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ABSTRACT

Adopting the viewpoint that atmospheric flow regimes can be associated with steady states, this work inves-
tigates the hypothesis that regime transitions in deterministic atmosphere models are related to the existence of
heteroclinic connections between these steady states. A low-order barotropic model with topography is studied,
in which topographic and barotropic instabilities are the mechanisms dominating the dynamics. By parameter
tuning, the Hopf bifurcation corresponding to barotropic instability can be made to coincide with one of the
saddle-node bifurcations that are due to the topography in the model. This coincidence is called a fold-Hopf
bifurcation. Among the dynamical structures related to such a bifurcation are heteroclinic connections and
homoclinic orbits, connected to the equilibria. A heteroclinic cycle back and forth between the equilibria, existing
in the truncated normal form of the fold-Hopf bifuraction, will be perturbed in the full model, leaving orbits
homoclinic to one of the equilibria. The impact of these mathematical structures explains several characteristics

of regime behavior known from previous model studies.

1. Introduction

More than 50 years after the first reports on the topic,
the regime behavior of the atmosphere remains an enig-
ma. The considerable attention that has been devoted to
the hypothesis that atmospheric low-frequency vari-
ability is affected by the existence of preferred flow
regimes has not yet resulted in afully conclusive picture.
Nevertheless, the detection of regimes in the observa-
tional data of the atmosphere has progressed signifi-
cantly in the last two decades. Starting with Benzi et
al. (1986) and Sutera (1986), the somewhat intuitive
notion of regimes, developed since the works of Namias
(1950) and Rex (1950a,b), was put on a firmer basis
using concepts and techniques from modern probability
theory. In papers such as Cheng and Wallace (1993),
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Kimoto and Ghil (1993a,b), Smyth et al. (1999), and
Monahan et al. (2001), the use of these techniques has
resulted in growing evidence for the existence of re-
gimes in Northern Hemisphere atmosphere data. More-
over, the regimes found in these papers, using different
techniques, are strikingly similar.

Accepting the existence of regimesstill leavesuswith
the question of which dynamical processes are respon-
sible for this behavior. An important contribution re-
garding this issue was made by Charney and DeVore
(1979, hereafter CDV), who stated that flow regimes
should be identified with equilibrium solutions of the
equations describing the evolution of large-scale at-
mospheric flow. Their hypothesis, supported by the
study of a low-order model for barotropic flow over
topography, was taken up and expanded on by, among
others, Reinhold and Pierrehumbert (1982), Legras and
Ghil (1985), Kallen (1981, 1982), Yoden (1985), De
Swart (1988a,b, 1989), and Itoh and Kimoto (1996,
1999).

Although the earlier-mentioned model studies un-
veiled much about the structure of the (model) regimes,
the observed regime transitions have so far not been
satisfactorily explained. From statistical studies of mod-
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el data as well as observational data, it has been known
for some time that transitions between regimes are not
an entirely random process. In Mo and Ghil (1987,
1988), Molteni et a. (1990), and Kimoto and Ghil
(1993b), up to seven regimes/clusters are identified in
various datasets (both from observations and models).
By counting the transitions between the variousregimes,
these studies made clear that there exist not only pre-
ferred flow regimes, but also preferred transitions be-
tween (some of ) the regimes. Plaut and Vautard (1994),
studying the interplay between low-frequency oscilla-
tions and regimes using multichannel singular spectrum
analysis (MSSA), also found that transitions are not
purely random.

Itoh and Kimoto (1996, 1997, 1999) propose chaotic
itinerancy as an explanation for the preferences and in-
homogeneities in regime transitions. Using multilayer
quasi-geostrophic models of moderate complexity
(L2T15 and L5T21), they detect multiple attractors that
areidentified as regimes. By changing a parameter (hor-
izontal diffusivity or static stability), these attractors
lose their stability one by one, thereby admitting regime
transitions. When all attractors have lost their stability,
the model shows irregular transitions between the rem-
nants of the former attractors, and thus between the
regimes. This behavior is called chaotic itinerancy. The
preferred order of the transitions is related to the order
in which the attractors lost their stability. This inter-
esting result once more emphasizes the inhomogeneities
in regimetransitions, which must be due to the nonlinear
nature of the system under study. However, it does not
provide much insight into the dynamics that determine
the transitions, as the loss of stability of the various
attractors is not analyzed. It remains unknown what dy-
namical processes cause and drive the transitions.

Often a stochasticity assumption isinvoked to explain
regime transitions. Noise, representing the effect of un-
resolved physics and dynamics, can kick a system out
of the basin of attraction of one regime and into another.
This has been studied by adding stochastic perturbations
to a low-order model (e.g., Egger 1981, Benzi et al.
1984, De Swart and Grasman 1987, and Sura 2002).
However, the addition of noiseisnot necessary to trigger
regime transitions. Even in deterministic low-order
models transitions can occur. It is therefore worthwhile
to consider how transitions can be generated by the
internal, deterministic dynamics of a system, in the ab-
sence of noise.

Our hypothesis will be that barotropic flow over to-
pography is not only sufficient to create multiple equi-
libria (as in CDV), but can also generate transitions
between those equilibria, resulting in regime behavior.
This is based on the fact that transitions have been ob-
served in various barotropic models. Examples are the
25-variable model used by Legras and Ghil (1985), the
10-dimensional model used by De Swart (1988a,b), and
the T21 model studied in Crommelin (2003b). The pres-
ence of baroclinic processes is apparently no conditio
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sine qua non for regime transitions. Recently, even in
laboratory experiments designed to mimic as closely as
possiblethe situation of barotropic flow over topography
in the atmosphere, regime behavior was observed
(Weeks et al. 1997; Tian et a. 2001). Thus, the tran-
sitionsfound in several truncated barotropic modelscan-
not simply be discarded as model artifacts.

In Crommelin (2003b) strong numerical evidencewas
found in support of the hypothesis that remnants of het-
eroclinic connections are responsible for the transitions
between flow regimes. The regimes were found to cor-
respond with steady states, in accordance with the par-
adigm introduced by CDV, and are likely to have de-
terministic connections running back and forth between
them for nearby parameter values. An attempt was made
to find the trgjectories of the connections, and the result
of that attempt was shown to be consistent with the
phase space preferences of regime transitions during a
200-yr model integration. In spite of the numerical ev-
idence, analytical, or at least more rigorous mathemat-
ical support isstill lacking for the hypothesisthat regime
transitions are related to heteroclinic connections [a hy-
pothesis also mentioned by Legras and Ghil (1985),
Kimoto and Ghil (1993b) and Weeks et al. (1997)]. In
this paper we want to provide such support, by studying
a low-order model of the atmospheric flow at midlati-
tudes. We hypothesize that the combination of topo-
graphic and barotropic instability is sufficient to create
multiple equilibria corresponding to regimes as well as
connections between these equilibria, and we therefore
take the simplest model possible that combines these
two instability mechanisms. Such a model is provided
by De Swart (1989, hereafter DS), a six-variable model
that is essentially the same as the model of CDV, aso
studied by Yoden (1985), except for a different scaling
and a more general zonal forcing profile. We will use
this model to study the interaction between topographic
and barotropic instability, in order to seeif and how the
combination of these instability mechanisms can gen-
erate connections between steady states, resulting in re-
gime behavior.

The study of this interaction can provide a first step
toward a better understanding of the mechanisms play-
ing a role in the phenomenon of regime transitions.
Although the model that will be used is probably too
simple to arrive at conclusions that pertain immediately
to the real atmosphere, the insights it provides may
guide the investigation of more complex models, or even
observational data.

2. Derivation of the low-order model

The starting point for this study is the hypothesis that
the combination of topographic and barotropic insta-
bility is sufficient to generate regime behavior. Notably,
baroclinic processes are not considered to be truly nec-
essary for regime transitions to occur. Thus, we consider
a model without baroclinic dynamics and without sto-
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chastic terms supposed to represent the effect of baro-
clinic processes. Instead, we wish to study the simplest
deterministic model possible that combines the mech-
anisms of barotropic and topographic instability. There-
fore we use the model presented in DS, a dlightly dif-
ferent version of the CDV model. It can have multiple
equilibria, caused by topography, and is forced by a
zonal flow profile that can be barotropically unstable.

The model is obtained by a Galerkin projection and
truncation of the barotropic vorticity equation (BVE) on
a B-plane channel. The BVE, a partial differential equa-
tion, reads

)
SV = =g, VA £ gh) — OV~ ).
2.1)

Time (t), longitude (x), and latitude (y) can take on
values (t, x, y) O R X [0, 277] X [0, #b]. The parameter
b = 2B/L determines the ratio between the dimensional
zonal length L and meridional width B of the channel.
The streamfunction field (t, x, y) is periodic in x: ¥(t,
X, ¥Y) = ¢(t, X + 27, y). Therestriction to the beta plane
implies that at the meridional boundariesy = 0, 7 both
aplax = 0 and |37 (9yfay) dx = O. The Coriolis param-
eter f generates the beta effect in the model. Orography
enters with h, the orographic height, and is scaled with
v. The Jacobi operator 7 acts on two fields, say A(X, y)
and B(X, y), as follows: 7(A, B) = (0A/ox)(oBlay) —
(0A/9y)(0B/ox). Finaly, the model is driven by a New-
tonian relaxation to the streamfunction profile *, with
damping coefficient C.

To arrive at a finite-dimensional model, the BVE is
projected onto a set of basis functions which are eigen-
functions of the Laplace operator V2. On the chosen
rectangular domain, with the earlier-mentioned bound-
ary conditions, these functions are double Fourier
modes:

dom(y) = V2 cos(my/b)
don(X YY) = V2e sin(my/b), (2.2)

inwhich |n|, m=1, 2,...,. The streamfunction and
the topographic height are expanded in this basis

P X Y) = 2 Yo bum N Y) = 2 N
| | 2.3)

The six-dimensional model is obtained by truncating the
expansion after [n| = 1 and m = 2, so the only re-
maining basis functions are ¢, ¢gp, P11y P_11, P10, aNd
¢_,,. The time-dependent variables iy, Yooy Y11, Pinn
are transformed to real variables:

X = o %= (W )
1 b o1y 2 b,\/i 11 —11/»

X = (s — )
3 b\/i lpll lp711 1
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i
Xe = ﬁ(w& - ‘p—lz)- (2-4)

The topography h is chosen to have a (1, 1) wave
profile:

h(x, y) = cos(x) sin(y/b), (2.5)

so the only nonzero topographic expansion coefficients
areh,, = h_,; = 1/(2V2). The forcing profile *,
finally, is purely zonad, that is ¢* = *(y). For the
6D model this means that the only forcing terms will
be x¥ and x%.

The set of ordinary differential equations describing
the temporal evolution of the x; is of the form x = F
+ AX + B(X, x), with energy- and enstrophy-preserving
quadratic nonlinearities. In detail it reads

Y% — Cl — X)
X = —(ayX; — B)Xs — Cx — 8,%,X%s
= (X — B)X% —
Xo = X — C(X — X5) + (XX — XsXo)
X = —(aX — Bo)Xs — CX — 6,Xu%
X = (X — Bo)Xs — VaXe — CXs + 3,X,%.  (2.6)
The various coefficients in these equations are given by
_8\/5 m b2+ m -1

X, =

w><.
|

X — CX + 81X %s

m T -1 b2+ m
_ B
Po = e e
64V2p2 — m2 + 1
" 157 b2+ m
5 am \/Eb
T Ve =1 a7
16V2
£7 5y
4m3 \V2b
Vi 27

" Va1 - me)

In the equations, the terms multiplied by «; model the
advection of the waves by the zonal flow. The g; terms
are due to the Coriolis force; the y terms are generated
by the topography. The C terms take care of the New-
tonian damping to the zonal profile x* = (xf, 0, 0, x%,
0, 0). The 6- and e-terms describe the nonlinear triad
interaction between the zonal (0, 2) mode and the (1,
1) and (1, 2) waves. This triad is responsible for the
possibility of barotropic instability of the (0, 2) mode.
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Fic. 1. Continuation of fixed points. Solid lines denote stable branches and dashed lines unstable
branches. (left) Barotropic instability is not possible and topography is zero (r = y = 0). (right)
Topography is nonzero (y = 1), generating two saddle-node bifurcations (snl and sn2). The three
branches of equilibria are denoted by eql, eq2, and eq3. The Hopf bifurcation hb (solid square) is
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due to barotropic instability (r = —0.4).

The number of free parametersin the model equations
is six: the damping coefficient C, the forcing parameters
x¢ and x§, the length-width ratio of the beta channel,
b, the beta-effect parameter B, and the scaling of the
topographic height -y. In the analysis of this paper we
will most of the time use the ratio r between x% and
X; as afree parameter instead of X} itself. Thisis done
by putting X5 = rx;.

The model parameters xi, x% (or r) and y will be
varied throughout this study. The remaining parameters
B, b, and C will be kept fixed. The choice 8 = 1.25
corresponds to a channel centered around a latitude of
45° seealso DS. In DS, C was set to 0.1, corresponding
to adamping time scale of 10 days (the nondimensional
time in the equations was scaled such that At = 1 cor-
responds to roughly 1 day). We will adopt the same
value for C.

The channel width—length ratio b will be set to 0.5,
which is different from the val ue taken throughout most
of the study of DS. There, b = 1.6 was chosen. However,
at that value the model contains pitchfork bifurcations
that create additional branches of equilibria. Since we
want to isolate the mechanisms of barotropic and to-
pographic instability in their simplest form, such ad-
ditional bifurcations are unwanted. By choosing b =
0.5 (i.e., reducing the north—south extent of the channel
from 80% to 25% of its east—west extent) these extra
pitchfork bifurcations do not occur. This value of b is
not unphysical, considering that the east—west extent of
the midlatitude regions on earth is alot larger than their
north—south extent. Moreover, since regime behavior is
alow-frequency variability phenomenon, it isassociated
with planetary scales rather than synoptic scales. The
planetary waves are not isotropic; in longitudinal di-
rection their wavelength is much larger than in merid-
ional direction.

3. Topographic and barotropic instability

Nonzero topography may introduce a mechanism of
instability in the system. The interaction between the

zonal flow and the topography can generate standing
wave solutions. The (0, 1) zonal flow component will
excite a wave with the same wavenumber as the topog-
raphy, in this case the (1, 1) wave. The effect of the
topography does not end there; as can be seen in the
equations, the (1, 2) wave mode is coupled to the (0,
2) zonal mode via the topography. It must be pointed
out that the topography does not create an oscillatory
mode (asis usually the case with instabilities), but rather
a resonant response curve which corresponds to a pa-
rameter range with multiple equilibria. These equilibria
are associated with three different ways in which the
advection of relative vorticity, the advection of plane-
tary vorticity, and the vortex stretching caused by flow
over topography can balance. One of the equilibria is
unstable. Since the instability of this steady state is en-
tirely due to the topography, and not to other mecha-
nisms such as barotropic instability or wave instability,
the effect of the topography here has been given a new
name, topographic instability.

The barotropic instability is an instability mechanism
in the more common sense of the word, as it refers to
a situation where a steady state (a mainly zonal flow)
loses its stability while a (stable) oscillatory wave mode
(a travelling wave) is created. The zonal flow profile
must obey certain conditions for this instability to be
possible (see, e.g., Kuo 1949 and Cushman-Roisin
1994). In particular, the profile must have at least one
inflection point (a change in the sign of the total vor-
ticity) in meridional direction. For that reason it is nec-
essary to have more zonal modes resolved in the model,
since the (0, 1) zonal mode can never be barotropically
unstable by itself (it does not obey the inflection point
condition). The (0, 2) zonal mode can become unstable,
though only when b? < 3, due to Fjgrtofts theorem (see
DS). Our choice of b = 0.5 clearly satisfies this con-
dition.

The effect of the two mechanisms is shown in Fig.
1. On the left is a curve of fixed points depicted in the



Fic. 2. Streamfunction patterns corresponding to the equilibria at
Xf = 6,r = —04, y = 1. (top and bottom) The stable equilibrig;
(middle) the unstable one. Thick lines are streamfunction lines (con-
tour interval 1 in nondimensiona units), thin lines are topography
contours (interval 0.25 km). Dashed lines/contours are for negative
values, solid lines/contours for zero or positive values.

situation without either mechanism playing arole. This
was achieved by putting y = x§ = 0, so that topography
is zero and the zonal flow profile cannot be barotropi-
cally unstable. The response of the model to varying
Xf is a shift of the steady state such that x, = x¥. On
the right, both mechanisms are present. The deformation
of the straight curve on the left to the S-shaped curve
on the right, involving two saddle-node bifurcations
(snl and sn2), is the result of nonzero topography (y
= 1). The (supercritical) Hopf bifurcation on the upper
part of the branch represents the barotropic instability,
which was triggered by nonzero x%. To be able to per-
form fixed-point continuations starting with zero flow
(al x;, = 0) at zero forcing, x% is scaled with x¢, by
putting x§ = rxt and fixing r at some value (thus, r
then controls the shape of the forcing profile while x§
determines its strength). This scaling will be used
throughout this paper. In Fig. 1, right, r = —0.4 was
taken. The continuations were carried out using the soft-
ware package AUTO (Doedel and Wang 1995).

The flow patterns corresponding to the three different
fixed points existing at X = 6 in Fig. 1 are shown in
Fig. 2. As was aready known from previous studies
(e.g., DS), the upper branch eql corresponds to equi-
libria with largely zonal character. The other two are
dominated by topographicaly excited standing wave
patterns, one superresonant (eq2), the other subresonant
(eg3). The former has a slightly stronger zona flow
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Fic. 3. Location of cusp bifurcation for varying y and r. The
value of x¥ also changes along the curve but is not shown.

component than the latter. The phases of their wave
components with respect to the topography are some-
what different: the wave pattern of eg3 is a bit more
upstream than that of eg2. The phase difference goes
to 0 when moving toward sn2.

The subresonant solution eg3 is usually the one that
is identified as the regime of blocked flow. The main
reason for that seems to be the fact that in the simplest
setting (i.e., topographic instability being the only phys-
ical mechanism present) eg3 is the stable solution,
whereas eg2 is unstable. Nevertheless, eq2 also pos-
sesses the characteristics of a blocked flow regime. To
call eg2 an intermediate solution only because it is un-
stablein the simple setting seems premature. Eventually,
all equilibria have to be unstable for regime transitions
to occur in a model without stochastic terms. We see
no a priori reason to exclude eq2 as a candidate for the
blocked regime.

4. The merging of two instabilities: A fold-Hopf
bifurcation

a. Instabilities and bifurcations

The two instabilities are, mathematically, represented
by saddle-node and Hopf bifurcations. The locations of
these bifurcations depend on the parameters of the mod-
el. Figure 1 aready gave an idea of this dependence.
The straight curve of fixed points, wherethe equilibrium
is such that the dissipation and the forcing of the first
zonal mode are in balance, gets deformed by increasing
the amplitude of the topography above some threshold
value. At the threshold value, the two saddle-node bi-
furcations snl and sn2 coincide. Thus, the threshold is
a cusp bifurcation. The cusp is a codimension-2 bifur-
cation (two parameters, say x¥ and -y, must be tuned for
this bifurcation to occur) and can be continued adding
a third parameter, say r. This means that the value of
v for which the cusp occurs changes when altering the
shape of the zonal forcing. A curve showing the y lo-
cation of the cusp for varying r is drawn in Fig. 3. It
must be stressed that the value of xf for which the cusp
occurs also changes along the curve: it decreases mono-
tonically fromx = 1.992 at y = 0.3198 tox¥ = 0.3320
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at vy = 3.0 X 10-*2, The continuation of the cusp was
performed using the continuation software package
CONTENT (Kuznetsov and Levitin 1997). Note that if
the zonal forcing profile has the right shape and strength
(¢ = 0.3320, r = —0.861467), the influence of the
topography is even felt when its amplitude is infinites-
imally small (y approaching zero).

The Hopf bifurcation is the dynamical expression of
barotropic instability. Since the (0, 2) zonal mode can
become barotropically unstable but the (0, 1) mode can-
not, it can be expected that the bifurcation occurs at
smaller x¥ values if |r| isincreased. By doing so, the
Hopf bifurcation will approach the saddle-node snl, and
at some point coincide with it. This simultaneous oc-
currence of a saddle-node (or fold) and a Hopf bifur-
cation is called a fold-Hopf bifurcation, and has codi-
mension 2.

Let us investigate what happens when this fold-Hopf
bifurcation occurs (i.e., when the two instability mech-
anismsmerge). The description of the variousdynamical
phemonena and structures that emerge out of this codi-
mension two point in parameter space, the so-called
unfolding of the bifurcation, is given in Kuznetsov
(1995). We will briefly review it here.

b. The fold-Hopf bifurcation: Some theory reviewed

The occurrence of a bifurcation of a fixed point can
be read off from the eigenvalue-spectrum of the fixed
point. In a saddle-node (or fold) bifurcation, one eigen-
value is exactly zero, al the others have nonzero real
parts. In a Hopf bifurcation, one complex conjugated
pair of eigenvalues has a real part zero (and an imag-
inary part nonzero); again, all other eigenvalues are
bounded away from the imaginary axis. It will come as
no surprise that a fold-Hopf bifurcation is characterized
by afixed-point eigenval ue spectrum with one zero and
one purely imaginary pair (i.e.,, A; = 0, A,; = *iw) as
its only eigenvalues on the imaginary axis. The fold-
Hopf bifurcation is sometimes also referred to as zero-
Hopf, zero-pair, or Gavrilov—Guckenheimer bifurcation.

Suppose we have an n-dimensional system depending
on p parameters

x=f(xu, xOR, pOR° (41)

with fixed point X = X, at w = o [SO T(X, o) = O].
If o is afold-Hopf bifurcation point, the eigenvalue
spectrum contains n_ eigenvalues A;- with negative real
part, n, eigenvalues A;+ with positivereal part and finally
one zero and one imaginary pair: ReA;, ..., A;. <0
< Rer!, ..., AL A2 =0, A%; = *iw. Clearly, n_ +
n, + 3 = n. We will denote the linear eigenspaces
corresponding to the three groups { A7}, {Ai}, {AS} by
E-, E*, and E°, respectively: the stable, the unstable,
and the center eigenspace. The Center Manifold The-
orem states that there exists a (only locally defined)
three-dimensional invariant manifold We that is tangent
to E%in X,. The only interesting dynamics of the system
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in the neighborhood of X, takes place on We. Away
from We, the system is either exponentially fast repelled
from We (along the unstable manifold) or attracted to-
ward We (along the stable manifold), and thus *“ trivial.”
We is called the center manifold.

The dynamics of the system around X, can be de-
scribed (apart from the exponentialy fast repelling and/
or attracting to W¢) by the dynamics on the center man-
ifold. Thus, to understand the (local) behavior of the
system in and near a fold-Hopf bifurcation, we can re-
strict ourselves by looking at the center manifold dy-
namics. A nonlinear, parameter-dependent transforma-
tion of variables alows us to isolate the description of
the system on We (a so-called center manifold reduc-
tion). The equations describing the evolution on We can
be cast in a standardized form; thisis called the normal
form. We will not discuss the way to calculate the nor-
mal form and the center manifold reduction, see Kuz-
netsov (1995, 1999) for a detailed discussion. Instead,
we only give the normal form of the fold-Hopf bifur-
cation:

y=pty+slz]2 + o(ly, z 2|)

z=(p, + iw)z + (0 + iNyz + y?z + O(ly, z z|%).
(4.2

Here,y 0 RandzO C; p, and p, are called the unfolding
parameters, w,, 6, and ¥ are coefficients whose values
depend on p, and p,, and s = +1 or —1. We assume
0 # 0 when p, = p, = 0. The fold-Hopf bifurcation
point is a (p,, p,) = (0, 0). There, the normal form
equations have afixed point y = z = 0 with eigenvalue
spectrum 0, *iw,.

Truncating the normal form after the cubic terms and
transforming z to polar coordinates, z = ue'¢, yields

y=p +y + s u=(p, + 6y + y?u

¢ = w, + V. 4.3)

This system is called the truncated normal form. Ascan
be seen, the equations for y and u do not depend on ¢.
Moreover, in the neighborhood of the fixed point, ¢ ~
w,, due to small y. The bifurcations in the preceding
system can therefore be understood by only studying
the equations for y and u, the so-called (truncated) am-
plitude equations. Note that the truncated amplitude
equations are Z ,-symmetric, as they are invariant under
U —» —u. See Kuznetsov (1995) for a discussion. This
symmetry is related to the St-symmetry (invariance un-
der ¢ - ¢ + ¢, for arbitrary constants ¢.) of the
truncated normal form.

Qualitatively, the bifurcation diagram near the origin
in the (p;, p,) plane is determined by the signs of sand
0. There are four different cases, or unfolding scenarios.
Which scenario applies to our situation can be deduced
from the fact that in our system the Hopf bifurcation,
when it is located on the upper, stable branch, is su-
percritical: the stable equilibrium losesits stability while
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FiG. 4. Bifurcation diagram of the truncated amplitude eguations of the fold-Hopf bifurcation
withs =1, § < 0. Thevariouslines and curvesin the diagram are denoted hb for Hopf bifurcation,
hc for heteroclinic cycle, ns for Neimark—Sacker bifurcation, and sn for saddle-node bifurcation.
The seven phase portraits (a)—(f) and hc show the dynamics in the (u, y) plane.

a stable periodic solution is created. It leaves the sce-
nario with normal-form coefficients s = 1, 6 < 0 as
only possibility. This can be checked by continuation
of the Hopf bifurcation using (a not yet publicly avail-
able version of ) CONTENT, which calculates the nor-
mal-form coefficients when the Hopf bifurcation curve
crosses a fold-Hopf point. Indeed it is found that s =
1, 6<0.

We will not discuss all four unfolding scenarios but
restrict ourselves to the one relevant for this study. The
bifurcation diagram for the truncated normal form in
case s = 1, 6 < 0 is shown in Fig. 4, together with
phase portraitsin the (u, y) plane for the various regions
of the diagram. In origin of the (p,, p,) plane we find
the fold-Hopf point. From the origin, a saddle-nodeline
sn (p, = 0) and a Hopf curve hb [p, = —p2/6? + 0o(p2)]

emanate. For p, > 0 no equilibria or periodic orbits
exist. When crossing sn, two equilibria are created. The
invariance of the line u = 0 (or, equivaently, z = 0)
in the truncated normal form guarantees the existence
of a heteroclinic connection on the y axis between the
two equilibria.

When crossing hb, one of the equilibria (which one
depends on the sign of p,) undergoes aHopf bifurcation.
The periodic orbit born on the Hopf curve encounters
a Neimark—Sacker bifurcation (also called torus bifur-
cation) when crossing the line p, = 0, p, < 0. The
Neimark—Sacker line, denoted ns, also emanates from
the origin of the parameter plane. Note that in the trun-
cated amplitude equations a Hopf bifurcation actually
appears as a fixed point moving into the u > 0 plane.
A fixed point of the truncated amplitude equations with
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Fic. 5. (left) Spherelike heteroclinic cycle between two equilibria.
The cycle exists on curve hc of the truncated normal form (4.3).
(right) One of the homoclinic orbits remaining after adding pertur-
bative higher-order terms to the truncated normal form.

u > 0 corresponds to a periodic orbit in the truncated
normal form. In the same spirit, a Neimark—Sacker bi-
furcation and atorusin the truncated normal form equa-
tions appear as, respectively, a Hopf bifurcation and a
periodic orbit in the truncated amplitude equations.

The invariant torus, created when the periodic orbit
crossed the ns curve, blows up and eventually touches
both equilibria. This happens on the curve hc (see Fig.
4), and creates a second heteroclinic connection between
the equilibria. The second connection corresponds to a
spherelike surface in the full (truncated) normal form.
Together with heteroclinic connection on the y-axis, it
forms a heteroclinic cycle between the two equilibria.
In Fig. 5, this cycle is drawn in three dimensions.

The bifurcation scenario sketched in Figs. 4 and 5 is
valid for the truncated normal-form equations (4.3).
Since in practice we always deal with systems in which
higher-order, perturbative terms show up when carrying
out the normalization, the effect of such perturbations
[the O(]y, z,Z|*) termsin Eq. (4.2)] must be considered.
The perturbations do not affect the local bifurcations
(saddle-node, Hopf, Neimark—Sacker) but they perturb
the heteroclinic connections. For instance, the connec-
tion on the y-axis is due to the invariance of that axis,
sinceinthetruncated normal form (4.3) U isproportional
to u. However, the higher-order perturbations can con-
tain terms proportional to y**', | O N, that destroy the
invariance and thereby the connection. In other words,
the perturbations break the symmetry of the truncated
normal form.

The heteroclinic cycle will, in general, be destroyed
by the perturbations, leaving instead two homoclinic
orbits. These are attached to either one of the two fixed
points and stretch toward the other equilibrium. An ex-
ample is shown in Fig. 5. The homoclinic orbit resem-
bles the former heteroclinic cycle but does not reach all
the way to the second equilibrium. The other orbit, at-
tached to the lower equilibrium and stretching toward
the upper one, is not shown. In some cases the homo-
clinic orbits can be of the Shil’ nikov type, implying the
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Fic. 6. (top) Bifurcation diagram with fold-Hopf bifurcation (fh)
as guiding center; includes the saddle-node bifurcation curves snl
and sn2 (coming together in the cusp bifurcation c), the Hopf bifur-
cation curve hb, and the period-doubling curve pd. The thin solid
line winding in toward the fold-Hopf point is the homoclinic bifur-
cation curve ho. (bottom) In the magnification the curve of the Nei-
mark-Sacker (or torus) bifurcation nsisvisible: it emanates from the
fh point and ends on the pd curve. The homoclinic orbits from three
locations on the curve ho, indicated by filled circles, are shown in
Fig. 7.

presence of a chaotic invariant set. As the issue of cha-
otic behavior is not our focus here, we do not explore
this possibility.

¢. Numerical bifurcation analysis

Figure 6 shows the results of the numerical bifur-
cation analysis of the model equations (2.6). The cal-
culations were done using AUTO. The orographic
height was decreased to y = 0.2 for the calculation,
corresponding to a topography amplitude of 200 m (in-
stead of 1 km when y = 1). Thisis more realistic than
v = 1, since the individual spectral components (see
section 2) of realistic topography will have amplitudes
(much) smaller than the original topography itself [see,
e.g., Charney et al. (1981), where topographic maxima
of about 2 km result in spectral amplitudes of a few
hundred meters or less|. Moreover, a decrease of y will
shift the region of multiple equilibria to more realistic
physical values. We will come back to this in the next
section. A value of 0.2 for -y results, as could have been
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predicted from Fig. 3, in a cusp bifurcation (c) at
(O, r) = (1.178645, —0.4965761), in which the two
saddle-node bifurcation curves (snl and sn2) coincide.
This implies that when v = 0.2, only one equilibrium
isfound if there is no forcing in the second zonal mode
(i.e, r = 0).

The numerical analysisrecoversthetheoretically pre-
dicted phenomena sketched in the previous section. The
Hopf curve (hb) becomes tangent to snl in the fold-
Hopf bifurcation point fh at (xf, r) = (0.783 324,
—0.821 677). The eigenvalue spectrum at this bifurca-
tion point is (0, =i0.293 756, —0.103 994, —0.248 003
+10.206 738). Thus, locally in phase space the system
is attracted toward the center manifold associated with
the fh bifurcation. From the fh point the Neimark—Sack-
er curve (ns) can be seen to originate (Fig. 6, bottom).
The ns curve ends on the curve of the first period-
doubling bifurcation (pd). Thispd curveis not predicted
by the unfolding of the fold-Hopf bifurcation, as it is
not in the immediate parameter neighborhood of the fh
point. The period doubling is encountered when follow-
ing the periodic orbit born on the hb curve into the
parameter plane. It is the first of what is probably a
cascade of period doublings. In Shil’nikov et al. (1995)
and Van Veen (2004), similar (but more detailed) bi-
furcation analyses are presented in the context of the
Lorenz-84 baroclinic model.

As has been explained, the unfolding of the truncated
normal form of the fold-Hopf bifurcation contains a
heteroclinic bifurcation curve on which a heteroclinic
cycle exists that connects the two equilibria eql and
eg2. The cycle will be broken under perturbations, leav-
ing homoclinic orbits that are nearly heteroclinic cycles.
One of these orbitsisfound numerically by continuation
of the periodic orbit created on the curve hb. Starting
the continuation in r of the periodic orbit born on hb
at xr = 0.9, the orhit becomes homoclinic to the upper
equilibrium eql at r = —1.188 582. During the contin-
uation, the first period-doubling curve pd is crossed
twice. By continuation of the homoclinic bifurcation, a
curve is obtained that winds in toward the point fh. In
Fig. 6 this curve is denoted ho. Note that part of the
curve falls beyond the limits of the upper figure. The
two segments in the figure are connected via a turning
point at (X, r) = (1.806 245, —0.517 351 3). When the
curve approaches the fh point, its windings are very
close to each other and cal cul ation becomesincreasingly
harder. Therefore, the continuation of the ho curve does
not reach al the way to the fh point, although that is
where the curve can be expected to realy end. The
second homoclinic curve, not shown in Fig. 6, aso
windsin toward the fh point. It intersects the first homo-
clinic curve ho infinitely many times near fh. The orbits
on this second curve are homoclinic to eg2.

In order to show that the homoclinic orbits indeed
become nearly heteroclinic cycles near fh, three orbits
taken from curve ho are depicted in Fig. 7 (see aso
Fig. 6, where the three locations on the ho curve are
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Fic. 7. Homoclinic orbits at various points on the homoclinic curve
ho. The orbits are all attached to the zonal equilibrium egl and can
be seen to approach the wavelike equilibrium eq2 when moving along
the curve ho toward the fold-Hopf point.

indicated by afilled circle). The first is the orbit that
exists at (xf, r) = (0.873867 4, —0.881582 7). This
is still quite far from the fold-Hopf point. The orbit is
attached to the zonal equilibrium egl and can be seen
to tend toward the second, wavelike equilibrium eg2,
but does not come very close to it. The second orbit, with
(¢, r) = (0.903 724 0, —0.747 400 2), tends more clear-
ly to eg2. The third orbit, (xf, r) = (0.7991501,
—0.812 858 9), comes very close to the second equilib-
rium and almost forms a heteroclinic cycle. In Fig. 8,
this nearly heteroclinic cycle is plotted in various pro-
jections. They suggest that one part of the cycle runs
over a spherelike surface, while the other part is ap-
proximately an axis through the middle of that sphere.
This is in agreement with the theoretical picture, see
Fig. 5. A similar structure showed up in an EOF-based
atmosphere model studied in Crommelin (2002).

The structure of fixed points, periodic orbits, and con-
nections arising out of the fold-Hopf bifurcation induces
several periodicities in the system. The unstable and
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Fic. 8. Nearly heteroclinic cycle in various projections.

stable leading complex eigenmodes of eql and eg2, re-
spectively, each have an oscillation period. These os-
cillations are not related to periodic orbits (although it
is possible that in a more complex situation periodic
orbits will be thrown off by egl or eg2, due to new
Hopf bifurcations). Also, the primary periodic orbit born
on the Hopf curve hb is an essential element in the
unfolding of the fold-Hopf bifurcation. Furthermore, the
torus created in the Neimark—Sacker bifurcation is char-
acterized by a second period (the first being, initialy,
the period of the primary periodic orbit just mentioned).
This second period is likely to be highly variable in
parameter space, as the torus may be destroyed or touch
the equilibria. Finally, the orbits homoclinic to eql and
eg2 will give rise to either an infinity of periodic orbits
(inthe case of a Shil’ nikov-type homoclinic bifurcation)
or one unique periodic solution (in the other case). For
mathematical details of the periodic orbits generated by
homoclinic bifurcations, see Kuznetsov (1995). See also
Van Veen (2004) for a detailed analysis of the relation
between the homoclinic bifurcation and the period-dou-
bling cascade. In Tuwankotta (2002) heteroclinic be-
havior isanalyzed in ageneral three-dimensional system
with quadratic, norm-preserving nonlinearities.

5. Bimodality

Numerical integration of the system, in order to see
the influence of the fold-Hopf bifurcation, is compli-
cated by the presence of the stable equilibrium eqg3. In
the parameter range under consideration (see Fig. 6),
this fixed point does not become unstable. However, if
we inspect the behavior just beyond the second saddle-
node curve sn2, eg3 does not exist anymore but its
former presence still generates a stagnation point for the
system. The role of such stagnation points in regime
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behavior, also called “ghost equilibrium’” points or
““quasi-stationary”’ states, is discussed in Legras and
Ghil (1985) and studied in detail in Mukougawa (1988).
If we integrate the system at (xf, r) = (0.95, —0.801),
a point in parameter space close to the homoclinic bi-
furcation curve ho and just beyond sn2 (which is at
xXr = 0.945 when r = —0.801), regime behavior is
visible. That is, the system alternately visits the neigh-
bourhoods of eql and (the former location of ) eg2 and
eg3.
The results of an integration of 4000 time units
(equivalent to 4000 days) are shown in Fig. 9. Plotting
X, versus time, we see lingering around and transiting
between eql on the one hand and the former location
of eq2 and eg3 on the other hand. Also shown is a
projection of the integration orbit onto the (x,, X,) plane.
Comparing with Fig. 8, one sees that the trajectories of
the system have grown in phase space extent, but still
follow roughly the same route as the nearly heteroclinic
cycle in Fig. 8. The probability density function (pdf)
of the distribution of states in the (x,, X,) plane shows
two maxima toward the far ends of the elongated struc-
ture. This is the imprint of the regime behavior on the
pdf. The high phase speed of the system during its os-
cillating transition from the zonal to the wavelike equi-
librium has the effect that states from these transitions
are hardly visible in the pdf.

The system trajectory can be seen to turn around be-
fore really reaching the fixed points. It causes the pdf
maximato lie closer to the time-mean state of the system
than the fixed points. This has been observed elsewhere
(Reinhold and Pierrehumbert 1982; Achatz and Op-
steegh 2003): the anomaly patterns of the regimes are
similar to those of the fixed points, but the amplitudes
of the regime anomalies are smaller. In Fig. 10, the flow
patterns corresponding to eql at (xX*, r) = (0.95,
—0.801) and to eg2 and 3 at (x¢, r) = (0.945, —0.801)
(the saddle-node bifurcation point sn2, where eg2 and
eq3 collide) are shown. In dimensional units (using a
wind speed scaling U, = 10 m s~¢, related to a channel
length of 27 X 10% km), the zonal wind speed reaches
a maximum of about 30 m s~* in the jet of the eql
pattern. In the eq2 and 3 pattern it is about 25 m s1.
These are surprisingly realistic values, especially when
compared to the jet speed maximaof 150 m s—* or more,
usually seen for this type of model. It results from the
decrease of the topographic height (0.2 instead of 1.0
km), which causes the region of parameter space with
multiple equilibriato be located at more realistic values
of the forcing parameters. Thus, the almost classical
objection of unrealistically strong jets, raised against
CDV-like studies in, for example, Tung and Rosenthal
(1985), does not hold for our choice of parameters.

To get an impression of the strength of the forcing
the model is exposed to in the preceding integration,
the forcing profile * corresponding to (}, r) = (0.95,
—0.801) is converted to the zonal velocity forcing pro-
file u = —ay*/dy. The resulting dimensional profile,
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Fic. 9. Results of a 4000-day integration at (xf, r) = (0.95, —0.801). (top) x, vs time. The x, values of
eql and of the previous|ocation of eq2 and eq3 (see text) areindicated. (bottom | eft) Projection of integration
data onto (x,, X,) plane. (bottom right) The pdf in (x,, x,) plane calculated from integration data.

using again the scaling of U, = 10 m s, is shown in
Fig. 11. Also plotted there is the forcing profile cor-
responding to the fold-Hopf bifurcation point (X7, r) =
(0.783 324, —0.821 677). The maximum velocity in the
jet in the northern half of the domain is about 30 m s—*

S S S e
\\ — i// / -%__
e Sme—— | —
eql

Fic. 10. Flow regimes corresponding to (top) eql at (x}, r) =
(0.95, —0.801) and (bottom) to eg2 and 3 at the point where they
collide [the saddle-node point sn2 at (x¥, r) = (0.945, —0.801)].
Thick lines are streamfunction lines (contour interval 0.2 in nondi-
mensional units), thin lines are topography contours (interval 0.05
km). Dashed lines/contours are for negative values; solid lines/con-
tours for zero or positive values.

for the forcing used in the integration, and 25 m s—* for
the forcing in the fold-Hopf bifurcation. These values
are in the range of the velocities reached by the tro-
pospheric jet in the real atmosphere.

In the previous section, the occurrence of several pe-
riodicities, associated with the unfolding of the fold-
Hopf bifurcation, was discussed. For the integration pa-
rameter settings, (', r) = (0.95, —0.801), the zonal

y=mbh

y=0 : I ] 1
-10 0 10 20 30
u (m/s)

Fic. 11. Meridiona dependence of forcing profile *, converted
to zonal wind speed u in m s, Profile corresponding to (X}, r) =
(0.95, —0.801), used for the forward integration in section 5 (solid
line). Profile corresponding to fold-Hopf bifurcation point at (X, r)
= (0.783 324, —0.821 677) (dashed line).

40
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equilibrium eql has a complex pair (0.247 140 =+
i10.315 545) as its only unstable eigenvalues. The os-
cillation period corresponding to this eigenvalue pair is
about 20 days. The period related to the stable leading
eigenmode of eq2 just before sn2 at (xf, r) = (0.945,
—0.801), is about 9 days. The principal periodic orbit,
born on the curve hb, has a period of 18 days at (x*, r)
= (0.95, —0.801). The second period of the torusis not
recognizable; the torus may very well not exist anymore
for these parameter values. A typical period associated
with the switching between the regimes does not exist
anymore, due to the irregular nature of the regime
switching.

6. Conclusions

The purpose of the work presented in this paper was
to isolate and study a specific mechanism that can gen-
erate regime transitionsin an atmosphere model that has
no noise terms. The mechanism involves the simulta-
neous occurrence, in arealistic parameter range, of baro-
tropic and topographic instability in a so-called fold-
Hopf bifurcation. Due to this bifurcation, phase space
connections are created that alow for transitions be-
tween flow regimes. These transitions are deterministic
(in the sense that they are not noise-induced but instead
generated by a completely deterministic model) but not
necessarily predictable, dueto possible chaotic behavior
(asin Fig. 9). The aim of this work was not to study
or simulate regime transitions in considerably realistic
detail; caution is therefore warranted when applying or
extrapolating the results to the real atmosphere or to
complex atmosphere models. The applicability of these
results rests primarily on the fact that the presence of
orography and a barotropically unstable jet is a com-
bination that is both realistic and by itself capable of
generating regime transitions. Moreover, the values for
the topographic heights and atmospheric jet speeds in
this paper are in arealistic range. Thus, the mechanism
studied here may play arole in generating regime tran-
sitions in complex models or in the real atmosphere.
We do not claim that the precise shapes of the phase
space connections found in this study should be very
similar to those in complex models or in reality.

The normal-form equations, associated with the fold-
Hopf bifurcation, describe the dynamics of the system
restricted to the center manifold. Truncating the normal -
form equations after their cubic terms yields a system
which needs the tuning of only one parameter to have
a heteroclinic cycle among its solutions. The truncated
normal-form equations are S*-symmetric, which ex-
plains the low codimensionality of the cycle [see Krupa
(1997) for the relation between symmetries and hetero-
clinic cycles]. This symmetry (or near symmetry, for
the nontruncated system) is made explicit by the nor-
malization, and is a hidden symmetry of the nonnor-
malized system.

The heteroclinic cycle consists of connections back
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and forth between two steady states. For the model stud-
ied in this paper, one of these steady states represents
a situation of dominant zonal flow, the other an equi-
librium flow with amainly wavelike character. Thefold-
Hopf bifurcation and its unfolding thus provide a sce-
nario in which regime transitions can be related to het-
eroclinic connections.

Since in a natural system perturbative terms will al-
ways be present in the model equations, the heteroclinic
cycle will be broken. Two homoclinic orbits are left (in
general with different stability properties), each attached
to one of the involved equilibria. The curves of the two
homoclinic bifurcations extend quite far into parameter
space. Their existence is not limited to the immediate
parameter neighborhood of the fold-Hopf point (seeFig.
6). Near the fh point the homoclinic orbits are nearly
heteroclinic cycles, farther away they till tend toward
the unconnected second fixed point without coming re-
ally close. This dynamical configuration can explain
why regime behavior often tends to favor one regime
over the other, an explanation previously speculated on
in Crommelin (2003b).

The crucial ingredients for the dynamical structure
described in this paper are saddle-node and Hopf bi-
furcations. The occurrence of such bifurcations are cer-
tainly no model artifacts, but on the contrary very ge-
neric features in atmosphere models. In the model stud-
ied here, the presence of topography creates saddle-node
bifurcations, whereas Hopf bifurcations are the result of
barotropic instability. In more complex models, the
number of bifurcations will increase, not decrease, as,
for example, many more topographic spectral compo-
nents will be present (thereby increasing the number of
saddle-node bifurcations). Moreover, the inclusion of
baroclinic dynamics will add a new source of instabil-
ities and thus increase the number of Hopf bifurcations.
Having a considerable number of saddle-node and Hopf
bifurcations around, it should not be too hard to have
two of them merge into afold-Hopf bifurcation by tun-
ing two of the available parameters. Thus, in complex
models, fold-Hopf bifurcations are likely to be present.
However, since the behavior of these models will be
complicated by many other phenomena, the central role
of fold-Hopf points in more complex models remains
to be assessed.

Note that the model does not need to be drawn exactly
to the parameter values of the fold-Hopf bifurcation (or
to a very narrow parameter range surrounding the bi-
furcation point) to still “feel” the presence of this bi-
furcation. The fold-Hopf bifurcation itself is a codi-
mension 2 phenomenon, that is, it occupies only a point
in a two-dimensional parameter plane (or a curve in a
three-dimensional parameter space), but its influence
stretches far beyond the immediate vicinity of that point.
Seg, for instance, the top panel of Fig. 6: the homoclinic
bifurcation curve (ho) that emanates from the fol d-Hopf
point varies over a large range of parameter values.
Also, the integration shown in Fig. 9 clearly still bears
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the characteristics of the heteroclinic cycle, but was
made with parameter values corresponding to a roughly
20% stronger forcing when compared to the fold-Hopf
point (see also Fig. 11).

The existence of multiple equilibria in this model is
an effect of the zonal resonance brought about by a
waveguiding effect due to the channel geometry and
severe truncation of the model. One may wonder what
will be left of the zonal resonance and multiple equi-
libria in more complex spherical models. A study by
Yang et al. (1997) shows that not all is lost once the
Rossby wave dispersion due to spherical geometry en-
ters the stage. This study points out that baroclinic pro-
cesses can have a waveguide effect that counteracts the
Rossby wave dispersion. Thus, the waveguide effect in
the barotropic channel model is not completely artificial
but rather mimics the waveguiding of the more complex
baroclinic spherical models.

The general idea that regime transitions are related
to heteroclinic cycles would be ““falsified” (or at least
not be very useful) if transitions in complex models or
in the real atmosphere would not show any sign of pre-
ferred transition paths through phase space. For a mod-
erately complex model, preferred transition routes were
shown to exist in an earlier study (Crommelin 2003b).
The existence of preferred transition paths in the real
atmosphereis presently under study; preliminary results
can be found in Crommelin (2003a) and suggest that
such preferences indeed exist. More specifically, check-
ing whether the interaction of barotropic and topograph-
ic instabilities is indeed responsible for the creation of
a cycle can be done by either carrying out a numerical
bifurcation analysis of more complex models, or by us-
ing weakly nonlinear analysis, the common tool of an-
alyzing models with heterocliniclike behavior.
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