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Abstract

Hamiltonian systems with two or more degrees of freedom are generally nonintegrable which usually
involves chaotic dynamics. The size of the chaotic sets determines for a large part the nature and
influence of chaos. Near stable equilibrium we can obtain normal forms that often produce ‘formal
integrability’ of the Hamiltonian system and at the same time produce rigorous but not necessarily
optimal upper limits for the size, the measure of chaotic sets. This is demonstrated for two and three
degrees of freedom systems with attention to the role of symmetry.

1 Introduction

Most Hamiltonian systems are not integrable. However, as we shall see, this is a very deceptive statement
although it is mathematically correct. To get this in the right perspective, we shall start by outlin-
ing suitable approximation methods. These are canonical normal form methods, sometimes called after
Birkhoff-Gustavson, and averaging performed in a canonical way. The methods admit precise error es-
timates and enable us therefore to determine local measures of regularity and chaos. The methods also
permit us to locate normal modes and other short-periodic solutions.
We recall that two degrees of freedom time-independent Hamiltonian systems near stable equilibrium can
be normalized and that the normal form is always integrable to any order, see also section 2. The inte-
grals are the Hamiltonian and its quadratic part. The integrable motion dominates phase-space and this
result expresses that the amount of chaos near stable equilibrium is exponentially small. Explicitly: near
stable equilibrium, the measure of chaos is O(εa exp(−1/εb) for suitable constants a, b where the energy
E = O(ε2). An example is studied in [6].

2 Approximations and normal forms

Consider the n degrees of freedom time-independent Hamiltonian

H(p, q) =
1

2

n∑
i=1

ωi

(
p2i + q2i

)
+H3 +H4 + · · · . (1)

with Hk, k ≥ 3 a homogeneous polynomial of degree k and positive frequencies ωi. We introduce a small
parameter ε into the system by rescaling the variables by qi = εqi, pi = εpi, i = 1, · · · , n and dividing the
Hamiltonian by ε2. This implies that we localize near stable equilibrium with energy O(ε2).
We can define successive, nonlinear coordinate (or near-identity) transformations that will bring the Hamil-
tonian into the so-called Birkhoff normal form; see [3] and [14] for details and references. For a general
dynamical systems reference see [1, 2], for symmetry in the context of Hamiltonian systems see [2, 8, 13].
A stimulating text on chaos and resonance is [5]. In action-angle variables τ, φ, a Hamiltonian H is said
to be in Birkhoff normal form of degree 2k if it can be written as

H =

n∑
i=1

ωiτi + ε2P2(τ) + ε4P3(τ) + · · ·+ ε2k−2Pk(τ),
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where τ = (τ1, · · · , τn) and Pi(τ) is a homogeneous polynomial of degree i in τi = 1
2 (pi

2 + qi
2), i = 1, · · · , n.

The variables τi are called actions; note that if Birkhoff normalization is possible, the angles have been
eliminated. If a Hamiltonian can be transformed into Birkhoff normal form, the dynamics is fairly regular.
The system is integrable with integral manifolds which are tori described by taking τi constant. The flow
on the tori is quasi-periodic.
Suppose a Hamiltonian is in Birkhoff normal form to degree m, but the frequencies are satisfying a
resonance relation of order m+ 1. This means that Hm+1, Hm+2 etc. may contain resonant terms which
can not be transformed away. The procedure is now to split Hm+1, Hm+2 etc. in resonant terms and terms
to which the Birkhoff normalization process can be applied. The resulting normal form will generally
contain resonant terms and is called Birkhoff-Gustavson normal form. It contains terms dependent on the
action τ and on resonant combination angles of the form χi = k1φ1 + · · ·+ knφn. In practice we have to
consider a truncation of the Birkhoff-Gustavson normal form H̄ at some degree p ≥ m:

H̄ = H2 + εH̄3 + ε2H̄4 + · · ·+ εp−2H̄p. (2)

Because of the construction we have the following results:

• H̄ is conserved for the original Hamiltonian system (1) with error O(εp−1) for all time.

• H2 is conserved for the original Hamiltonian system (1) with error O(ε) for all time. So the normal
form has at least two integrals. Symmetry can enhance the regularity, see [10].

• If we find other integrals of the Birkhoff-Gustavson normal form, we have slightly weaker error
estimates. Explicitly, suppose that F (p, q) is an independent integral of the truncated Hamiltonian
system (2), we have for the solutions of the original Hamiltonian system (1) the estimate

F (p, q)− F (p(0), q(0)) = O(εp−1t).

An important consequence is the following statement: if the phaseflow induced by the truncated Hamil-
tonian (2) is completely integrable, the flow of the original Hamiltonian (1) is approximately integrable
in the sense described above. In this case the original system is called formally integrable. This implies
that the irregular, chaotic component in the flow of the original Hamiltonian is limited by the given error
estimates and must be a small-scale phenomenon on a long timescale. For details see [14].

3 Normal modes and short-periodic solutions

Liapunov proved that if the frequencies ωi satisfy no resonance relation, the normal modes, obtained by
linearization, can be continued for the full, nonlinear Hamiltonian system (1), resulting in at least n short-
periodic solutions with periods ε-close to 2π/ωi.
Weinstein [15] proved an important generalization: even in the case of resonance, there exist at least n
short-periodic solutions of Hamiltonian system (1). Note, that these periodic solutions are not necessarily
continuations of the linear modes, the term ‘normal modes’ in this context can be confusing. Another
important point is that n short-periodic solutions is really the minimum number. For instance in the case
of two degrees of freedom, 2 short-periodic solutions are guaranteed to exist by the Weinstein theorem.
But in the 1 : 2 resonance case one finds generically 3 short-periodic solutions for each (small) value of the
energy. One of these is a continuation of a linear normal mode, the other two are not. For higher-order
resonances like 3 : 7 or 2 : 11, there exist for an open set of parameters 4 short-periodic solutions of which
two are continuations of the normal modes.
Of course symmetry and special Hamiltonian examples may change this picture drastically. For instance
in the case of the famous Hénon-Heiles Hamiltonian

H(p, q) =
1

2
(p21 + q21 + p22 + q22) +

1

3
q31 − q1q22 ,

because of symmetry, there are 8 short-periodic solutions. For the relation between symmetry and periodic
solutions and references see [4].

4 Three degrees of freedom

The question of asymptotic integrability is different for more than two degrees of freedom. First we consider
the genuine first order resonances of three degrees of freedom systems.
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Table 1: Integrability of the normal forms of the four genuine first order resonances.

Resonance Assumptions H3 H4 Remarks
1:2:1 general 2 2 no analytic third integral

discr.symm. q1 2 2 no analytic third integral

discr.symm. q2 3 3 H3 = 0; 2 subsystems at H4

discr.symm. q3 2 2 no analytic third integral

1:2:2 general 3 2 no cubic third integral at H4

discr.symm. q2 and q3 3 3 H3 = 0; 2 subsystems at H4

1:2:3 general 2 2 no analytic third integral

discr.symm. q1 3 3 2 subsystems at H3 and H4

discr.symm. q2 3 3 H3 = 0

discr.symm. q3 3 3 2 subsystems at H3 and H4

1:2:4 general 2 2 no cubic third integral
discr.symm. q1 2 2 no cubic third integral

discr.symm. q2 or q3 3 3 2 subsystems at H3 and H4

4.1 First-order resonances

It turns out that the normal form of the 1 : 2 : 2-resonance is integrable; this is caused by a hidden
symmetry which reveals itself by normalization. The 1 : 2 : 1-resonance and the 1 : 2 : 3-resonance on the
other hand are not integrable for an open set of parameters of the Hamiltonian. The results are illustrated
in the table.
If three independent integrals of the normalized system can be found, the normalized system is integrable.
The integrability depends in principle on how far the normalization is carried out (Hk represents the
normal form of Hk, the homogeneous part of the Hamiltonian of degree k). The formal integrals have
a precise asymptotic meaning as discussed in section 2. We use the following abbreviations: no cubic
integral for no quadratic or cubic third integral; discr. symm. qi for discrete (or mirror) symmetry in the
pi, qi-degree of freedom; 2 subsystems at Hk for the case that the normalised system decouples into a one
and a two degrees of freedom subsystem upon normalising to Hk. In the second and third column one
finds the number of known integrals when normalizing to H3 respectively H4.

The remarks which have been added to the table reflect some of the results known on the non-existence
of third integrals. Note that the results presented here are for the general Hamiltonian and that additional
assumptions, in particular involving symmetry, may change the results. In this respect it is interesting
that in a number of applications, chaotic dynamics appears to be of relatively small size. An example is
the dynamics of elliptical galaxies that display three-axial symmetry. Astrophysical observations suggest
highly nonlinear but integrable motion. The statements above with indication ‘Assumptions’: ‘general’,
are for Hamiltonian systems in general form near stable equilibrium; in this case H3 has 56 terms, H4

counts 126 terms. To illustrate the analysis we will look now at specific potential problems of the form

q̈1 + ω2
1q1 = εR1(q1, q2, q3, ε),

q̈2 + ω2
2q2 = εR2(q1, q2, q3, ε),

q̈3 + ω2
1q3 = εR3(q1, q2, q3, ε),

where R1, R2, R3 represent the quadratic and higher-order potential terms.

Example: the 1 : 2 : 2-resonance
Considering a general potential starting with cubic terms, only the terms a1q

2
1q2 and a2q

2
1q3 show up in

the normalized H3. The resulting mirror symmetry makes the normal form H̄ = H2 + εH̄3 integrable.
According to section 2, the asymptotic validity of the third integral (which is quadratic) is O(ε2t). The
implication is, that chaotic dynamics in the system is restricted to size O(ε) on the long timescale 1/ε.
It is easy to obtain the short-periodic solutions from the normal form. There are two stable general posi-
tion families of periodic solutions (τ1τ2τ3 6= 0 and with multi-frequencies 1, 2, 2). Moreover there exists a
continuous set of periodic solutions in the 2-d.o.f. submanifold τ1 = 0. This is a nongeneric phenomenon
that is expected to break up when normalizing to higher-order. To observe this break-up, we include one
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of the terms which vanishes in the normalization to H3. In particular consider the Hamiltonian system

H = H2 + ε(a1q
2
1q2 + a2q

2
1q3 + a3q1q2q3), (3)

producing the equations of motion

q̈1 + q1 = −ε(2a1q1q2 + 2a2q1q3 + a3q2q3),

q̈2 + 4q2 = −ε(a1q21 + a3q1q3),

q̈3 + 4q3 = −ε(a2q21 + a3q1q2).

After normalization to H4 we find that the symmetry which created the continuous set of periodic solutions
is broken. The submanifold τ1 = 0 of the normal form still exists, but now the continous set has broken
up into 6 unstable periodic solutions that include the two normal modes τ1 = τ2 = 0 and τ1 = τ3 = 0. At
this point the results are robust, i.e. there will be no qualitative change to this picture of short-periodic
solutions by adding higher-order perturbations.
Interestingly, the integrability of the normal form to H4 is still an open problem. Details of the calculations
can be found in [11].
Mirror symmetry in q1.
If, on replacing q1 by −q1, the Hamiltonian remains invariant, the picture changes drastically as terms like
a3q1q2q3 are absent. The problem has not been analyzed in its full generality. Consider for instance the
system induced by (3) with a3 = 0. The normal form in action-angle coordinates to H4 reads

H̄ = τ1 + 2τ2 + 2τ3 +
1

2
ετ1

(
a1
√
τ2 sin(2φ1 − φ2) + a2

√
τ3 sin(2φ1 − φ3)

)
−

1

4
ε2
( 9

16
(a21 + a22)τ21 +

1

4
a21τ1τ2 +

1

4
a22τ1τ3 +

1

2
a1a2τ1

√
τ2τ3 cos(φ2 − φ3)

)
.

The analysis of the normal form to H4 shows structurally unstable phenomena like eigenvalues zero. The
implication is that higher-order normal forms have to be computed to analyze a system with this symme-
try.
Mirror symmetry in q1, q2.
In this case, the low-order normal form calculation simplifies drastically: H̄3 = 0. The normal form to
H4 is integrable, so chaotic dynamics is restricted in this case to size O(ε2) on the long timescale 1/ε
or O(ε) on the long timescale 1/ε2. The structurally stability analysis of the periodic solutions requires
higher-order normal form calculations.

Example: the 1 : 2 : 3-resonance
This resonance was analyzed in [7] and [12]. We will summarize some results and formulate some open
problems. When normalizing to H4 one finds 7 short-periodic (families of) solutions. One of them is for an
open set of parameters complex unstable (for the complementary set it is unstable of saddle type). This
complex instability is a source of chaotic behaviour. Using S̆ilnikov-Devaney theory, it is shown in [7] that
a horseshoe map exists in the normal form to H4 which makes the normal form chaotic.
Numerics indicate that the normal form H̄ = H2 + H̄3 is already chaotic, but a proof is missing. Also the
dynamics of the case where the periodic solution is unstable, but of saddle type, has still to be character-
ized.
Discrete symmetry in either the first or the last degree of freedom makes the normal form to H4 integrable.

4.2 Higher-order resonances

Higher order resonances abound in applications. The results discussed thus far are mostly general, but,
with regards to applications, it is very important to look again at the part played by symmetries. This
will be illustrated for the 1 : 3 : 7-resonance and will be discussed in some detail. This also serves as an
example that resonances with odd resonance numbers are particularly sensitive to symmetries.
Example: the 1 : 3 : 7-resonance
We start with the general Hamiltonian with this resonance in H2:

H2 = τ1 + 3τ2 + 7τ3.

At H3 level there is no resonance and we find after normalization, H̄3 = 0.
There are two combination angles active at H4 level: χ1 = 3φ1 − φ2 and χ2 = φ1 + 2φ2 − φ3. At H5 level
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no combination angles are added, H5 can be brought in Birkhoff normal form. We list the consequences
of mirror symmetry:

• In the first d.o.f: χ1 and χ2 not active; formal integrability until H̄5, chaotic dynamics has measure
O(ε4t).

• In the second d.o.f: χ1 not active; formal integrability until H̄7, chaotic dynamics has measure O(ε6t).

• In the third d.o.f: χ2 not active; formal integrability until H̄7, chaotic dynamics has measure O(ε6t).

• The case of mirror symmetry in all three d.o.f. is discussed below.

One can continue the analysis to higher order normal forms to obtain more precise estimates of the
remaining chaotic dynamics. We discuss an example.
Three-axial elliptical galaxies
In this case we have discrete (mirror) symmetry in three degrees of freedom. Until H7 the system can be
brought into Birkhoff normal form, chaotic dynamics has measure O(ε6t) which predicts regular behaviour
on a long timescale. The Birkhoff-Gustavson normal form H̄8 contains the combination angles 6φ1 − 2φ2
and 2φ1 + 4φ2 − 2φ3.
The situation needs a very high degree of normalization as becomes clear when considering the analysis of
periodic solutions. Because of the discrete symmetry τi = 0, i = 1, 2, 3 each corresponds with a two d.o.f.
submanifold of the original (symmetric) Hamiltonian. The normal modes are exact periodic solutions of
the normal form and the original Hamiltonian. The normal forms in these 4-dimensional submanifolds
are all integrable (section 2) and chaotic behaviour takes place in exponentially small sets. Consider the
question of how far we have at least to normalize the flow in these submanifolds.
Case τ1 = 0. This is the worst case, as it involves the 3 : 7-resonance. In the symmetric case this system
has to be normalized to H20 to characterize the periodic solutions.
Case τ2 = 0 involving the 1 : 7-resonance. The system has to be normalized to H16 to characterize the
periodic solutions.
Case τ3 = 0 involving the 1 : 3-resonance. The relatively well-known system has to be normalized to H8

to characterize the periodic solutions. In [10] it is described how to deal with such higher-order cases.

5 A remark on chains of oscillators

Our knowledge of chains of oscillators is still restricted. Remarkably enough the normal form of the
1 : 2 : · · · : 2-resonance with n degrees of freedom is integrable. Consider the Hamiltonian

H(p, q) =
1

2
(p21 + q21) +

n∑
i=2

(p2i + q2i ) +H3 + · · · ,

where H3 + · · · represents the general cubic and higher order terms. The Hamiltonian is formally inte-
grable and the proof runs along the lines of the analysis of the 1 : 2 : 2-resonance, displaying again hidden
symmetry.
A spectacular result arises for the classical Fermi-Pasta-Ulam problem which is a chain of identical oscil-
lators coupled by nearest neighbour interaction. At low energy levels the chain shows recurrence and no
chaos. Recently it was shown in [9] by normal form methods and symmetry considerations, that a nearby
integrable system exists which make the KAM-theorem applicable. This solves the recurrence phenomenon
at low energy.
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[5] Haller, G., Chaos Near Resonance, Applied Mathematical Sciences 138, Springer-Verlag, 1999.

[6] Holmes, P., Marsden, J. and Scheurle, J. Exponentially small splittings of separatrices with application
to KAM theory and degenerate bifurcations, Contemp. Math. 81, pp. 213-244, 1988.

[7] Hoveijn, and Verhulst, F. Chaos in the 1 : 2 : 3 Hamiltonian normal form, Physica D 44, pp. 397-406,
1990.

[8] Kozlov, V.V., Symmetries, Topology, and Resonances in Hamiltonian Mechanics, Ergebnisse der
Mathematik und ihre Grenzgebiete 31, Springer-Verlag, 1996.

[9] Rink, B., Symmetry and resonance in periodic FPU chains, Comm. Math. Phys. 218, pp. 665-685,
2001.

[10] Tuwankotta, J.M. and Verhulst, F., Symmetry and resonance in Hamiltonian systems, SIAM
J.Applied. Math. 61, pp. 1369-1385, 2000.

[11] Van der Aa, E. and Verhulst, F., Asymptotic integrability and periodic solutions of a Hamiltonian
system in 1 : 2 : 2-resonance, SIAM J. Math. Anal. 15, pp. 890-911, 1984.

[12] Verhulst, F. and Hoveijn, I., Integrability and chaos in Hamiltonian normal forms, in Geometry and
Analysis in Nonlinear Dynamics (H.W. Broer and F. takens, eds.), Pitman Res. Notes 222 pp. 114-134,
Longman, 1992.

[13] Verhulst, F., Nonlinear Differential Equations and Dynamical Systems, 2nd ed., Springer Verlag,
Berlin,1996.

[14] Verhulst, F., Symmetry and Integrability in Hamiltonian Normal Forms, in Symmetry and Perturba-
tion Theory, D. Bambusi and G. Gaeta (eds), Quaderni GNFM pp. 245-284, Firenze, 1998.

[15] Weinstein, A., Normal modes for nonlinear Hamiltonian systems, Inv. Math., 20, pp. 47-57, 1973.

6


