbed system ε = 0 of Eq. (1) is nonlinear.
In such cases, we may obtain a formulation like:{
ẋ = εX (x, φ) + O(ε2),

φ̇ = 
(x) + O(ε),
(25)

with x a Euclidean n-vector, φ = (φ1, . . . , φm) a m-
dimensional angle-vector. The order functions multi-
plying the right-hand sides are different, the variations
of the angle φ are O(1) unless we are in a neighbour-
hood of the zeros of the vector field 
(x).
In general, the Fourier expansion of X (x, φ) will con-
tain combinations of the angles (φ1, . . . , φm). As we
will see, in systems of the form (25) we have to account
for the presence of resonance manifolds.
Problems of this type arise both in dissipative and in
Hamiltonian systems; see for instance [23] or [27] and
references there. Also, in these problems, higher order
algebraic timescales and asymptotically small domains
are natural. We start with a simple example.

Example 5 Consider the system:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = ε(1 + x cosφ1 + (1 − x)

cos(2φ1 − φ2)), x(0) = 1,

φ̇1 = 2,

φ̇2 = x2,

(26)

The vector field X (x, φ) is scalar in this case and con-
tains 2 angles, φ1 and the combination angle 2φ1 −φ2.
Putting χ = 2φ1 − φ2 for the combination angle we
have:

χ̇ = 4 − x2. (27)

As φ1(t) = 2t+φ1(0), this angle is timelike. The angle
χ is timelike except in a neighbourhood of x = ±2.
Averaging over the angles φ1 and χ outside a neigh-
bourhood of x = ±2, we find:

x(t) = 1 + εt + ε2 . . .

Aneighbourhood of x = ±2 will be called a resonance
domain, x = 2 a resonance manifold. Note that the
approximate solution starts in x = 1 and will increase

Fig. 6 Solution of system (26) starting at x(0) = 1, φ1(0) =
0, χ(0) = 1.929; ε = 0.1. The solution remains for some time
oscillating in the resonance domain near x = 2

to x = 2, so it enters the resonance domain near x = 2.
To determine the size of the resonance domain and the
local dynamics, we rescale:

x = 2 + δ(ε)ξ, (28)

with δ(ε) → 0 as ε → 0 (δ is a small parameter to be
determined). From system (26) we find:{

δξ = ε(1 + cosφ1 − cosχ) + O(εδ),

χ̇ = −4δξ + O(δ2).
(29)

The 2 equations are balanced if δ(ε) = √
ε; in the the-

ory of singular perturbations, this is called a significant
degeneration of the system, see for the theory [27].
With this assumption, the small size of the resonance
domain near x = 2 is

√
ε. After omitting the higher

order terms and averaging over φ1, we have

ξ̇ = √
ε(1 − cosχ), χ̇ = −4

√
εξ,

so that by differentiation we find the forced pendulum
equation for χ in the resonance domain:

χ̈ + 4ε cosχ = 4ε.

To first order the timescale of the dynamics in the res-
onance domain and manifold is O(

√
ε), the timelike

variable
√

εt , the error of the first approximation will
also be O(

√
ε), see Fig. 6. Note that this resonance

domain is in a sense hidden in system (26).

We will see that the size of resonance manifolds and
the timescale found in this simple problem are typical
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Fig. 7 Solutions x(t) of system (31) starting for χ(0) = 0 (left, stable) and for χ(0) = −π (right, unstable) starting near equilibrium;
x(0) = 1, ε = 0.05. The initial conditions have error

√
ε

for much more complicated problems. Even for dissi-
pative systems of the form (25), the first-order approx-
imation of the solutions in a resonance domain will
always be conservative; dissipation may be shifted to
second order (Fig. 7).

8 Resonance manifolds in dissipative systems

A typical example from [27], example 12.11, describes
a slightly eccentric flywheel, see Fig. 2. in the Introduc-
tion. The vertical displacement x of the flywheel and
its rotation angle φ are given by

ẍ + x = ε(−x3 − ẋ + φ̇2 cosφ) + O(ε2),

φ̈ = ε(
1

4
(2 − φ̇) + (1 − x) sin φ) + O(ε2).

It turns out that there exists a resonance domain; the
domain is of size O(ε

1
2 ), the timelike variable of the

dynamics is
√

εt in the resonance domain. A difference
with conservative systems is the possibility of lock-
ing into resonance for various initial conditions in this
mechanical problem where we have both flywheel and
spring oscillating. For details, we refer to [27] and the
references there.

Example 6 A simpler example is the 3-dimensional
system:⎧⎪⎨
⎪⎩
ẋ = ε f (x)(cosφ1 + cos(2φ1 − φ2)), x(0) = 1,

φ̇1 = x2 + 1,

φ̇2 = −1.

(30)

The function f (x) is smooth. The equation for x con-
tains 2 angles, φ1 and χ = 2φ1 − φ2. The angle φ1 is
clearly timelike for any value of x ; we can average over
φ1. We have for χ :

χ̇ = 2x2 + 3,

so χ is also timelike. Averaging over both angles we
find ẋ = 0 and the trivial dynamics x(t) = x(0)+O(ε).
One can check this result numerically for instance for
the choices f (x) = x and f (x) = sin x . For ε = 0.1,
the error stays below 0.1.

A less trivial dynamics is shown in the following exam-
ple.

Example 7
⎧⎪⎨
⎪⎩
ẋ = ε f (x)(cosφ1 − cos 2φ2 − sin(2φ1 − φ2)),

φ̇1 = x2 + 0.5,

φ̇2 = 3.

(31)

The function f (x) is smooth, f (1) = 1. Again the
angle φ1 is clearly timelike and so isφ2, we can average
over φ1, φ2 to find the approximate equation

ẋ = −ε f (x) sin(2φ1 − φ2),

producing O(ε) approximations outside resonance
domains.

We have for χ :

χ̇ = 2(x2 − 1),
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Fig. 8 Solutions x(t) of system (31) starting for χ(0) =
−π, x(0) = 1 near equilibrium but for ε = 0.005 with error√

ε

with resonance domains in a neighbourhood of x =
±1. Near x = 1 we scale

x = 1 + δ(ε)ξ

to find to first order the system:

δξ̇ = −ε f (1) sin χ, χ̇ = 4δξ.

To balance the equations, we choose δ(ε) = √
ε lead-

ing to the first-order equation for χ :

χ̈ + 4ε sin χ = 0. (32)

The timelike variable in the resonance domain is again√
εt , and the approximations at this order have error

O(
√

ε). Critical points (equilibria) of the pendulum
equation Eq. (32) are found for solutions of sin χ = 0.

If χ = 0, the solutions are to first order neutrally
(Lyapunov) stable; for χ = π , we have instability. As
the second equilibrium is a saddle point, the instability
persists to all orders of ε. It is interesting the repeat the
computation for ε = 0.01, see Fig. 8.

9 Hamiltonian resonance

The following results are based on [21], [23] and [27].
Consider the two degrees-of-freedom (dof) Hamilto-
nian in local coordinates with Taylor-expansion:

H = H2 + εH3 + ε2H4 + O(ε3), (33)

with Hk homogeneous polynomials of degree k (=
2, 3, . . .) in positions and momenta (p, q). H2 takes

the standard form

H2 = m

2
(q21 + p21) + n

2
(q22 + p22), (34)

with the integersm, n positive and inmost cases relative
prime. The phase-flow in a neighbourhood of the origin
takes place on compact manifolds parametrised by the
Hamiltonian (energy) integral. Resonance domains can
be found but because of the recurrence properties of
the phase-flow capture into resonance is not possible.
Near the origin of phase-space Hamiltonian (33) was
obtained by rescaling q = εq̄, p = ε p̄, dividing by ε2

in the Hamiltonian and leaving out the bars.
Most of the attention in the literature went to the pri-

mary resonance 1 : 2 and to the secondary resonances
1 : 1 and 1 : 3, see [23]. In these resonance cases, the
dominant part of the phase-flow is characterised by the
timescales t, εt, ε2t and the time intervals of validity
of approximation 1/ε and 1/ε2. This picture changes
drastically for higher order resonance.

The higher order normal form

The frequency cases wherem+n ≥ 5 are called higher
order resonances by definition. To study these reso-
nances, we have to compute higher order normal forms;
this involves intervals of time longer than 1/ε, even
longer than 1/ε2. In the Hamiltonian normal form, the
first resonant term, involving not only actions but also
angles, arrives from Hm+n at O(εm+n−2).

The first basic approach to higher order resonance
was given in [21] with applications in [22]. In [25],
an improvement of the estimates has been given,
together with a number of applications, for instance the
elastic pendulum. Introducing action-angle variables
pi , qi → τi , φi , i = 1, 2, with τi = 1

2 (q
2
i + p2i ), i =

1, 2 and

pi = √
2τi cosφi , qi = √

2τi sin φi , i = 1, 2,

the normal (averaged) form is obtained by near-
identical transformation and will look like

H = mτ1 + nτ2 + ε2 H̄4(τ1, τ2)

+ . . . + εm+n−2D(τ n1 τm2 )
1
2 cosχ, (35)

with resonance combination angle

χ = nφ1 − mφ2 + α. (36)

H̄4 is the normal form of the terms εH3 + ε2H4. The
dots represent terms depending on τ1, τ2 only. These
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are the terms in so-called Birkhoff normal form. A con-
sequence from the corresponding equations of motion
is that the actions are constant until and not included
terms of order O(εm+n−2). The normal form for the
Hamiltonian including terms O(εm+n−3) is integrable
with integrals

mτ1 + nτ2 = E0, τ1 = E1,

with E0, E1 constants. for the combination angle we
have

χ̇ = ε2
(
n
∂ H̄4

∂τ1
− m

∂ H̄4

∂τ2

)
+ ε3 . . . (37)

To compute the term H̄4, we can use second-order aver-
aging. The Hamiltonian and equations of motion trun-
cated after ε2-terms produce an O(ε) approximation of
the solutions on the timescale 1/ε2.

To determine the term to order O(εm+n−2) is in gen-
eral a lot of work.

The phase-flow of higher order resonance for 2 dof

We summarise. Consider for 2 dof time-independent
Hamiltonians near stable equilibrium the higher order
resonances as defined by m + n ≥ 5. When aver-
aging we usually transform to amplitude-phase vari-
ables before averaging over t . We can use instead of
the phases ψ1, ψ2 the timelike variables φ1 = mt +
ψ1, φ2 = nt+ψ2. A resonance domain with resonance
manifold M exists if we have solutions of:

n
∂ H̄4

∂τ1
− m

∂ H̄4

∂τ2
= 0. (38)

It turns out there are two domains in phase-space where
the dynamics is very different and is characterised by
different timescales. We have the results:

Proposition 1

• The resonance domain DI , which is a neighbour-
hood of the resonance manifold M. The resonance
manifold, if it exists, arises if condition (38) is satis-
fied. In DI , the variations of the actions (or ampli-
tudes) and the combination angleχ = nφ1−mφ2+
α are found and are of the same nature as in dissi-
pative systems. In terms of singular perturbations,
resonance domain D1 is an inner boundary layer of
the Hamiltonian system. In [25], it has been shown

that the size of the resonance domain is O(ε
m+n−4

2 ),
the interaction of the actions takes place on a time
interval of order O(ε−m+n

2 )

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 9 The Poincaré map for the 1 : 6-resonance of the elastic
pendulum (ε = 0.75, large for illustration purposes). In the res-
onance domain, the saddles are connected by heteroclinic cycles
and inside the cycles are 6 centre fixed points, see [25]. Fig-
ure courtesy SIAM J.Appl.Math

• The remaining part of phase-space, outside the res-
onance domain, is D0, the outer domain. In the
domain D0, there is, to a high approximation, no
variation of the actions, and so hardly any exchange
of energy between the two degrees of freedom.

It is shown in [25] that for Hamiltonians derived from
a potential, we have α = 0, and so the combination
angle χ = nφ1 −mφ2. For the elastic pendulum, after
the first-order 4 : 2-resonance, the higher order 4 : 1-
resonance is the most prominent one with resonance

manifold of size O(ε
1
2 ) and time interval of interaction

O(ε− 5
2 ); for a Poincaré map of the 1 : 6-resonance of

the elastic pendulum see Fig. 9. It was constructed by
numerical integration for fixed energy, the 2 positions
q1, q2 are on the axes with the map arising from the
transversal points when passing recurrently the plane
p2 = 0.

10 A m : n toy problem

Awell-knownmodel for orbits in axi-symmetric galax-
ies is the family of Hénon-Heiles potential problems,
see [7]. The applicability of this potential is muchmore
general as symmetry of the potential, think of pendu-
lum equations, occurs in many mechanical problems.
A simplification was studied numerically in [5]. Using
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the notation of [5], the Hamiltonian is as follows:

H = 1

2
(ẋ2 + m2x2) + 1

2
(ẏ2 + n2y2) − εxy2. (39)

The equations of motion are as follows:

ẍ + m2x = εy2, ÿ + n2y = 2εxy. (40)

So, the x-normal mode y = ẏ = 0 is an exact
harmonic solution. Using amplitude-phase variables
x = r1 cos(mt + φ1), ẋ = −mr1 sin(mt + φ1), y =
r2 cos(nt + φ2), ẏ = −nr2 sin(nt + φ2) we find after
second-order averaging:
⎧⎪⎪⎨
⎪⎪⎩

ṙ1 = O(ε3), ṙ2 = O(ε3),

φ̇1 = ε2
r22

m(m2−4n2)
+ O(ε3),

φ̇2 = ε2
r21

n(m2−4n2)
+ ε2

(8n2−3m2)

4m2n(m2−4n2)
r22 + O(ε3).

(41)

For the combination angle χ = nφ1 −mφ2, we find to
O(ε2):

χ̇ = ε2
m

n(m2 − 4n2)

(
3m2 − 4n2

4m2 r22 − r21

)
+ . . .(42)

Putting the right-hand side of (42) zero and using the
energy integral

1

2
(m2r21 + n2r22 ) == E0,

we find for the location of a resonance manifold M the
values:

r21 = 3m2 − 4n2

3m4 2E0, r
2
2 = 8

3m2 E0. (43)

So, for the existence of a resonance manifold, we have
the requirement:

m

n
>

2

3

√
3. (44)

From the Hamiltonian at higher order resonance (35),
we have apart from the r1, r2 values (43) the values
χ = 0, π . In physical space, this leads by elimination
of the goniometric expressions to polynomial relations
between x(t) and y(t).

Examples are shown in Fig. 10 for the m : n = 4 :
1, 5 : 2 and 7 : 3 resonances. The initial conditions
were obtained from Eq. (43) with χ(0) = 0, E0 = 0.1.

The resonance domains have, respectively, the sizes

O(ε
1
2 ), O(ε

3
2 ) and O(ε3). The largerm+n, the longer

the time interval of interaction in the resonance domain.
More details can be found in [22].

11 Discussion and conclusions

Considering the scientific literature, one observes that
the use of asymptotic series to approximate solutions of
differential equations takes all kind of different forms:
averaging, multiple timing, harmonic balance, renor-
malisation, WKBJ, etc., see [30]. Averaging is the
only method with explicit error estimates and intervals
of validity for first- and higher order approximations.
Multiple timing is, with the right conditions, correct
at first order but has counterexamples for higher order.
Harmonic balance is a method without any foundation
or justification, see [24], ch. 9. The choice of a partic-
ular method seems to be often a matter of taste. In this
respect, it is very important for well-founded research
to have comparative and unifying studies as [19], [16],
[17], [23] and [2], [3], to name a few.

Conclusions

• Initial value problems with a small parameter
may involve timelike variables as t, εt , in gen-
eral εnt, n = 1, 2, . . . . In the interesting case of
qualitative changes, tippingpoints andbifurcations,
algebraic timelike variables may arise. This occurs
already in linear problemswith eigenvalues causing
structural instability.

• Oscillating systems where we can identify 2 or
more angles can contain resonance manifolds. We
have seen such problems in dissipative and in
Hamiltonian systems. The quantitative descrip-
tion of these resonance manifolds require again
higher order algebraic timescales and asymptoti-
cally small domains

• It is essential to use approximation methods that
do not anticipate the timelike variables that are
relevant for the approximations. These variables
present themselves naturally in the course of the
analysis for normal form methods and averaging.

In engineering, there is a trend to consider exclu-
sively numerical methods to solve problems. This is
useful for a number of isolated practical problems
where one looks for numbers only and not for theoret-
ical insight. Think of the design of a building structure
of given dimensions. See also the comments in [6].

For general theoretical insight, it is important to have
the use of both analytical and numerical, computational
methods. Note that validation of results by numerics
is possible only for isolated cases, general validation
of results and methods require mathematical analy-
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Fig. 10 Solutions of system (40) using for initial values (43). Projections on physical x, y-space of periodic solutions in the resonance
domains are algebraic curves. Shown are the projections of the m : n = 4 : 1, 5 : 2 and 7 : 3 resonances; χ(0) = 0

sis. A recent, rather simple example of this approach
is [1], where Neimark-Sacker bifurcation is analysed
for interaction of a self-excited and a parametrically
excited oscillator. It turns out that its simple formula-
tion is deceptive, numerical explorations show various
phenomena. These results inspire the asymptotic anal-
ysis that yield values of the parameters that produce
families of quasi-periodic solutions that are organised
on tori surrounding periodic solutions. In its turn, the
analysis suggests more numerical illustrations.

Advanced numerical methods and high speed com-
puters are available for research problems; the follow-
ing strategy can be useful:

A hybrid strategy

1. Start with a few numerical explorations.

2. Identify parameters and use asymptotic expansions
to obtain more general insight.

3. Use numerical bifurcation programs likeAuto and
Matcont to extend general insight.

4. Summarise the information in pictures typical for
the dynamics.
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