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Abstract When considering nonlinear waves with periodic parametric forcing the
geometry of the spatial domain plays a crucial part. If the spatial domain is a square
we find an infinite number of 1 : 1 resonances and in addition accidental resonances.
Using Galerkin projection on 2 modes in 1 : 1 resonance we find stable normal mode
periodic solutions and unstable periodic solutions in general position; the location in
phase-space is characterised as a triple resonance zone. In the limit case of vanishing
dissipation we find neutral stability and strong recurrence of the orbits. Interaction
of 1 : 1 resonances shows a selection mechanism of the 1 : 1 modes triggered off
by the parametric forcing. In addition we analyse a number of prominent accidental
resonances produced by the spectrum induced by our choice of a square in space.

1 Introduction

Consider the parametrically excited nonlinear wave equation formulated by Rand et
al. [4] in the one-dimensional case; we will consider the equation on a square as two
space dimensions often introduces new phenomena, in particular resonances.

utt − c2(uxx + uyy) + µut + (ω0
2 + β cos(Ωt))u = αu3, (1)

where t ≥ 0 and 0 < x < π, 0 < y < π. The boundary values are ∂u/∂n|S = 0.
The parameters µ, β are positive and small in a way to be specified.
The system of equations and conditions model the surface deflections u(x, y, t) of a
fluid in a square basin with parametric excitation and damping, c is the wave speed.
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Resonant nonlinear waves in 2 spatial dimensions were also considered in [3] and
[6]. We associate with the system the eigenfunctions:

vmn(x, y) = cos mx cos ny,m, n = 0, 1, 2 . . .

with eigenvalues of the space-dependent operator:

ωmn
2 = ω0

2 + (m2 + n2)c2, ωmn = ωnm = ω.

An early paper by W.T. van Horssen on the asymptotic approximation of solutions
of nonlinear wave equations is [2]. The solutions of eq. (1) with boundary condi-
tions can be approximated by projection of a finite sum of eigenfunctions (Galerkin
projection) followed by averaging approximation. The process results in asymp-
totic approximations in the mathematical sense. The procedure is summarised with
references in [6] section 1, we do not repeat this here.

The choice of eigenfunctions is determined by the initial values of eq. (1) while
keeping an eye on the resonances of the eigenvalues. It turns out that for the geometry
considered here, there are an infinite number of 1 : 1 resonances. Thiswill require our
main attention. In addition we will briefly look at prominent accidental resonances.

2 The two-mode 1 : 1 resonance

We propose a two-mode expansion with:

up(x, y, t) = u1(t) cos mx cos ny + u2(t) cos nx cos my, (2)

m, n = 0, 1, 2 . . . ,m , n. Put ω0 = 1 and rescale u =
√
εū (and its derivatives

likewise) in eq.(1) with ε a small positive parameter; we omit the bars. Substituting
expansion (2) into eq. (1) and taking inner products with the eigenfunctions we find
with ωmn = ω,m , n:

Üu1 + ω
2u1 = −µ Ûu1 − βu1 cos(Ωt) + εα( 9

16 u1
3 + 3

4 u1u2
2),

Üu2 + ω
2u2 = −µ Ûu2 − βu2 cos(Ωt) + εα( 9

16 u2
3 + 3

4 u1
2u2).

(3)

We choose Ω = 2ω to study prominent Floquet resonances; rescale µ = εµ̄, β = εβ̄
after which we omit the bars. System (3) contains the 1 : 2 Floquet resonance and in
addition the 1 : 1 resonance of the Hamiltonian interaction force .
Note that because of the symmetry of system (3) u1(t) = ±u2(t) satisfies the system.
The coordinate planes u1, Ûu1 and u2, Ûu2 are invariant under the phase-flow, we start
with the analysis of these normal mode planes.
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2.1 The invariant normal mode planes

The analysis for both coordinate planes runs exactly along the same lines with
symmetric results so we consider only the u1, Ûu1 plane. We put u2 = Ûu2 = 0 and
introduce amplitude-phase coordinates by:

u1 = r1 cos(ωt + ψ1), Ûu1 = −r1ω sin(ωt + ψ1).

Deriving the equations for r1, ψ1 and averaging over time we find the first order
averaged system:

Ûr1 =
ε

2
r1(−µ +

β

2ω
sin 2ψ1), Ûψ1 =

ε

4ω
(β cos 2ψ1 − α

27
32

r1
2). (4)

Here and in the sequel, the solutions of first order averaged equationswith appropriate
initial values approximate the solutions of the original system with error O(ε) on a
long interval of time of order 1/ε. A critical point corresponding with an equilibrium
of system (4) is given by:

β sin 2ψ1 = 2µω, β cos 2ψ1 = α
27
32

r1
2, 0 <

2µω
β

< 1.

A critical point of the averaged equations corresponds under certain conditions with
a periodic solution of the original equations; see theorems 11.5–11.6 in [5] (this is
sometimes called the 2nd Bogoliubov theorem). We can eliminate the phase angle
to find:

r1
2 = r0

2 =
32

27α

√
β2 − 4µ2ω2.

Computing eigenvalues at the critical point shows that the periodic solution is stable
within the invariant coordinate plane. For the eigenvalues we have:

λ1,2 = −µ ±

√
5µ2 −

β2

ω2 . (5)

If β >
√

5µω the periodic solution is complex stable in the coordinate plane, if
2µω < β <

√
5µω the periodic solution is stable with real eigenvalues. If β = 2µω

the periodic solution vanishes.

An important question is whether the periodic solution is stable or unstable in the
full 4-dimensional system. For u2, Ûu2 near zero we should not use polar coordinates.
Instead we introduce in system (3) the variables a, b by:

u2 = a cosωt +
b
ω

sinωt, Ûu2 = −aω sinωt + b cosωt .

Introducing amplitude-phase variables for u1 and a, b variables for u2 in system (3)
we have to average the system. To determine the stability of the normalmode periodic
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Fig. 1 The behaviour of the solutions of system (3) near the invariant u1, Ûu1 coordinate plane is
shown by plottingE1(t) = 0.5( Ûu2

1 (t)+6u2
1 (t)) andE2(t) = 0.5( Ûu2

2 (t)+6u2
2 (t)) for the parametrically

excited oscillators. The initial conditions are u1(0) = 0.5, Ûu1(0) = 0, u2(0) = Ûu2(0) = 0.05;
ω2 = 6, µ = 0.01, β = 0.1, α = 0.05.

solution we compute the Jacobian of the averaged system for r1, ψ1, a, b and find the
eigenvalues of the gradient of the Jacobian at the periodic u1(t) for a = b = 0. This
means that we can leave out the quadratic and cubic expressions in a, b. For the
averaged system in the variables r1, ψ1, a, b we find:

Ûr1 =
ε

2
r1

(
−µ +

β

2ω
sin 2ψ1

)
+ . . . ,

Ûψ1 =
ε

2

(
β

2ω
cos 2ψ1 −

27α
64ω

r1
2
)
+ . . . ,

Ûa =
ε

2

(
−µa +

β

2ω2 b +
3α

16ω
r1

2
(
(sin 2ψ1) a +

(
2 − cos 2ψ1

ω

)
b
))
+ . . . ,

Ûb =
ε

2

(
−µb −

β

2
a +

3α
16

r1
2
(
(2 + cos 2ψ1) a −

sin 2ψ1

ω
b
))
+ . . . .

where the dots stand for the omitted higher order terms in a, b.The gradient of the
Jacobian at the periodic solution in the coordinate plane becomes when omitting the
factor ε/2:

©­­­­­­­­­­­­­­­«

0
r0β cos 2ψ1

ω
0 0

−
27αr0

32ω
−2µ 0 0

0 0
−16µω + 3αr0

2 sin 2ψ1

16ω
8β + 3αr0

2(2 − cos 2ψ1)

16ω2

0 0
−8β + 3αr0

2(2 + cos 2ψ1)

16
−16µω − 3αr0

2 sin 2ψ1

16ω

ª®®®®®®®®®®®®®®®¬
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The four eigenvalues are splitting up in two groups; the first group corresponds
with the eigenvalues of eq. (5), the second group produces the eigenvalues λ3,4 with
λ3 + λ4 = −2µ. We find:

λ3,4 = −µ ±

√
13

108
β2

ω2 −
88
81
µ2 −

128
81

ω2µ4

β2 .

λ3,4 depends on the parameters µ, β, ω, α. We conclude that the 2 periodic normal
mode solutions of the 1 : 1 resonances are asymptotically stable if

4

√
39
2
β ≤ ωµ.

See fig. 1.

2.2 First order averaging for the orbits in general position

Introducing amplitude-phase coordinates by:

u = r cos(ωt + ψ), Ûu = −rω sin(ωt + ψ),

we find by first order averaging:

Ûr1 =
ε

2

(
−µr1 +

β

2ω
r1 sin 2ψ1 −

3α
16ω

r1r2
2 sin 2(ψ1 − ψ2)

)
,

Ûψ1 =
ε

8ω

(
β cos 2ψ1 −

27α
16

r1
2 −

3α
2

r2
2 −

3α
4

r2
2 cos 2(ψ1 − ψ2)

)
,

Ûr2 =
ε

2

(
−µr2 +

β

2ω
r2 sin 2ψ2 +

3α
16ω

r1
2r2 sin 2(ψ1 − ψ2)

)
,

Ûψ2 =
ε

8ω

(
β cos 2ψ2 −

27α
16

r2
2 −

3α
2

r1
2 −

3α
4

r1
2 cos 2(ψ1 − ψ2)

)
.

(6)

The solutions of system (6) approximate the exact solutions with given initial values
to O(ε) on the timescale 1/ε; with some abuse of notation we kept the notation r, ψ
for the approximating system.
It is important to note that the damping term (coefficient µ) is not scaled by the
frequency ω, but on the other hand the parametric excitation (coefficient β) and the
nonlinear interaction (coefficient α) are reduced considerably for high frequency
modes (ω large). If ω is O(1/ε), system (6) is dominated by the damping terms.
Assuming that ω is O(1) with respect to ε we have for the resonant combination
angle χ = ψ1 − ψ2:

Ûχ =
ε

8ω

(
β(cos 2ψ1 − cos 2ψ2) −

3α
16

(
r1

2 − r2
2
)
−

3α
4

(
r2

2 − r1
2
)

cos 2χ
)
. (7)
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The resonance zones are corresponding with domains in phase-space where the
three angles ψ1, ψ2, χ are not timelike, they are determined by the zeros of the
equations for the 3 angles. From eq. (7) we find for angle χ two possible resonance
zones M1, M2 given by:

r1 = r2, ψ1 = ψ2, orψ1 = ψ2 + π, . (8)

Dynamically most interesting is the case that we have intersection of resonance
zones. For the angles ψ1, ψ2, using system (6), this leads in M1, M2 to the equations:

β cos 2ψ1,2 =
63α
16

r1
2. (9)

So for triple intersection of resonance zones we have the necessary condition: r1 =

r2, 0 < 63α
16β r1

2 < 1.

3 Triple resonance for the 1 : 1 case

We will distinguish the dynamics for the dissipative and volume-preserving cases.

3.1 Periodic solutions in the dissipative case

Assume µ > 0 and consider the resonance zones M1, M2 determined by eq. (8). An
interesting type of periodic solution may arise if Ûr1,2 = 0 and simultaneously Ûχ = 0.
With these assumptions we find in M1, M2:

Ûr1,2 =
ε

2
r1,2

(
−µ +

β

2ω
sin 2ψ1,2

)
= 0,

Ûψ1,2 =
ε

8ω

(
β cos 2ψ1,2 −

63α
16

r1,2
2
)
= 0.

(10)

Conditions (10) are satisfied if the periodic solutions are located in the triple reso-
nance zone determined by eq. (9) and moreover:

sin 2ψ1,2 =
2µω
β
,

����2µωβ ���� ≤ 1 or µ ≤
β

2ω
, (11)

which puts a bound on the size of the dissipation with respect to the other parameters.
In a Galerkin projection of eq. (1) with large eigenvalues ω, these periodic solutions
vanish. From sin2 ψ+cos2 ψ = 1 we find for the amplitudes of the periodic solutions:

r1,2
2 =

16
63α

√
β2 − 4µ2ω2. (12)
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3.2 Stability in the dissipative case, µ > 0

To establish the stability of the periodic solutions in the triple resonance zone we use
theorems 11.5–11.6 from [5] (the 2nd Bogoliubov theorem). We need the Jacobian
of the vector field F of the averaged system (6). Omitting the factor ε/2 we find for
Jacobian ∇F:

©­­­­­­­­­­­­­­­«

A1 −
3αr1r2 sin 2χ

8ω
B1

3αr1r2
2 cos 2χ

8ω

3αr1r2 sin 2χ
8ω

A2
3αr1

2r2 cos 2χ
8ω

B2

−
27αr1

32ω
−

3αr2 (2 + cos 2χ)
8ω

C1 −
3αr2

2 sin 2χ
8ω

−
3αr1 (2 + cos 2χ)

8ω
−

27αr2

32ω
3αr1

2 sin 2χ
8ω

C2

ª®®®®®®®®®®®®®®®¬
where

A1 = −µ +
β

2ω
sin 2ψ1 −

3α
16ω

r2
2 sin 2χ, A2 = −µ +

β

2ω
sin 2ψ2 +

3α
16ω

r1
2 sin 2χ,

B1 =
β

ω
r1 cos 2ψ1 −

3α
8ω

r1r2
2 cos 2χ, B2 =

β

ω
r2 cos 2ψ2 −

3α
8ω

r1
2r2 cos 2χ,

C1 = −
β

2ω
sin 2ψ1 +

3α
8ω

r2
2 sin 2χ, and C2 = −

β

2ω
sin 2ψ2 −

3α
8ω

r1
2 sin 2χ.

Applying the Jacobian at the periodic solutions using eqs. (8), (9), (11) with notation
r1 = r2 = r we find the matrix:

J(r) =

©­­­­­­­­­­­­­­«

0 0
57α
16ω

r3 3α
8ω

r3

0 0
3α
8ω

r3 57α
16ω

r3

−
27α
32ω

r −
9α
8ω

r −µ 0

−
9α
8ω

r −
27α
32ω

r 0 −µ

ª®®®®®®®®®®®®®®¬
It is easy to see that if r > 0 we have |J(r)| > 0. The implication is from [5] that
periodic solutions obtained from nontrivial equilibria of the averaged system (6) do
exist in an ε-neighbourhood of the equilibria. Note that this also holds if µ = 0.
A Mathematica calculation produces the eigenvalues of matrix J(r):



8 Ferdinand Verhulst and Johan M. Tuwankotta

Fig. 2 The behaviour of the solutions of system (3) near the general position solutionu1(t) = u2(t) is
shownby plottingE1(t) = 0.5( Ûu2

1 (t)+6u2
1 (t)) andE2(t) = 0.5( Ûu2

2 (t)+6u2
2 (t)). The initial conditions

are u1(0) = 0.51, Ûu1(0) = 0.05, u2(0) = 0.49, Ûu2(0) = 0.05; ω2 = 6, µ = 0.01, β = 0.1, α = 0.05.

λ1,2 = −
µ

2
±

1
2

√
µ2 +

459α2

128ω2 r4, λ3,4 = −
µ

2
±

1
2

√
µ2 −

3969α2

128ω2 r4.

The eigenvalues λ1,2 are real, the plus sign results in a positive eigenvalue so we
have instability of the periodic solutions. The instability is caused by the parametric
excitation, it is weakened for large ω. In fig. 2 we show the instability by starting
near the solution where u1(t) = u2(t).

3.3 Stability in the volume-preserving case, µ = 0

Without dissipation the flow in the time-extended phase-space is volume-preserving,
the dynamics is more delicate. For the angle χ the resonance zones M1, M2 are
unchanged. Looking for periodic solutions with constant, nontrivial amplitudes r1, r2
we find from system (6):

β sin 2ψ1 =
3
8
αr2

2 sin 2χ, β sin 2ψ2 = −
3
8
αr1

2 sin 2χ.

These conditions lead in M1, M2 to the solutions:

ψ1 = ψ2 = 0 andψ1 = 0, ψ2 = π.

In system (6) we have Ûψ1 = Ûψ2 = 0 if:

r1
2 = r2

2 = r0
2 =

16β
63α

.
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Using this value of r and the eigenvalues (1) we obtain for the eigenvalues in the
volume-preserving case:

λ1,2 = ±
β

21ω

√
51
2
, λ3,4 = ±

β

2ω
√

2i. (13)

We have again instability of the periodic solutions. The periodic solutions in the
triple resonance zone are illustrated in fig. 3. The behaviour for the cases ψ2 = 0, π
is identical. We use the expression I1,2(t) = 1

2 ( Ûu
2
1,2 +ω

2u1,2
2). The recurrence in the

volume-preserving case µ = 0 is illustrated by plotting the Euclidean distance d(t)
to the initial values, we have:

d2(t) =
2∑
i=1
(ui(t) − ui(0))2 + ( Ûui(t) − Ûui(0))2.

With ε = 0.01 the typical timescale of recurrence is 3500 timesteps.

Fig. 3 Left we illustrate the behaviour of the solutions of system (3) (m = 1, n = 2) by plotting
I1(t) = I2(t) in the case ω =

√
6, µ = 0, α = β = 1, ε = 0.01 with initial conditons u1(0) =

u2(0) = r0, ψ1(0) = ψ2(0) = 0. Right we show the Euclidean distance d(t) to the initial conditions.

3.4 Interaction of 1 : 1 resonances

As we have an infinite number of 1 : 1 resonances it is natural to study a combination
of N eigenfunctions of the form:

up(x, y, t) =
N∑
i=1
(u1i(t) cos mi x cos niy + u2i(t) cos ni x cos miy), (14)
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where mj, nj ∈ {0, 1, 2, . . . , N}. We choose mi , ni , i = 0, 1, . . . , N and avoid
accidental resonances (to be discussed in the next section) in (14). Substitution
in wave equation (1) and taking inner products with the individual eigenfunctions
produces a system of 2N second order coupled ODEs. The ε-scaling as before
enables us to apply averaging; the results depend on the choice of Ω. Suppose that
for one of the (mi, ni) combinations we have the frequency ωi with Ω = 2ωi . The
corresponding eigenfunction will show dynamics that is different from the other
modes.
We will discuss the dynamics in a particular case of N = 2 as this shows the essential
behaviour and avoids too much notation. The results can easily be generalised for
N > 2. Choose m1 , n1 with corresponding ω1 and Ω = 2ω1. Choose a different
set m2 , n2 with corresponding ω2, Ω , 2ω2. We associate with m1, n1 the time-
dependent amplitudes u1, u2, with m2, n2 the amplitudes u3, u4. Substituting the
expansion containing 4 modes:

2∑
i=1

u1(t) cos mi x cos niy + ui+1(t) cos ni x cos miy

into the wave equation (1) and taking inner products with the eigenfunctions we
obtain after the usual ε-scaling the system:

Üu1 + ω
2
1u1 = −εµ Ûu1 − εβu1 cos(2ω1 t) + εαP(u1, u2, u3, u4),

Üu2 + ω
2
1u2 = −εµ Ûu2 − εβu2 cos(2ω1 t) + εαP(u2, u1, u3, u4),

Üu3 + ω
2
2u3 = −εµ Ûu3 − εβu3 cos(2ω1 t) + εαP(u3, u1, u2, u4),

Üu4 + ω
2
2u4 = −εµ Ûu4 − εβu4 cos(2ω1 t) + εαP(u4, u1, u2, u3),

where P(u1, u2, u3, u4) =
9

16 u1
3 + 3

4 u1u2
2 + 3

4 u1u3
2 + 3

4 u1u4
2. We assume that there

are no accidental resonances as discussed in the next section. First order averaging
produces in amplitude-phase coordinates for orbits in general position:

Ûri =
ε

2

((
−µ +

β

2ω1
sin 2ψi

)
ri + (−1)i

3α
16ω1

r1
ir2

3−i sin 2(ψ1 − ψ2)

)
,

Ûψi =
ε

8

(
β

ω1
cos 2ψi −

27α
16ω1

ri2 −
3α
2ω1

(
r3−i

2 + r3
3 + r4

2
)

−
3α
4ω1

r3−i
2 cos 2(ψ1 − ψ2)

)
, for i = 1, 2

Ûrj =
ε

2

(
−µrj + (−1)j

3α
16ω2

r3
j−2r4

5−j sin 2(ψ3 − ψ4)

)
,

Ûψj =
ε

8

(
−

27α
16ω2

rj2 −
3α
2ω2

(
r1

2 + r2
2 + r7−j

2
)

−
3α
4ω2

r2
7−j cos 2(ψ3 − ψ4)

)
, for j = 3, 4

From the equations for r3, r4 we find:
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1
2

d
dt
(r3

2 + r4
2) = −

ε

2
µ(r3

2 + r4
2),

so the amplitudes r3, r4 will vanish with time. For the wave equation (1) the behaviour
of the eigenfunctions corresponding with m1, n1 will be prominent.

Fig. 4 The behaviour of the solutions of system (3.4) by plotting E1(t) for the parametrically
excited oscillators u1, u2 and E2(t) for the oscillators u3, u4. The initial conditions are u1(0) =
u2(0) = 0.5, u3(0) = u(4(0) = 0.4 with initial velocities zero; ω2

1 = 6, ω2
2 = 11, µ = 0.01, β =

0.1, α = 0.05.

We illustrate the results for an explicit case. Consider the combination (m, n) ∈
{(1, 2), (2, 1)} (coefficients u1(t), u2(t)) and {(1, 3), (3, 1)} (coefficients u3(t), u4(t)).
We have ω1 =

√
6, ω2 =

√
11, the parametric excitation frequency Ω = 2

√
6. We

introduce as measures for the energy of the oscillators u1, u2 the quantity

E1 =
1
2
( Ûu1

2 + 6u1
2 + Ûu2

2 + 6u2
2)

and similarly for u3, u4 the quantity

E2 =
1
2
( Ûu3

2 + 11u3
2 + Ûu4

2 + 11u4
2).

The initial values of the two groups of oscillators are equal, the first group is excited,
the second group is damped out; see fig. 4.
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4 Remarks on accidental resonances

The instability of periodic solutions in general position in the case of twomodes with
symmetric eigenfunctions (1) suggests the questionwhether energy can be transferred
to other modes by accidental resonance.We consider a few prominent cases, the topic
can be extended considerably. Choose for the eigenvalues (1) ω0 = c = 1.

4.1 The 1 : 1 : 3 resonance

Consider the 3 eigenfunctions with (m, n) ∈ {(1, 3), (3, 1), (7, 7)}. In this case the
frequencies of the linear oscillations are given by 11, 11, and 99, producing the
1 : 1 : 3 resonance. The eigenfunction expansion of the corresponding 3 modes is:

up(x, y, t) = u1(t) cos x cos 3y + u2(t) cos 3x cos y + u3(t) cos 7x cos 7y. (15)

Substitution of expansion (15) into eq. (1) and taking inner products with the eigen-
functions we find with ω =

√
11, ω1 = 2ω:

Üu1 + ω
2u1 = −εµ Ûu1 − εβu1 cos(2ωt) + εαP(u1, u2, u3),

Üu2 + ω
2u2 = −εµ Ûu2 − εβu2 cos(2ωt) + εαP(u2, u1, u3),

Üu3 + 9ω2u3 = −εµ Ûu3 − εβu3 cos(2ωt) + εαP(u3, u2, u1),

(16)

where P(u1, u2, u3) =
9
16 u1

3 + 3
4 u1u2

2 + 3
4 u1u3

2. Although we have a primary res-
onance it turns out that because of the symmetries of system (16) the 1 : 1 : 3
resonance is not effective. First order averaging produces for the amplitude r3 of
u3(t) the equation

Ûr3 = −ε
µ

2
r3,

so there is no interaction with the modes u1(t), u2(t) and no quenching or transfer
of energy of the first two modes. Higher order approximation will not change this
picture qualitatively.

4.2 The 1 : 1 : 1 resonance

Consider the 3 eigenfunctions with (m, n) ∈ {(1, 7), (7, 1), (5, 5)}. In this case the
frequencies of the linear oscillations are the same, i.e. ω =

√
51, producing the

1 : 1 : 1 resonance. The eigenfunction expansion of the corresponding 3 modes is:

up(x, y, t) = u1(t) cos x cos 7y + u2(t) cos 7x cos y + u3(t) cos 5x cos 5y. (17)
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We substitute expansion (17) into eq. (1) and we take inner products with the
eigenfunctions. Put ω1 = 2

√
51 and rescale

√
51 t 7−→ t, ε/51 7−→ ε; we find the

system: 
Üu1 + u1 = −εµ Ûu1 − εβu1 cos(2t) + εαP(u1, u2, u3),

Üu2 + u2 = −εµ Ûu2 − εβu2 cos(2t) + εαP(u2, u1, u3)

Üu3 + u3 = −εµ Ûu3 − εβu3 cos(2t) + εαP(u3, u1, u1),

where P(u1, u2, u3) =
9
16 u1

3 + 3
4 u1u2

2 + 3
4 u1u3

2. Because of the symmetry of the
system we can recover the solutions of the preceding 1 : 1 resonances in 2 degrees-
of-freedom invariant manifolds. This means that we find periodic solutions in the
3 normal mode planes and unstable periodic solutions in 3 invariant 4-dimensional
manifolds when putting successively the initial conditions of one mode equal to zero.

However, we are interested in general position orbits.We can extend the averaging
by adding to system (6) 2 equations, the angle ψ3 and the combination angles ψ1−ψ3
and ψ2 −ψ3. Apart from the normal mode solutions and because of the symmetry of
system (18) we can enumerate a number of exact solutions in general position, for
instance:

u1(t) = u2(t) = u3(t). (18)

We can also put u2(t) = −u1(t), u3(t) = −u1(t) or u3(t) = −u1(t), u2(t) = −u3(t). In
the case of eq. (18) we have the special solution from:

u1(t) = u2(t) = u3(t) = u(t), , Üu + u = −εµ Ûu − εβu cos(2t) + εα
33
16

u3.

With amplitude-phase coordinates as before the solutions are approximated by aver-
aging:

Ûr =
ε

2
r(−µ +

β

2
sin 2ψ), Ûψ =

ε

4
(β cos 2ψ − α

99
32

r2). (19)

In system (19) r = r1 = r2 = r3 and ψ = ψ1 = ψ2 = ψ3. A critical point of the
averaged vector field is determined by:

µ =
β

2
sin 2ψ, β cos 2ψ = α

99
32

r2.

Elimination of the phase-angle yields:

r2 =
32

99α

√
β2 − 4µ2. (20)
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4.3 The 1 : 1 : 1 : 1 resonance

Consider the 4 eigenfunctions with (m, n) ∈ {(3, 4), (4, 3), (0, 5), (5, 0)} . In this case
the frequencies are ω =

√
26, producing the 1 : 1 : 1 : 1 resonance. The eigenfunc-

tion expansion of the corresponding 4 modes is:

up(x, y, t) = u1(t) cos 3x cos 4y + u2(t) cos 4x cos 3y + u3(t) cos 5y + u4(t) cos 5x.

The analysis by averaging and of exact solutions runs as before. This is left to the
reader.

5 Conclusions

1. The analysis of a nonlinear wave equation with 2 spatial dimensions introduces
many new problems involving resonances. The 1 : 1 resonance dominates the
dynamics in the case of a square domain.

2. In contrast to the case of systems without forcing, see [6], the excitation forces a
strong selection of modes. This has become clear in the analysis of interaction of
1 : 1 resonances.

3. An important aspect of the analysis is the choice of the parametric excitation
frequency Ω = 2ω in eq. (1). In the cases of modes with Ω , 2ω and µ > 0 we
expect reduction of these modes by damping. This becomes already clear for the
1 : 1 : 3 resonance in section 4.1.

4. We have omitted the analysis of detuning. Inspection of the frequencies generated
by the space-dependent operator suggests a number of interesting cases. The
formulation of the initial-value problem for eq. (1) raises many more questions
that will hopefully be discussed in later papers.
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