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Abstract In a number of models for coupled oscillators and nonlinear wave equations pri-
mary resonances dominate the phase-space phenomena. A new feature is that in a Hamil-
tonian framework, the interaction of primary and higher order resonances is shown to be
important and can be signaled by using recurrence properties. The interaction may in-
volve embedded double resonance. We will demonstrate these phenomena for the cubic
Klein-Gordon equation on a square with Dirichlet boundary conditions using normal form
techniques. The results are qualitatively and quantitatively very different from the one-
dimensional spatial case.

Keywords 2-dim nonlinear waves · Hamiltonian · Resonance zones · Double resonance

Mathematics Subject Classification 70H07 · 70H12 · 34E10 · 37J40

1 Introduction

Boundary value problems for nonlinear wave equation produce in a natural way problems
with various resonances. We will consider these problems for a typical case, the cubic Klein-
Gordon equation on a square. Galerkin projection and truncation will in this case lead to
finite-dimensional Hamiltonian systems.

Consider the two-dimensional cubic Klein-Gordon equation as formulated in [9]:

utt − uxx − uyy + u = εu3, (x, y) ∈ [0,π ] × [0,π], (1)

with smooth initial conditions

u(x, y,0) = Φ(x,y), ut (x, y,0) = Θ(x,y), (2)

and homogenous Dirichlet boundary conditions zero at the sides of the spatial domain. In
a sense the subsequent analysis will be a continuation of [9] with attention to higher order
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resonance and qualitatively new phenomena. In [9] a rectangle is considered instead of a
square producing different constant coefficients in Eq. (1). If we would repeat our analysis
for a rectangle, the resonances will be different but the analysis runs along the same lines.

After summarizing the approximation theory for nonlinear wave equations we will indi-
cate the resonances in the case of the 2-dimensional cubic Klein-Gordon equation in Sect. 2.
The 1:1 resonances are a basic feature of this problem, they are analyzed in various com-
binations. Recurrence or lack of it will signal the presence or absence of resonance zones
that may complicate the dynamics. Detuned resonances will produce embedded double res-
onance, see Sect. 2.7. Section 3 outlines the asymptotics of detuning.

1.1 Approximation of Wave Equations

We will employ two approximation steps for the cubic Klein-Gordon equation: Galerkin
truncation of the system and averaging the resulting finite-dimensional system; they produce
an asymptotic estimate for the solution of the initial-boundary value problem.

Suppose that the eigenfunctions of the linearized equation (ε = 0) are φkl(x, y), k, l =
1,2, . . .. The solution of Eq. (1) can be written as:

u(x, y, t) =
∞∑

k,l=1

ukl(t)φkl(x, y). (3)

Substituting this Fourier series into Eq. (1) and taking inner products with the eigenfunction
expansion (3) produces with corresponding expansion of the initial values an initial value
problem for an infinite system of ODEs. The infinite system is equivalent to the original
PDE problem. Suppose that Fourier analysis of the initial conditions (smooth functions of
x, y) produces a finite series of N terms or N terms with a rest term that can be neglected.
A natural Galerkin approximation uN of the solution of Eq. (1) is a truncation of the series
(3) with slightly more than N terms. There are many publications using this method but
most of them are concerned with formal approximations, see for an example and more ref-
erences [7]. The analysis of Krol [6] gives the mathematical approximation theory of both
the one- and more-dimensional cases. See also the papers of Bambusi [1, 2] and Fečkan [4]
for analysis in the same spirit.

The cubic Klein-Gordon equation on a rectangle was studied by Galerkin-averaging in
[9]. The resulting system of ODEs obtained for uN produces an approximation ũN . The
proof by Pals [9] uses suitable Sobolev spaces and gives the error estimate in the sup norm.
Explicitly:

‖u − ũN‖ = o(1) as ε → 0, (4)

valid on an interval of time O(1/ε). In [9] interesting differences with the one-dimensional
spatial case are pointed out; many more resonances may arise like detuned and double res-
onances.

1.2 Normalizing Hamiltonian Systems

Consider the n degrees-of-freedom (dof) Hamiltonian H(p,q) = H2(p, q)+H3(p, q)+· · ·
with

H2 = 1

2
ω1

(
p2

1 + q2
1

) + 1

2
ω2

(
p2

2 + q2
2

) + · · · + 1

2
ωn

(
p2

n + q2
n

)
. (5)

The frequencies ω = (ω1,ω2, . . . ,ωn) are chosen positive; we can approximate them by ra-
tional numbers as the rationals are dense in the set of real numbers but its consequence is
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that we have to discuss detuned resonances. The Hamiltonian terms Hj(p,q), j = 3,4, . . .

are homogeneous polynomials in p,q of degree j . We assume that at least two of the fre-
quencies are close to a first or second order resonance, or frequency ratios 1:2, 1:1 or 1:3. We
may have detuning effects to allow for small frequency perturbations. For an exhaustive list
of first and second order resonances of three dof Hamiltonians see [12], Tables 10.3–10.4.

In many applications a combination of low and higher order resonances takes place. To
avoid this one usually concentrates on the low order resonances neglecting the higher order
ones. The purpose of this paper is a more complete theory by exploring the cases of com-
bined low and higher order resonance. As we shall see, the tools will be averaging-normal
form theory and the use of the Poincaré recurrence theorem to characterize the dynamics in
resonance zones.

A powerful theorem on the stability of Hamiltonian systems in the sense of exponentially-
long time invariance of the actions was formulated and proved by Nekhoroshev [8]. This
theorem presupposes steepness of the Hamiltonian and so the absence of first or second
order resonances in the system. We cannot use the theorem in our case.

In Eq. (1) a small parameter is present but for general H(p,q) it is convenient to scale
the coordinates near the stable origin of the system by putting p,q → εp, εq and dividing
by ε2. This leads to the Hamiltonian

H(p,q) = H2(p, q) + εH3(p, q) + ε2 . . . (6)

So ε2 is a measure for the energy with respect to stable equilibrium at the origin. Often we
introduce action-angle coordinates I,φ by the transformation:

qi = √
2Ii sinφi, pi = √

2Ii cosφi, i = 1,2,3, (7)

leading with (6) to

H =
i=n∑

i=1

ωiIi + εH3 + ε2 . . . and
dI

dt
= −∂H

∂φ
,

dφ

dt
= ∂H

∂I
.

We will also use amplitude-phase coordinates r,ψ with transformations qi, q̇i → ri,ψi :

qi = ri cos(ωit + ψi), q̇i = −ωiri sin(ωit + ψi). (8)

So, the new variables are ri(t),ψi(t) where we have to exclude a neighborhood of
ri = 0.

We will introduce near-identity transformations producing normal forms; see [12] for
theory and background literature. Prominent terms in the normal forms are produced by the
resonances induced by the frequencies ω.

A two dof Hamiltonian system in first or second order resonance has an integrable normal
form. The treatment of higher order resonance in [11] is quite general for two dof, for more
than two dof the complexity of higher order resonance increases enormously. However, in
the case of combined lower and higher order resonance we will, as in [16], consider for
interactions the so-called resonance zones where the periodic solutions of the (primary)
lower resonance are located.

1.3 Low and Higher Order Resonance

We consider the theory from [11] and extend it following [13], see also [12]. Consider first
a two dof Hamiltonian system with frequencies k, l ∈N near stable equilibrium. If k + l > 4
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its Birkhoff-Gustavson normal form is in action-angle coordinates:

H = kI1 + lI2 + ε2
(
AI 2

1 + 2BI1I2 + CI 2
2

) + · · ·
+ εk+l−2

(
D1(I1, I2) + D2(I1, I2) cos(χ + α)

)
, (9)

where A,B,C,α are constants, the dots stand for Birkhoff normal form terms (dependent
on I1, I2 only), χ = lφ1 − kφ2. The angle χ plays no part in the normal form to O(ε2).
Considered as an isolated two dof system, it can be shown that the actions of the corre-
sponding modes I1, I2 are constant to O(ε) on the timescale 1/ε2; with some effort the error
is reduced to O(ε2) on the timescale 1/ε2.

The combination angle χ may vary locally in a resonance zone as follows: The resonance
manifold N embedded in the compact energy manifold E is defined by dχ/dt = 0 or:

N = {
I1, I2 ∈ E | (lA − kB)I1 + (lB − kC)I2 = 0

}
. (10)

If Eq. (10) has no solution, the resonance manifold N does not exist; in this case the com-
bination angle χ is timelike, we can average over χ . If N exists, small exchanges of energy
will take place between the two dof in a resonance zone located in an O(ε(k+l−4)/2) neigh-
borhood of N (this is an improved estimate based on [13]). The resonance zone contains
stable and unstable periodic solutions, the exchange of energy takes place on tori in the res-
onance zone with timescale 1/ε−(k+l)/2. In [13] it is also proved that for potential problems
α = 0.

Assuming now more than two dof and that the frequency spectrum contains also first
and/or second order frequency ratios. The corresponding low order frequency modes will
dominate the phase-flow of higher order resonance except in primary resonance zones where
the low order actions do not vary; in these zones the low order short-periodic solutions are
located.

In the case of many dof our strategy will be to locate the low order resonance zones
(small neighborhoods of the resonance manifolds) and find out whether higher order res-
onance manifolds exist embedded in these zones; they will be called secondary resonance
zones. This can be done analytically using normalization. The phenomenon will be called
‘embedded double resonance’, see [16]. For the general theory of double resonance see
[3, 5] and more references there.

1.4 The Recurrence Theorem

Consider a dynamical system defined on a compact set in R
n with the property that the flow

induced by the system is measure-preserving. Poincaré uses the term volume-preserving
for the phase-flow induced by a time-independent Hamiltonian system without singularities
on a compact domain, see [10], vol. 3, Chap. 26. Using the invariance of the volume of
phase-elements under the flow, it is proved that most orbits return an infinite number of
times arbitrarily close to their initial position; this is called recurrence. The recurrence time
depends on the specific dynamical system considered, the initial condition chosen and the
size of the neighborhood to be revisited. Consider for instance an initial point P0 and a ball
with radius d > 0 centered around P0. The recurrence theorem states that after a finite time
Td an orbit starting in this ball will enter the ball again; there are exceptions for certain initial
conditions but the exceptional initial conditions have measure zero.

It is easy to obtain an upper limit L for recurrence times, dependent on the Euclidean
distance d(0) = d0 to the initial condition. Consider time-independent Hamiltonian (6). As-
sume that H2(p, q) is Morse at (p, q) = (0,0) and that the quadratic part is definite, so the
origin is a stable equilibrium of the equations of motion. In [15] it is argued that:
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Fig. 1 Recurrence in 2 dof systems for 400 timesteps at energy level 0.1417 . . .. (Left) the non-integrable
Hénon-Heiles system of Hamiltonian (12) (a = −1) with x(0) = 0.61, ẋ(0) = 0, y(0) = 0, ẏ(0) = 0.25 show-
ing irregular behavior of the Euclidean distance d to the initial values. (Right) the integrable case of Hamil-
tonian (12) (a = +1) with the same initial conditions. The recurrence looks fairly regular

Proposition 1.1 Each orbit near stable equilibrium of the system induced by Hamiltonian
(6), except a number of orbits in a set of measure zero, reaches a size d0 neighborhood of its
initial point with upper bound L of the recurrence time Td0 :

L = O

(
1

d2n−1
0

)
as d0 → 0. (11)

To illustrate recurrence we present in Fig. 1 the Euclidean distance to an initial state for
the Hénon-Heiles system that has been shown to be non-integrable and an integrable system,
both for 2 dof; see for a detailed analysis [14]. The Hamiltonian is:

H = 1

2

(
x2 + ẋ2

) + 1

2

(
y2 + ẏ2

) − 1

3
x3 − axy2. (12)

Doubling the integration time for the Hénon-Heiles system, a = −1, produces a similar
picture. In the integrable case a = 1 we have periodic solutions and tori foliating the energy
manifold; in this case the recurrence is called regular. We might also call recurrence regular
if we have a non-integrable system with complex regions that are relatively small (a precise
definition of “regular” is difficult as there are so many different cases).

In the sequel we have often n=3, d0 =0.1 producing L=105, if n=4, d0 =0.1,L=107.
The actual Poincaré recurrence times are lower than L but passage of resonance zones can
delay recurrence as the orbits will wind around the tori embedded in the resonance zones.

A preliminary test for embedded double resonance can be carried out using the recurrence
theorem. Constructing numerical solutions of orbits passing the resonance zones, we expect
fairly regular recurrent behavior if these zones contain no or very small resonance mani-
folds. Complicated and long time recurrent behavior points at motion around tori and other
invariant manifolds during passage. In [16] the 1:1:4 resonance and the Fermi-Pasta-Ulam
α-chain were discussed as examples. Recurrence will be tested by computing the Euclidean
distance d(t) to the initial conditions as a function of time.

2 The Cubic Klein-Gordon Equation

In the sequel we will consider problems derived from the cubic Klein-Gordon equation (1).
The eigenfunctions of the linearized equation on a square are φkl(x, y) = sinkx sin ly, k, l =
1,2, . . . .
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2.1 Asymptotic Approximations

The eigenfunction expansion (3) that satisfies the boundary conditions is:

u(x, y, t) =
∞∑

k,l

ukl(t) sinkx sin ly. (13)

The eigenfunctions sin kx sin ly of the linearized Eq. (1) correspond with the eigenvalues

ω2
kl = k2 + l2 + 1.

Fourier expansion turns the partial differential equation into an equivalent system of an
infinite number of coupled ordinary differential equations of the form

ükl + ω2
klukl = εfkl(u), k, l = 1,2, . . . (14)

with fkl(u) cubic in ukl, k, l = 1,2, . . .. As announced in the Introduction we will employ
two approximation steps: Galerkin truncation of the system and averaging the resulting
finite-dimensional system. The asymptotic approximation will have a validity on an interval
of time of O(ωkl/ε); as we shall see, in practice this estimate is often too pessimistic.

Part of our interest will be on the interaction of the resonant and non-resonant part of
the spectrum. The analysis in [9] is quite general, here we illustrate the resonances for the
69 modes with ω2

kl ≤ 100. Note that all cases with k �= l produce a 1:1 resonance; the 1:1
resonances turn out to be basic for this problem. We find in addition:

• 1:3:3 resonances with
kl = 11,15,51;ω2

11 = 3, ω2
15 = 27

kl = 22,48,84;ω2
22 = 9, ω2

48 = 81
kl = 13,31,77;ω2

13 = 11, ω2
77 = 99

• 1:1:3:3 resonance
kl = 12,21,27,72;ω2

12 = 6, ω2
27 = 54

• 1:1:1 resonance
kl = 55,17,71;ω2 = 51

• 1:1:1:1 resonances
kl = 47,74,18,81;ω2 = 66
kl = 67,76,29,92;ω2 = 86

• Detuned 1:2:2 resonance
kl = 33,57,75;ω2

33 = 19,ω2
57 = ω2

75 = 75
kl = 14,41,66;ω2

14 = ω2
41 = 18,ω2

66 = 73
• Detuned 1:1:2:2 resonance

kl = 24,42,19,91;ω2
24 = 21,ω2

19 = 83
• Detuned 1:1:3:3 resonance

kl = 13,31,49,94;ω2
13 = 11,ω2

49 = 98
• A higher order 3:3:7:7 resonance with kl = 14,49

The 3:7 resonance turns out to have no resonance manifold in a Galerkin projection as
the corresponding combination angle is timelike, so we leave out this case. Note also that
the larger k + l is, the smaller the resonance zones become and the larger the interaction
timescales are, see Sect. 1.3.

We will start with a sketch of the basic 1:1 resonances; after this we study the dynamics
and weak interactions with other resonances. Our focus will be on the interesting case where
recurrence highlights more complicated dynamics involving higher order resonance.
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2.2 The Basic 1:1 Resonances

Restricting to two modes ukl, ulk, k �= l we find an infinite number of 1:1 resonances.
Galerkin projection produces with ω2

kl = ω2
lk = ω2 the system:

{
ükl + ω2ukl = ε 3

4ukl(
3
4u2

kl + u2
lk),

ülk + ω2ulk = ε 3
4ulk(

3
4u2

lk + u2
kl).

(15)

As the size of the parameter ω is still free it is natural to rescale time t → τ = ωt and call
the rescaled time again t . The system becomes:

{
ükl + ukl = ε

ω2
3
4ukl(

3
4 u2

kl + u2
lk),

ülk + ulk = ε

ω2
3
4ulk(

3
4 u2

lk + u2
kl).

(16)

The dynamics of this system was analyzed in [14] and [9]; it is characterized by an integrable
normal form, two unstable normal modes and two resonance zones with periodic solutions.
We add some new elements. We exclude the normal modes in the next approximation pro-
cedure as we use polar coordinates. Putting, ukl = r1 cos(t + ψ1), ulk = r2 cos(t + ψ2), the
equations from first order averaging-normalization become (see Sect. 3):

{
ṙ1 = − ε

ω2
3

32 r1r
2
2 sin 2χ1, ψ̇1 = − ε

ω2
3

16 ( 9
8 r2

1 + r2
2 + 1

2 r2
2 cos 2χ1),

ṙ2 = + ε

ω2
3

32 r2
1 r2 sin 2χ1, ψ̇2 = − ε

ω2
3

16 ( 9
8 r2

2 + r2
1 + 1

2 r2
1 cos 2χ1),

(17)

with χ1 = ψ1 − ψ2. We find:

dχ1

dt
= − ε

ω2

3

32

(
r2

1 − r2
2

)(1

4
− cos 2χ1

)
. (18)

An integral of the normal form (17) is

r2
1 + r2

2 = 2E1, (19)

with constant E1 ≥ 0; so the normal form is integrable. Note (again) that increasing k, l and
so ω = ωkl , we increase the timescale of validity that characterizes the dynamics. Phase-
locked periodic solutions are found in the resonance manifolds and are determined by:

r1 = r2 = E1, χ1 = 0,
π

2
,π,3

π

2
. (20)

Because of the symmetry of the equations we can obtain exact solutions. The periodic solu-
tions correspond with the solutions ukl(t) = ulk(t), ukl(t) = −ulk(t). They satisfy the equa-
tion:

ükl + ukl = ε

ω2

21

16
u3

kl .

Substitution in (1) produces a Galerkin two-mode projection of periodic solutions.
An additional feature of the Galerkin projection for the cubic Klein-Gordon equation is

that there exist other phase-locked solutions if cos 2χ1 = 1/4. Substituting this value into
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system (17) we find heteroclinic invariant manifolds connecting the unstable normal modes.
Both the periodic solutions in the resonance zones and the heteroclinic solutions will be a
returning feature in what follows.

We can introduce the variable angular momentum J (t) for the ukl, ulk interaction:

J = u̇klulk − uklu̇lk. (21)

For J we find from system (16) the equation

dJ

dt
= − ε

32ω2
uklulk

(
u2

kl − u2
lk

)
. (22)

We conclude that in the resonance manifolds, where u2
kl = u2

lk , the angular momentum of
the ukl, ulk interaction is conserved. The resonance zones correspond with critical points of
the angular momentum equation (22).

2.3 Combining Independent 1:1 Resonances

Suppose we have a Galerkin truncation with a finite number M of basic 1:1 resonances
ki, li , ki �= li for certain indices ki, li . We exclude the special resonance cases as presented
in Sect. 2.1: (1:1:1:1), (1:1:2:2) and (1:1:3:3).

With this assumption the M basic 1:1 resonances will be independent of each other. The
resulting approximation will be a superposition of the individual basic resonances.

Note that for values of ω such that 1/ω2 ≤ ε the contribution of such a 1:1 resonance will
be of order ε2.

2.4 The First Three Modes

Apart from the basic 1:1 resonances it is natural to consider the first three modes. The
eigenvalues are ω2

11 = 3,ω2
12 = ω2

21 = 6. With the corresponding u11(t), u12(t), u21(t) we
propose the three-terms Galerkin truncation:

u11(t) sinx siny + u12(t) sinx sin 2y + u21(t) sin 2x siny. (23)

Substituting this truncation into Eq. (1) and taking inner products with the eigenfunctions
we find the 1:1 resonance imbedded in a three dof system. Replacing

√
6t by t we find:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ü11 + 1
2u11 = ε 3

16 ( 1
2u3

11 + u11u
2
12 + u11u

2
21),

ü12 + u12 = ε 1
8 ( 3

4 u3
12 + 3

2u2
11u12 + u12u

2
21),

ü21 + u21 = ε 1
8 ( 3

4 u3
21 + 3

2u2
11u21 + u2

12u21).

(24)

The three normal modes are solutions of system (24). Putting u11(t) = 0, the system has
a two dof (4-dimensional) invariant manifold, the dynamics of which was analyzed before
(Sect. 2.2). It is simple to repeat part of the calculation to assess the role of u11; the frequency
ratios are 1

2

√
2:1:1 so the first mode is not close to resonance with the other two modes.

Excluding the normal modes, averaging-normalization for amplitudes and phases r,ψ from
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Fig. 2 Recurrence in the two-dimensional Klein-Gordon equation, ε = 0.1, for 40000 timesteps. The Eu-
clidean distance d to the initial values u12(0) = 0.1, u21(0) = 1, initial velocities zero, for system (24) is
shown in the case of passage through the resonance zones. Left the case u11(0) = 0.1 that is close to pure
1:1 resonance, middle u11(0) = 0.5 and right u11(0) = 1. The dark areas (on a screen blue) describe large
oscillations resulting in large oscillations of d . The action I1 (not shown) shows very small variations (0.01),
the recurrence is fairly regular and hardly depends on u11(0)

(8) produces with

u11 = r1 cos

(
1

2

√
2t + ψ1

)
, u12 = r2 cos(t + ψ2), u21 = r3 cos(t + ψ3),

χ1 = ψ2 − ψ3 :
⎧
⎪⎪⎨

⎪⎪⎩

ṙ1 = 0, ψ̇1 = − ε
64 3

√
2( 3

4 r2
1 + r2

2 + r2
3 ),

ṙ2 = − ε
64 r2r

2
3 sin 2χ1, ψ̇2 = − ε

64 ( 9
4 r2

2 + 3r2
1 + r2

3 (2 + cos 2χ1)),

ṙ3 = + ε
64 r2

2 r3 sin 2χ1, ψ̇3 = − ε
64 ( 9

4 r2
3 + 3r2

1 + r2
2 (2 + cos 2χ1)).

(25)

The solutions of system (25) are O(ε) approximations of the amplitudes and phases from
system (24) valid on the timescale 1/ε; note that ε plays here the part of ε2 in expansion
(6). It was proved in [9] that using these approximations in the Galerkin expansion (13) with
corresponding initial conditions produces an asymptotic approximation as ε → 0 of Eq. (1)
on the same timescale 1/ε.

System (25) has the integrals r2
2 + r2

3 = 2E1 and r1(t) = r1(0). For the combination angle
χ1 we have:

dχ1

dt
= − ε

64

(
r2

2 − r2
3

)(1

4
− cos 2χ1

)
. (26)

Apart from the normal modes of system (24), four families of iso-energetic quasi-periodic
solutions parametrized by r1(0) arise of system (25) if sin 2χ1 = 0, r2 = r3. The two periods
of each family depend on the initial conditions i.e. the energy level. They correspond with
approximate quasi-periodic standing waves of Eq. (1).

As in the case of Sect. 2.2 there exist other phase-locked solutions if cos 2χ1 = 1/4.
Substituting this value into system (25) we find heteroclinic invariant manifolds connecting
the u2, u3 normal modes. For instance for r2 from the equation

ṙ2 = − ε

64
cr2

(
2E1 − r2

2

)

with cos 2χ1 = 1/4, c = sin 2χ1.
The resonance zones M on the energy manifold are neighborhoods of the quasi-periodic

solutions given by sin 2χ1 = 0, r2 = r3 corresponding with sin 2χ1 = 0, u12 = u21. Consider
as an example the zone r2

2 = r2
3 = E1, χ1 = 0 and r1(0) to be chosen. Passage of the reso-

nance zone is shown in Fig. 2; I1(t) shows variations of order 0.01. The dynamics in the
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resonance zones shows regular quasi-periodic behavior near the periodic solutions as fol-
lows from our analysis, there is hardly any exchange of energy with mode u11; the numerics
shows that details of recurrence are slightly affected by the choice of u11(0). Choosing as
recurrence criterion d0 = 0.1, the recurrence times are nearly 8000 timesteps, the interval of
time to let d approach zero again and again.

The equations for the phases in M are:

ψ̇1 = − ε

64
3
√

2

(
3

4
r1(0)2 + 2E1

)
, ψ̇2 = ψ̇3 = − ε

64

(
3r1(0)2 + 21

4
E1

)
. (27)

It turns out that the variations of the three actions when starting in M are of size 0.01 on an
interval of 40000 timesteps.

As the frequency ratio ω11 : ω12 is close to 7:10, one could look for the 7:10 higher order
resonance in the resonance zones. As we find from Eq. (27) that the combination angle
(10ψ1 − 7ψ2) is timelike, this higher order resonance does not arise.

More insight can be obtained by returning to the Galerkin equations (24). The symmetry
of the equations suggest that u2

12(t) = u2
21(t) satisfies system (24). The equation for u12 is in

this special case:

ü12 + u12 = ε

16
u12

(
7

2
u2

12 + 3u2
11

)
.

We can introduce the variable angular momentum J (t) for the u12, u21 interaction by (21).
For dJ/dt we find from system (24) again Eq. (22). It is remarkable that the equation for J

does not depend on u11, we draw conclusions similar to those in Sect. 2.2. In the resonance
zones, where u2

12 = u2
21, angular momentum of the u12, u21 interaction is conserved. The

resonance zones correspond with critical points of the angular momentum equation (22). In
addition we can derive from system (24) the equation for u11(t) in M :

ü11 + 1

2
u11 = ε

32
u11

(
3u2

11 + 12u2
12

)
. (28)

In M we expect u11(t) to vary very little.

2.5 Coupled 1:1 Resonances with Different Frequencies

Considering a truncation to 4 modes generated by k1l1, k2l2 (k1 �= l1, k2 �= l2) we may find
interaction if a resonance exists between the frequencies ωk1l1 ,ωk2l2 . As a typical example
we consider the case of the 1:1:3:3 resonance with kl = 12 − 21 − 27 − 72; ω2

12 = 6, ω2
27 =

54. Coupled 1:1 resonances were discussed in [9] without the additional 1:3 resonance.
Substituting the 4-mode truncation into Eq. (1), taking inner products with the eigen-

functions and replacing
√

6t by t we find the four dof system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ü12 + u12 = ε 1
8u12(

3
4u2

12 + u2
21 + u2

27 + u2
72),

ü21 + u21 = ε 1
8u21(

3
4u2

21 + u2
12 + u2

27 + u2
72),

ü27 + 9u27 = ε 1
8u27(u

2
12 + u2

21 + 3
4 u2

27 + u2
72).

ü72 + 9u72 = ε 1
8u72(u

2
12 + u2

21 + 3
4 u2

72 + u2
27).

(29)

The four normal modes are solutions of system (29). Other exact solutions carry over from
Sect. 2.2:

u2
12 = u2

21, u2
27 = u2

72,
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and again we can introduce angular momentum; we will discuss the differences with the
case of one 1:1 resonance. Averaging-normalization of system (29) will show that the in-
teraction between the two 1:1 resonances takes place between the angles. Introducing polar
coordinates (excluding the normal modes) we associate u12 with r1,ψ1 etc. and find to first
order:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ṙ1 = −ε 1
64 r1r

2
2 sin 2χ1, ψ̇1 = −ε 1

32 ( 9
8 r2

1 + r2
2 + 1

2 r2
2 cos 2χ1 + r2

3 + r2
4 ),

ṙ2 = +ε 1
64 r2

1 r2 sin 2χ1, ψ̇2 = −ε 1
32 ( 9

8 r2
2 + r2

1 + 1
2 r2

1 cos 2χ1 + r2
3 + r2

4 ),

ṙ3 = −ε 1
192 r3r

2
4 sin 2χ2, ψ̇3 = −ε 1

96 (r2
1 + r2

2 + 9
8 r2

3 + r2
4 + 1

2 r2
4 cos 2χ2),

ṙ4 = +ε 1
192 r2

3 r4 sin 2χ2, ψ̇4 = −ε 1
96 (r2

1 + r2
2 + r2

3 + 1
2 r2

3 cos 2χ2 + 9
8 r2

4 ),

(30)

with χ1 = ψ1 − ψ2, χ2 = ψ3 − ψ4. We find the integrals:

r2
1 + r2

2 = 2E1, r2
3 + r2

4 = 2E2.

For the combination angles we find:

dχ1

dt
= −ε

1

64

(
r2

1 − r2
2

)(1

4
− cos 2χ1

)
,

dχ2

dt
= −ε

1

192

(
r2

3 − r2
4

)(1

4
− cos 2χ2

)
. (31)

Eliminating r2 from the equation for χ1, r1 from the equation for χ2, we obtain equations
for dr1/dχ1 and dr2/dχ2 that can be integrated producing 2 extra integrals; we leave out
the cumbersome expressions. We conclude that the normal form system (30) is integrable.

If r3(0) = r4(0) = 0 we find 4 periodic solutions in a submanifold from the conditions
r2

1 (0) = r2
2 (0) = E1, sin 2χ1 = 0. If r3(0)r4(0) �= 0, the approximate solutions in the reso-

nance zone r2
1 (0) = r2

2 (0) = E1, sin 2χ1 = 0 are in general not periodic anymore as u12, u21

are periodic with period depending on E1 and E2, but u27, u72 are in general not periodic.
An analogous reasoning applies when considering r1(0) = r2(0) = 0 and the resonance zone
r2

3 (0) = r2
4 (0) = E2, sin 2χ2 = 0. A different case arises when the resonance zones intersect,

we have a double resonance. In this case we find quasi-periodic solutions with two periods
depending on E1,E2. We can characterize the intersection by putting u2

12 = u2
21, u

2
27 = u2

72 in
system (29) and applying averaging-normalization to the resulting equations. Although there
is angle-coupling between the modes, the 1:3 resonance is not present in the intersection.

2.6 Coupled 1:1 Resonances, the 1:1:1:1 Resonance

Consider now a truncation to 4 modes generated by k1l1, k2l2 (k1 �= l1, k2 �= l2) with
ωk1l1 = ωk2l2 = ω. In Sect. 2.1 we gave examples with ω2 = 66 and 86. Substituting the
corresponding 4-mode truncation into Eq. (1) and taking inner products with the eigenfunc-
tions we obtain 4 coupled equations of motion. We divide the equations by ω2, replacing ωt

by t and abbreviate uk1l1 = u1, ul1k1 = u2, uk2l2 = u3, ul2k2 = u4; we find the system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ü1 + u1 = ε 3
4ω2 u1(

3
4u2

1 + u2
2 + u2

3 + u2
4),

ü2 + u2 = ε 3
4ω2 u2(

3
4u2

2 + u2
1 + u2

3 + u2
4),

ü3 + u3 = ε 3
4ω2 u3(

3
4u2

3 + u2
1 + u2

2 + u2
4),

ü4 + u4 = ε 3
4ω2 u4(

3
4u2

4 + u2
1 + u2

2 + u2
3).

(32)
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Note that 3/(4ω2) is a small number, ε need not be very small. The four normal modes
are solutions of system (29); we will show that they are unstable. The system (32) is very
symmetric and we can find other exact solutions and invariant manifolds, for instance the 8
periodic solutions given by:

u2
1 = u2

2 = u2
3 = u2

4.

The solutions are elliptic periodic functions. A number of invariant manifolds exist:

• 6 (2 dof) 4-dimensional invariant manifolds M12,M13,M14,M23,M24,M34 with for in-
stance M12 given by u3(t) = u4(t) = 0, t ≥ 0. The phase-flow in these invariant manifolds
has been described in Sect. 2.2, the normal modes are unstable. Two periodic solutions in
general position in M12 are given by:

u1(t) = u2(t), ü1 + u1 = ε
21

16ω2
u3

1. (33)

• 4 (3 dof) 6-dimensional invariant manifolds M123,M124,M234,M134. Apart from the peri-
odic solutions in 4-dimensional submanifolds we have two periodic solutions in general
position given by

ü + u = ε
33

16ω2
u3, (34)

with for instance in M123, u = u1 = u2 = u3.

Averaging-normalization of system (32) in polar coordinates (excluding the normal mode
planes) we find with ui(t) = ri cos(t + ψi), u̇i = −ri sin(t + ψi), i = 1, . . . ,4:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ṙ1 = −ε 3
32ω2 r1[r2

2 sin 2(ψ1 − ψ2) + r2
3 sin 2(ψ1 − ψ3) + r2

4 sin 2(ψ1 − ψ4)],
ṙ2 = −ε 3

32ω2 r2[−r2
1 sin 2(ψ1 − ψ2) + r2

3 sin 2(ψ2 − ψ3) + r2
4 sin 2(ψ2 − ψ4)],

ṙ3 = −ε 3
32ω2 r3[−r2

1 sin 2(ψ1 − ψ3) − r2
2 sin 2(ψ2 − ψ3) + r2

4 sin 2(ψ3 − ψ4)],
ṙ4 = −ε 3

32ω2 r4[−r2
1 sin 2(ψ1 − ψ4) − r2

2 sin 2(ψ2 − ψ4) − r2
3 sin 2(ψ3 − ψ4)].

(35)

The equations for the angles contain the combination angles (ψ1 − ψ2), (ψ1 − ψ3) etc. but
we do not need them as in this case we have explicit expressions for the periodic solutions.
An integral of the normal form system (35) is:

r2
1 + r2

2 + r2
3 + r2

4 = 2E1, (36)

with constant E1 ≥ 0.
Consider an orbit starting near an unstable normal mode. We expect transitions through

several resonance zones. Assume a fixed, positive value E1 in Eq. (36). For instance starting
near the normal mode plane of the 1st and 3rd mode we have that r1(0)2 + r3(0)2 will be
close to 2E1, the other initial conditions are small. The instability will move the orbit on
the 7-sphere described by the integral (36) away from the u1, u3 normal mode plane. The
first resonance zone to encounter will be given by r2

i = E1/2, i = 1, . . . ,4, the second one
are possibly 4 resonance zones with r2

i = 2E1/3, then follow 2 dof resonance zones with
r2
i = E1 after which the recurrence can start. See for illustration Figs. 3 and 4.

2.7 Embedded Double Resonance in a Detuned Case

As a rather different case we consider a three mode system generated by kl = 33 − 57 − 75
with ω2

33 = 19,ω2
57 = ω2

75 = 75. So we have a 1:1 resonance with a detuned 1:2 reso-
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Fig. 3 Recurrence in the two-dimensional Klein-Gordon equation in the case of the 1:1:1:1 resonance
based on system (32). (Left) the Euclidean distance d starting near the u1, u3 normal mode planes with
initial values u1(0) = 1, u2(0) = 0.1, u3(0) = −1, u4(0) = 0.1, initial velocities zero; 3ε/(4ω2) = 0.01;
extending the calculation to 40000 timesteps does not improve the recurrence. The dark areas (on a screen
blue) represent large oscillations of the modes resulting in large oscillations of d . The details of the case of
passage through the resonance zones are shown in Fig. 4. (Right) the case when starting in resonance with
initial values u1(0) = 0.5, u2(0) = −0.5, u3(0) = −0.5, u4(0) = 0.5, initial velocities zero; the recurrence is
regular

Fig. 4 Details of the flow in the two-dimensional Klein-Gordon equation in the case of the 1:1:1:1 resonance
described by system (32) in Fig. 3 left. At the top the actions I1(t), I2(t) showing several passages through
resonance. Below projections from 8-space on the coordinate planes of x2, ẋ2 and x4, ẋ4 during a passage
through resonance for 2000 ≤ t ≤ 2500. The orbits of modes 2 and 4 are winding around tori in the resonance
zone
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nance. We propose the three-terms Galerkin truncation with again Dirichlet boundary con-
ditions:

u33(t) sin 3x sin 3y + u57(t) sin 5x sin 7y + u75(t) sin 7x sin 5y. (37)

Substituting this truncation into Eq. (1), taking inner products with the eigenfunctions
and replacing

√
75t by t we find the three dof system:

⎧
⎪⎪⎨

⎪⎪⎩

ü33 + 1
4u33 = − 1

300u33 + ε 1
100 ( 3

4u3
33 + u33u

2
57 + u33u

2
75),

ü57 + u57 = ε 1
100 ( 3

4 u3
57 + u2

33u57 + u57u
2
75),

ü75 + u75 = ε 1
100 ( 3

4 u3
75 + u2

33u75 + u2
57u75).

(38)

The three normal modes are solutions of system (38). Putting u33(t) = u̇33(t) = 0, the system
has a two dof (4-dimensional) invariant manifold with 1:1 dynamics as before. In a similar
way we find the invariant manifold M12 if the third mode vanishes and M13 if the second
mode vanishes. The frequency ratios are 1

2 :1:1 so mode 1 is close to 1:2 resonance with
the other two modes. However, as we shall see, the 1:1 resonance of the modes 2 and 3
dominates the flow outside the resonance zones and the normal mode planes. The size of
ε and the chosen energy level determine the detuning effect. Excluding the normal modes,
first order averaging-normalization for amplitudes and phases r,ψ from (7) produces with
χ1 = ψ2 − ψ3:

⎧
⎪⎪⎨

⎪⎪⎩

ṙ1 = 0, ψ̇1 = 1
300 − ε 1

200 ( 9
8 r2

1 + r2
2 + r2

3 ),

ṙ2 = −ε 1
800 r2r

2
3 sin 2χ1, ψ̇2 = −ε 1

400 ( 9
8 r2

2 + r2
1 + r2

3 (1 + 1
2 cos 2χ1)),

ṙ3 = +ε 1
800 r2

2 r3 sin 2χ1, ψ̇3 = −ε 1
400 ( 9

8 r2
3 + r2

1 + r2
2 (1 + 1

2 cos 2χ1)).

(39)

We find again the integral

r2
2 + r2

3 = 2E1, E1 ≥ 0

and similar to the case of the first three modes:

dχ1

dt
= −ε

1

800

(
r2

2 − r2
3

)(1

4
− cos 2χ1

)
. (40)

Putting cosχ1 = 1/4 we find stable and unstable invariant manifolds, in fact heteroclinics,
of the u57, u75 normal modes given by

ṙ2 = − ε

800
r3

2 sin 2χ1, ṙ3 = ε

800
r3

3 sin 2χ1, sin 2χ1 = ±
√

15

4
. (41)

In the primary resonance zones M1,M2 where by r2 = r3, sin 2χ1 = 0 we have for the peri-
odic solutions:

r2 = r3 = E1, χ1 = 0,
π

2
, π,

3π

2
.

In Fig. 5 we have chosen the initial conditions near the unstable u75 normal mode. This
causes repeated passage through the primary resonance zones. In Fig. 5 we have left the case
of nearly pure 1:1 resonance (choosing u33 = 0 would eliminate the mode u33 completely).
The middle and right figure shows the influence of secondary resonances (embedded double
resonance) that complicate passage through the zones.

In the averaging-normal form (39) the 1:2 resonance is not active. As we will show, at
higher order we find in the invariant manifolds M12,M13 the 2:4 resonance with combination
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Fig. 5 Recurrence in the two-dimensional Klein-Gordon equation for a detuned case with 3 modes. The
Euclidean distance d to the initial values u33(0), u57(0) = 0.1, u75(0) = 1, initial velocities zero and ε = 0.5,
for system (38) is shown in the case of passage through the resonance zones. (Left) the case u33(0) = 0.1,
middle figure u33(0) = 0.5; recurrence for d ≤ 0.1 takes 18000 timesteps in both cases. (Right) u33(0) = 1
showing different recurrence behavior. The action I1 shows very small variations (around 0.001) in all cases

Fig. 6 Projections of the periodic solutions in the secondary resonance zones of the u33, u57, u75 sys-
tem (38) with ε = 0.5. In the resonance zones we project u33(t), u57(t) showing a quadratic curve that
is typical for the higher order resonance. (Left) the two dof submanifold M12 : u75(0) = u̇75(0) = 0
with u33(0) = 0.838, u57(0) = 1 (so E1 = 0.5); the resonance is 2:4. (Right) the case u33(0) = 0.87,
u57(0) = 0.707, u75(0) = 0.707, initial velocities zero (so χ1 = 0,E1 = 0.5). The choice χ1 = π produces
the same picture

angles:

χ2 = 4ψ1 − 2ψ2, χ3 = 4ψ1 − 2ψ3.

In the resonance zones outside the normal mode planes the 2:4:4 resonance will arise.
Consider for instance M12; we find from the first order normal form system (39):

ṙ1 = 0, ψ̇1 = 1

300
− ε

1

200

(
9

8
r2

1 + r2
2

)
, ṙ2 = 0, ψ̇2 = −ε

1

400

(
9

8
r2

2 + r2
1

)
.

(42)

We have no exchange of energy at this first order approximation. Consider the combination
angle:

dχ2

dt
= 4ψ̇1 − 2ψ̇2 = 1

25

(
1

3
− ε

64

(
27r2

1 + 23r2
2

))
. (43)

If χ2 is timelike, we can remove more terms by averaging, secondary resonance will not be
relevant. This is the case if dχ2/dt has no zeros. Values of ε, r1, r2 for which the righthand
side of Eq. (43) vanishes can produce a resonance manifold in M12 with higher order peri-
odic solutions; see Fig. 6. To characterize these higher order solutions in M12,M13 and in
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the 3-dof resonance zones we compute the normal form to next order. To show the role of
detuning we replace 1/300 by δ. We find to second order:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ1 = −ε2a1r
3
1 (r2

2 sinχ2 + r2
3 sinχ3),

ψ̇1 = δ − ε 1
200 ( 9

8 r2
1 + r2

2 + r2
3 ) − δ2 + εδ(a2r

2
1 + a3r

2
2 + a3r

2
3 ) − ε2(a4r

4
1 + a5r

4
2 + a5r

4
3

+ a6r
2
1 r2

2 + a6r
2
1 r2

3 + a7r
2
2 r2

3 + a8r
2
1 r2

2 cosχ2 + a8r
2
1 r2

3 cosχ3 + a9r
2
2 r2

3 cos 2χ1),

ṙ2 = −ε 1
800 r2r

2
3 sin 2χ1 + ε2( 1

4a1r
4
1 r2 sinχ2 − (a10r

2
1 r2r

2
3 + a11r

3
2 r2

3 + a11r2r
4
3 ) sin 2χ1),

ψ̇2 = −ε 1
400 ( 9

8 r2
2 + r2

1 + r2
3 (1 + 1

2 cos 2χ1)) + a12εδr
2
1 − ε2(a13r

4
1 + a14r

2
1 r2

2 + a15r
4
2

+ a16r
2
1 r2

3 + a17r
2
2 r2

3 + a18r
4
3 + a19r

4
1 cosχ2 + r2

3 (a20r
2
1 + 2a21r

2
2 + a21r

2
3 ) cos 2χ1),

ṙ3 = +ε 1
800 r2

2 r3 sin 2χ1 + ε2( 1
4a1r

4
1 r3 sinχ3 + (a10r

2
1 r2

2 r3 + a11r
4
2 r3 + a11r

2
2 r3

3 ) sin 2χ1),

ψ̇3 = −ε 1
400 ( 9

8 r2
3 + r2

1 + r2
2 (1 + 1

2 cos 2χ1)) + a12εδr
2
1 − ε2(a13r

4
1 + a16r

2
1 r2

2 + a18r
4
2

+ a14r
2
1 r2

3 + a17r
2
2 r2

3 + a15r
4
3 + a19r

4
1 cosχ3 + r2

2 (a20r
2
1 + a21r

2
2 + 2a21r

2
3 ) cos 2χ1).

(44)

The constants a1, . . . , a21 are positive. System (44) has the integral

1

4
r2

1 + r2
2 + r2

3 = constant. (45)

It is clear from system (44) that the 1:1 resonance of the 2nd and 3rd modes dominates the
flow outside the resonance zones M1,M2 and outside the invariant manifolds M12,M13.

Normalization in M12 With vanishing 3rd mode in system (38) the 2nd order normal
form in M12 becomes:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ1 = −ε2a1r
3
1 r2

2 sinχ2,

ψ̇1 = δ − ε 1
200 ( 9

8 r2
1 + r2

2 ) − δ2 + εδ(a2r
2
1 + a3r

2
2 )

− ε2(a4r
4
1 + a5r

4
2 + a6r

2
1 r2

2 + a8r
2
1 r2

2 cosχ2),

ṙ2 = ε2 1
4a1r

4
1 r2 sinχ2,

ψ̇2 = −ε 1
400 ( 9

8 r2
2 + r2

1 ) + a12εδr
2
1 − ε2(a13r

4
1 + a14r

2
1 r2

2 + a15r
4
2 + a19r

4
1 ) cosχ2.

(46)

For M13 we have analogous results. If sinχ2 = 0 and remains zero in time, the amplitudes
r1, r2 are constant in time. We have in M12:

χ̇2 = 4δ − ε

400

(
7r2

1 + 23

4
r2

2

)
+ · · · (47)

where the dots contain terms of O(δ2, εδ, ε2) with arguments r1, r2, cosχ2. A necessary
condition for the presence of such solutions is

4δ − ε

400

(
7r2

1 + 23

4
r2

2

)
= 0.
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if δ ≤ 0 there are no such solutions. Assume δ > 0; this produces from the necessary con-
dition a relation between δ, ε, r2 and r2. The second condition is that χ̇2 = 0 at next order.
This produces with cosχ2 = ±1 another equation between the same quantities. If, together
with the energy integral, we can solve these 3 equations, we have determined a resonance
manifold in M12 where a 4:2 resonant periodic solution between the first two modes in M12

can be found. For a choice of parameters such a solution is shown in Fig. 6 (left).

Normalization in a General Position Resonance Zone In the primary resonance zones
we have obtained to first order r2

2 = r2
3 = E1, sin 2χ1 = 0. For the amplitudes we find to

second order from system (44) with

sinχ2 + sinχ3 = 2 sinχ4 cos 2χ1, χ4 = (4ψ1 − ψ2 − ψ3), cos 2χ1 = ±1 :
⎧
⎪⎪⎨

⎪⎪⎩

ṙ1 = −ε2a1r
3
1 E1 sinχ4 + · · · ,

ṙ2 = ε2 a1
4 r4

1

√
E1 sinχ2 + · · · ,

ṙ2 = ε2 a1
4 r4

1

√
E1 sinχ3 + · · ·

(48)

with the dots representing higher order terms. We consider the combination angle χ4 charac-
terizing a possible resonance manifold in general position (all modes non-zero). In a domain
in a primary resonance zone where sinχ4 = 0 and χ̇4 = 0 we expect to find a 1:2:2 periodic
solution. Note that it suffices to require sinχ2 = sinχ3 = 0. We find from system (44) to first
order in 2 resonance zones:

{
dχ4
dt

= 1
75 − ε 1

400 (7r2
1 + 43

4 E1) if cos 2χ1 = 1,

dχ4
dt

= 1
75 − ε 1

400 (7r2
1 + 51

4 E1) if cos 2χ1 = −1.
(49)

In the case of Fig. 5 and putting ε = 0.5 in (39) as the coefficients are very small we have
from (49) zeros of the righthand side producing secondary resonances in the primary reso-
nance zones. We find cos 2χ1 = 1, r1(0) = 0.87 and cos 2χ1 = −1, r1(0) = 0.78. To show
more evidence for the existence of secondary resonance and the presence of tori that in-
fluence the recurrence as in fig, 5, consider Fig. 6. The theory of higher order resonance
predicts two stable 1:2:2 periodic solutions and two unstable ones. In Fig. 6 we depict one
of the cases.

Exact solutions as in Sect. 2.2.
Apart from the normal modes we find from system (38) the exact solutions u2

57(t) =
u2

75(t). The corresponding equation for u57 is:

ü57 + u57 = ε
1

100
u57

(
7

4
u2

57 + u2
33

)
.

With J (t) the angular momentum (21) interaction for u57 and u75 we have

dJ

dt
= −ε

1

400
u57u75

(
u2

57 − u2
75

)
.

Again, the critical points of the angular momentum equation correspond with the resonance
zones.
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3 Appendix on the Analysis of Detuning

Our results on normalization and error estimates are based on [12] with slight modifica-
tions. We assume existence and uniqueness of solutions of initial value problems, sufficient
smoothness and T -periodicity of vector fields. To study the dynamics of secondary reso-
nance in the detuned case, we have to normalize to higher order, in Hamiltonian terms to
H6. Detuning produces in a number of cases interesting bifurcation phenomena, so we out-
line the procedure here in a rather general context.

The usual practice is to put the equations of motion in the standard form for averaging-
normalization using transformation (8):

ẋ = εf (t, x) + ε2g(t, x) + ε3 . . . , x(0) = x0. (50)

This transformation assumes that we stay away from the normal modes where the amplitudes
vanish. In our paper this poses no problem as in the Galerkin projections of the cubic Klein-
Gordon equation the normal modes are exact solutions. Assume that the vector fields f,g

are T -periodic and consider the averaged vector field

f 0(x) = 1

T

∫ T

0
f (s, x)ds

and the initial value problem

ẏ = εf 0(y), y(0) = x0,

then x(t) − y(t) = O(ε) on the timescale 1/ε. Suppose we need a higher order approxima-
tion. We will use the near-identity transformation:

x = z + εu1(t, z), (51)

with

u1(t, z) =
∫ t

0

(
f (s, z) − f 0(z)

)
ds.

Introduce the vector field

f1(t, z) = 
f (t, z)u1(t, z)

with f 0
1 the average of f1, then the next approximation of Eq. (50) is obtained as follows.

Solve the initial value problem

ẇ = εf 0(w) + ε2
(
f 0

1 (w) + g0(w)
)
, w(0) = x0, (52)

then x(t) = w(t) + εu1(t,w(t)) + O(ε2) on the timescale 1/ε.
Detuning introduces a second or even more small parameters. We explain this in the

context of this paper, the idea is quite general. Consider the 2n-dimensional equations of
motion for x = (x1, x2, . . . , xn):

ẍi + ω2
i xi = εF (x, ẋ), i = 1, . . . , n. (53)

The frequencies ωi are close to the resonant frequencies Ωi, i = 1, . . . , n. We rewrite system
(53) as:

ẍi + Ω2
i xi = δixi + εF (x, ẋ), i = 1, . . . , n. (54)
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The n parameters δi are supposed to be small; they do not depend on ε but still, the pa-
rameters ε, δi have to be compared in size. If ε � δi , the first order approximation does not
involve F(x). Assuming that δi, i = 1, . . . , n is of size ε both parameters play a part at first
and second order. Applying transformation (8) to system (54) we find for i = 1, . . . , n:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ṙi = − 1
Ωi

sin(Ωit + ψi)

× (δiri cos(Ωit + ψi) + εF (ri cos(Ωit + ψi),−Ωiri sin(Ωit + ψi))),

ψ̇i = − 1
Ωiri

cos(Ωit + ψi)

× (δiri cos(Ωit + ψi) + εF (ri cos(Ωit + ψi),−Ωiri sin(Ωit + ψi))).

(55)

Averaging over the common period T we find for i = 1, . . . , n, r = r1, . . . , rn,ψ =
ψ1, . . . ,ψn:

ṙ0
i = εf 0

i (r,ψ), ψ̇0
i = − δi

2Ωi

+ εf 0
i (r,ψ) (56)

We can apply near-identity transformation (51) to system (55) to obtain a second order
approximation; the resulting system to solve will be of the form (52) with terms added of
size δi and δ2

i .
Applying higher order normalization to a detuned resonance like system (38) we find at

O(ε2) terms of the form r3
1 r2

2 sin(4ψ1 −2ψ2) and similar terms involving r3. These terms in-
troduce the 4:2 resonances with corresponding periodic solutions discussed in the preceding
section.

4 Conclusions

1. In mathematical physics PDEs have often been analyzed in the case of one space dimen-
sion. We have shown that when allowing more space dimensions, the results may change
remarkably. We discuss a typical case of mathematical physics, the cubic Klein-Gordon
equation.

2. The validity of asymptotic approximations holds on intervals of time proportional to 1/ε

and ωkl . Our analysis yields some conclusions using the truncation procedure of series
(3). First, if ωkl is large enough the tail of the series will take an extremely long time to
become effective. Secondly, the modes in 1:1 resonance are ubiquitous but combination
of independent 1:1 systems produces no new phenomena. Thirdly, interesting phenomena
like embedded double resonance arise from detuning with new resonant interactions.
There will exist an infinite number of such detuned systems, but they arise for large
values of ωkl .
For the complicated dynamics described in the preceding sections to be observed one has
to choose the corresponding initial conditions producing the resonant modes. Exciting
for instance only one mode, there will be nontrivial evolution if this mode is unstable in
a resonant setting and if it is slightly perturbed.

3. The most interesting dynamics is described for the 1:1:1:1 resonance in Sect. 2.6 and the
detuned resonance in Sect. 2.7. The resonance zones vanish (have size o(1)) as ε → 0 and
so are free boundary layers in the sense of singular perturbation theory. In these zones
the resonances produce locally stable and unstable periodic solutions with corresponding
stable and unstable manifolds. Intersection of invariant manifolds associated with the
periodic solutions in the resonance zones are in Hamiltonian mechanics the main source
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of chaos. For small values of ε this will enable the possibility of boundary layer chaos in
the cubic Klein-Gordon equation, it may be more prominent if ε increases.

4. Changing the boundary conditions or the shape of the domain will of course change our
results. However, the set-up of our analysis is typical for such new problems. Symme-
tries, for instance considering circle or ring domains, may simplify the analysis. New
phenomena may arrive when studying non-convex domains.
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