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After reviewing a number of results from geometric singular perturbation theory, we give an
example of a theorem for periodic solutions in a slow manifold. This is illustrated by examples
involving the van der Pol-equation and a modified logistic equation. Regarding nonhyperbolic
transitions we discuss a four-dimensional relaxation oscillation and also canard-like solutions
emerging from the modified logistic equation with sign-alternating growth rates.
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1. Singular Perturbations and
Slow Manifolds

In singular perturbations, certain attraction (or
hyperbolicity) properties of the regular (outer)
expansion play an essential part in the construction
of the formal approximation. In the case of initial
value problems, such a regular expansion is associ-
ated with the existence of a so-called slow manifold.
In the actual constructions, the Tikhonov theorem
provides a basic boundary layer property of the
solution, leading naturally to a number of qualita-
tive and quantitative results.

1.1. The Tikhonov theorem

The following result was obtained in 1952 by
Tikhonov [1952]:
Theorem 1.1. Consider the initial value problem
= f(z,y,t)+e---, x(0)=z9, v €D CR",
t>0,
y(0) =yo, y € G CR™.
For f and g, we take sufficiently smooth vector func-

tions in x, y and t; the dots represent (smooth and
bounded) higher-order terms in .

Ey: g(l’,y,t)-i-{‘f'--,

(a) We assume that a unique solution of the initial
value problem exists and suppose this holds also
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for the reduced problem

r= f(z,y,t),
0= g(z,y,t),

z(0) = =o,

with solutions Z(t), §(t).

(b) Suppose that 0 = g(z,y,t) is solved by § =
o(x,t), where ¢(x,t) is a continuous function
and an isolated root. Also suppose that §j =
o(x,t) is an asymptotically stable solution of
the equation

% =g(2,y,t)
that is uniform in the parameters x € D and
teRT.

(¢) y(0) is contained in an interior subset of the
domain of attraction ofy = ¢(x,t) in the case
of the parameter values x = x(0), t = 0.

Then we have

lir%xs(t) =z(t), 0<t<L,

e—

lir%ye(t) =y(t), 0<d<t<L
e—

with d and L constants independent of €.
The system

-jf:f(l',y,t), Ozg(x,y,t), (1)
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is usually called the unperturbed, reduced or degen-
erate system.

In assumption (b), ¢ and z are parameters
and not variables. The idea is that during the fast
motion of the variable y, the small variations of
these parameters are negligible as long as the sta-
bility holds for values of the parameters x € D and
t € R*. For a discussion of the Tikhonov theorem
see [Verhulst, 2005].

1.2. Early results on periodic
solutions

An early example of a periodic solution theorem can
be found in [Flatto & Levinson, 1955]. If the reduced
system (1) has a hyperbolic T-periodic solution,
then under certain additional conditions, the full
system has a unique T-periodic solution.

Slightly more general results have been
published in [Anosov, 1963]. Hyperbolicity of the
periodic solution of the reduced system plays an
essential part in both papers and this prohibits
application to the important case when the reduced
system is Hamiltonian. Later extensions by students
of Anosov deal to some extent with this problem.

A major technical problem was the absence of a
theorem on the existence of a manifold of solutions
(the so-called slow manifold), corresponding to the
solutions of the reduced system (1). This compli-
cated the existence problem of the theorems of that
time enormously.

1.3. The O’Malley—Vasil’eva
exrpansion

How do we use Tikhonov’s theorem to obtain
approximations of solutions of nonlinear initial
value problems? The theorem does not state any-
thing about the size of the boundary layer (the
parameter d in the theorem) or the timescales
involved to describe the initial behavior and the rel-
ative slow behavior later on.

Asymptotic expansions are described as follows
(for references see [Verhulst, 2005]):

Theorem 1.2 (O’Malley-Vasil'eva). Consider the
initial value problem in R™ x R™ x RT

x(0) =xz9, x€ D CR", t>0,
y(0) =yo, y € G CR™,

j: = f(x7y7t?€)7
62) = g(x? y? t? 5)?

where f and g can be expanded in powers of € to
order (m + 1). Suppose that the requirements of

Tikhonov’s theorem have been satisfied and more-
over that for the solution of the reduced system
0 = g(x,7,t,0), § = ¢(x,t) we have, with p a con-
stant independent of €,

Re Spgy(z,7,t) < —u <0, z€D,0<t<L.

Then, for t € [0,L], x € D, y € G, the formal
approximation described above leads to asymptotic
expansions of the form

m m t
zo(t) = Tan(t) + "oy (= | + O™,
Deran+ 3 et () ot

ye(t) = D bu(t) + Y " <§> +O0(e™).
n=0 n=0

The constant L that bounds the domain of validity
in time is in general an O(1) quantity determined
by the vector fields f and g. There are cases where
L extends to oc.

An intermediate step in the analysis by O’Malley
and Vasil’eva is an expansion of the form

y = o(x,t) + eyi(x,t) + 52y2(1‘,t) +ed.... (2)

The expansion is derived from the fast equation and
it is asymptotically valid on a timescale O(1) out-
side the boundary layer in time where fast motion
takes place.

1.4. The slow manifold: Fenichel’s
results

Tikhonov’s theorem is concerned with the attrac-
tion, at least for some time, to the regular expan-
sion that corresponds with a stable critical point of
the boundary layer equation. The theory is quite
general and deals with nonautonomous equations.

In the case of autonomous equations, it is
possible to associate with the regular expansions
S pean(t) and Yt e"by(t), a manifold in
phase-space and to consider the attraction prop-
erties of the flow near this manifold. Such ques-
tions were addressed and answered in a number
of papers by Fenichel [1971, 1974, 1977, 1979] and
other authors; the reader is referred to the survey
papers by Jones [1983] and Kaper [1999]. See also
for an introduction [Verhulst, 2005].

Consider the autonomous system

ZC:f(.T,y)+€,
€y:g($,y)+€"',

reDCR",
yeGCR™



In this context, one often transforms t — 7 = t/e
so that

reDCR",
yeGCR™,

o =cf(x,y)+e*---,
Yy =g(x,y)+e---,

where the prime denotes differentiation with respect
to 7.

As before, y is called the fast variable and x
the slow variable. The zero set of g(x,y) is given
again by y = ¢(x), which in this autonomous case
represents a first-order approximation M, of the
n-dimensional (slow) manifold M.. The flow on
M. is to a first approximation described by & =
f(x,é(x)). Note that the assumption for the sys-
tem to be autonomous is not essential for Fenichel’s
theory; it only facilitates the geometric interpreta-
tion.

In Tikhonov’s theorem, we assumed asymptotic
stability of the approximate slow manifold; in the
asymptotic constructions we assume that the eigen-
values of the linearized flow near M, derived from
the equation for y, have negative real parts only.

In geometric singular perturbation theory, for
which Fenichel’s results are basic, we only assume
that all real parts of the eigenvalues are nonzero. In
this case of a slow-fast system, the slow manifold M.
is called normally hyperbolic. A manifold is called
hyperbolic if the local linearization is structurally
stable (real parts of eigenvalues all nonzero), and it
is normally hyperbolic if in addition the expansion
or contraction near the manifold in the transversal
direction is larger than in the tangential direction
(the slow drift along the slow manifold).

If My is a compact manifold that is normally
hyperbolic, it persists for ¢ > 0 (i.e. there exists
for sufficiently small, positive ¢ a smooth manifold
M. close to Mp). Corresponding to the signs of the
real parts of the eigenvalues, there exist stable and
unstable manifolds of M., smooth continuations of
the corresponding manifolds of My, on which the
flow is fast.

2. Periodic Solutions

The existence and smoothness of the slow mani-
fold, in combination with the possibility of a reg-
ular expansion describing the slow manifold drift,
enables us to take a fairly easy shortcut to obtain
periodic solutions. Note, that if we restrict our-
selves to periodic solutions within a slow manifold,
this excludes the case of nonhyperbolic transition
as found in relaxation oscillations.
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2.1.

We will develop the following setup of a theo-
rem leading to periodic solutions. Consider the
autonomous system in R” x R™ x RT

&= folz,y) +efilz,y)+ -,
xeDCR" t>0,
ey = go(z,y) +egi(z,y) +e2---, yeGCR™,

where fo, f1, go, g1 are C! vector functions, the dots
represent bounded and smooth higher order terms.
Furthermore the assumptions of Tikhonov’s and
Fenichel’s theorems apply for 0 < ¢t < L. For
the solutions in the slow manifold we can apply
the expansion (2) y = ¢(z) + ey1(z) + €% - - with
go(z, d(x)) = 0.

For z(t) in the slow manifold this results in

%—J;mw))ylm

t+efi(z, o(x)) + 2. (3)

This is still a very general system and much depends
on the explicit solvability of the reduced equation
which arises for e = 0 or, more in general, on what is
known about the reduced equation. Note, that if we
would strictly apply the O’Malley—Vasil’eva expan-
sion for the equations governing the slow manifold
flow, this may produce secular terms when approx-
imating periodic solutions. Using Eq. (3), secular
terms can be avoided.

We will give an example of a more specific result
leading to periodic solutions. Using the wealth of
results on periodic solutions by averaging and nor-
malization, it is not difficult to develop this idea to
other cases.

Assume that the autonomous system above is
of the form

Zt:A(y)ZC+€f1($,y)+€2"',
reDCR" t>0,
ey = go(z,y) +egi(z,y) +2---, yeGCR™,

with f1, go, g1 smooth vector functions, A(y) a nxn-
matrix with smooth entries, the dots represent
bounded and smooth higher order terms. For sim-
plicity we assume that we have shifted the root of
go(z,y) = 0 such that go(z,0) = 0; this is not a
necessary restriction as is shown by example 8.10 in
[Verhulst, 2005]. Furthermore the assumptions of
Tikhonov’s and Fenichel’s theorems apply with

990
Jy

Averaging in the slow manifold

&= fo(z,¢(z)) +

Re Sp—(z,0) < —u <0, x€D,0<t<L.
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If the matrix A(0) has a spectrum with purely
imaginary eigenvalues and can be diagonalized, we
can perform periodic or quasi-periodic averaging or
apply the Poincaré-Lindstedt method. Putting ¢ =
0, the solutions of the reduced equation & = A(0)x
are determined by a fundamental matrix which is
quasi-periodic or T-periodic.

For the slow manifold approximation, the
expansion (2) becomes y = eyi(z) + 2---, lead-
ing to

-1
ymwz—(%§) (2, 0)g1 (2,0).

The behavior of z(t) in the slow manifold is gov-
erned by the equation

&= A(0)z +eA(yi(2))r +efi(z,0) + . (4)

In the T-periodic case (condition T' < L), we can
apply to Eq. (4) the Poincaré-Lindstedt method,
in general, we can apply averaging. If the aver-
aged vector field in the T-periodic case has a crit-
ical point with only one eigenvalue with real part
zero, we can apply the Bogoliubov—Mitropolsky the-
orem to obtain the existence and approximation
of a periodic solution; for examples and proofs
of the Poincaré—Lindstedt and the Bogoliubov—
Mitropolsky theorems see [Verhulst, 2000].

2.2. FExamples

The ideas of the preceding subsection are illustrated
by the following example.

Example 2.1. Consider the system

ZC+1‘:M(1—$2)$+Vf($,$,y)+€2,
€y: —g(x,x)y—i—eh(:z:,x,y) +52"'7

in which u, v are constants, u > 0, f, g, h are
smooth scalar functions; g(z, ) is a positive func-
tion, bounded away from zero.

The behavior of z(t) in the slow manifold is
governed by

.. . . g(z, ) 2
— (1 2
i+x = p( :c)a:—l—uf(:c,x,sh(x’i’o))—i—s

Assume first that the constant y is independent of ¢,
v = ¢, then the equation obtained by putting ¢ = 0
is the van der Pol-equation without small param-
eter. This equation contains a structurally stable

periodic solution and for instance Anosov’s [1963]
theorem applies to obtain a nearby periodic solu-
tion of the original system.

Assumenow that y =v =corpy=¢c,v =e2. In
these cases Anosov’s [1963] theorem (and any other
classical theorem) does not apply. If p = v = ¢, the
approximating equation is

it+r=c(l—a*i+ef(x,,0) +e2---.

We can average the equation and if we find a critical
point with one eigenvalue with real part nonzero, we
can apply the Bogoliubov—Mitropolsky theorem to
obtain the existence and approximation of a peri-
odic solution.

If f = e,v = €2, the approximating equation
is to O(g?) the van der Pol-equation with a small
parameter. This immediately leads to the existence
of a nearby periodic solution in the slow manifold.

If we have a priori knowledge of the behavior of the
slow solution xz(t), it is easier to obtain results.

Example 2.2. Consider the scalar equation

i = (t)y — v, (5)

in which z(t) is determined by a differential equa-
tion or is explicitly given. The equation for y
is the modified logistic equation, modified in the
sense that the growth rate is varying. One can put
t/e = 7, then denote time again by ¢ to obtain the
equation
g =a(et)y —y”.

This equation represents for y > 0 population
changes with growth rate x, slowly varying in time.

For y > 0 the first order approximation of
the slow manifolds are y = 0 (also exact solution)
and y = x. To apply Fenichel theory, assume that
0 < a < z(t) < B with positive constants o and f3.
In this case y = 0 is unstable, the slow manifold cor-
responding to y = z is stable. Using the expansion
y =z +eyi(z) + %+, the approximation for the
relation between y and x in the stable slow manifold
becomes

As an example we choose

x(t) = 1.5 + sint,
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Fig. 1. Solution approaching the periodic solution in the
slow manifold of the modified logistic equation (5) with
z(t) = 1.5+ sint, z(0) = 1.5,y(0) = 1,e = 0.01.

leading to the approximation of the periodic
solution

cost 9
I5+smt  °
The solutions will approach the periodic solution

exponentially fast. The behavior of such a solution
is pictured in Fig. 1.

y(t) =1.5+sint — e

3. Nonhyperbolic Transitions

Transitions arising from nonhyperbolicity have been
studied in various contexts. For an interesting
boundary value problem and references, see [Kopell
& Parter, 1983].

3.1. Relaxation oscillations

A classical phenomenon are relaxation oscillations
where jumps, fast transitions, take place after mov-
ing along a slow manifold that becomes unsta-
ble. For this topic see [Grasman, 1987; Krupa &
Szmolyan, 2001b; Szmolyan & Wechselberger, 2004]
and [Arnol’d et al., 1994, Chap. 4]. Most rig-
orous analysis is carried out for two-dimensional
autonomous and forced problems and it is not easy
to extend this to more dimensions. We discuss
briefly a four-dimensional problem from [Verhulst &
Abadi, 2005] where the evidence is partly numerical.

Example 3.1. Consider the system of coupled

oscillators

it x=p(l—2%)i + peiy®, p>0, ©)

i+ Ky + q2y = dxy.
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The quantity 1/u plays the part of . In generalized
Liénard variables, system (6) becomes

1 1
—a :z+x—§x3+cxy2,
(7)

z=——x — 2cxyy
I

with the equation for y added. The slow manifold
in 4-space is given by

1
z=—(1+cy’)z + §$3,

which is unstable if 1 + cy?> — 22 > 0. The slow
manifold corresponds to a three-dimensional cubic
cylinder parallel to the y-axis.

Consider the dynamics of the system with
parameter values ¢ = —2.2, d = 0.03, x = 0.075,
for solutions starting at some distance from the
1y, y-coordinate plane. Leaving out the transient,
we find a periodic limit set illustrated in Fig. 2;
this is a projection in three-dimensional space. Pro-
jecting the limit set on the z,z-plane we find a
strongly perturbed relaxation oscillation, see Fig. 3.
For comparison, the unperturbed relaxation oscilla-
tion (coupling ¢ = 0) is indicated by dots.

In the system we have coexisting attractors.
We find also a chaotic attractor with Kaplan—Yorke
dimension 2.3 - - - . For details see [Verhulst & Abadi,
2005].

Fig. 2. A periodic limit set of system (6) for u = 10, ¢ =
—2.2, d = 0.03, k = 0.075 with high starting values of the
y-oscillation. Transient orbits are left out. The stable part of
the slow manifold is present near the extreme values of y.
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Fig. 3. A periodic limit set of system (6) for u = 10, ¢ =

—2.2, d = 0.03, k = 0.075 with high starting values of the
y-oscillation, projected on the x — & plane. The dotted orbit
corresponds to the unperturbed relaxation oscillation. In the
perturbed state the motion on the slow manifolds is reduced
and the limit cycle becomes asymmetric. SM is the stable
part of the slow manifold.

3.2. Canards

Canard solutions play a special part. We shall use
the following description.

Canard solutions are bounded solutions that,
starting near an attracting normally hyperbolic
slow manifold, cross a singularity of the sys-
tem of differential equations and follow for an
O(1) time a normally hyperbolic repelling slow
manifold.

Note that, depending on the dimension of the
problem and the nature of the singularity, the
description usually has to be more specific.

The first example of such behavior was found
by the Strassbourg group working in nonstandard
analysis for a perturbed van der Pol-equation; for
details and references see [Eckhaus, 1983]. In this
first case, the singularity crossed is a fold point.
In [Kuznetsov et al., 1995], second order slow-fast
systems have been analyzed for homoclinic bifur-
cations; it contains a population dynamics appli-
cation with canard-like behavior. This sticking to
a repelling manifold is discussed in a general con-
text in [Neihstadt, 1985] where it is called “delay
in loss of stability”. In [Krupa & Szmolyan, 2001a]
transitions through transcritical and pitchfork sin-
gularities are analyzed.

We will discuss an example of transition
through a transcritical singularity, the logistic
canard, that can be calculated explicitly.

Example 3.2. Consider the modified logistic equa-
tion (5) for y >0

ej = x(t)y -y,
in which the growth rate z(t) can now take positive

and negative values. We can solve the equation for
general continuous z(t) and y(0) = yo > 0:

6% f(f z(s)ds
7 .
L / oL S a(u)du g
Yo €Jo

If z(t) is T-periodic we can write
z(t) =a+ f(t)

with a a real constant and f(t) a zero average con-
tinuous function. In the cases that z(t) is quasi- or
almost-periodic we can write similar expressions.

Assuming that x(¢) changes sign and is T-
periodic, we have two cases.

y(t) =

(8)

Case 1. a < 0. We state that lim; .. y(t) = 0. In
the extended (z,y) system, the only periodic solu-
tion is the trivial solution z = z(t),y = 0. If a < 0
the proof is simple: multiplying with exp(—at/e)
produces a bounded numerator and a monotonically
increasing denominator. A similar reasoning applies
if a = 0. In this case y(¢) also decreases exponen-
tially; this can be seen by estimating a lower bound
of the integral in the denominator by restricting to
the time-intervals where f(t) is positive. In Fig. 4
we took z(t) = sint for an illustration.

Case 2. a > 0 with a + ming<;<7 f(t) < 0. In this
case a canard-like periodic solution exists. Several
proofs are possible, but a simple one runs as follows.

Assuming that y(0) = y(T) = yo(> 0), we
obtain from the solution (8) the expression

aT
ee —1
yo - 1 T .
1 / o2 5 (at f ) du g
€Jo

The right-hand side being positive, we have con-
structed a positive solution for yg and so a positive
periodic solution.

For more explicit choices of x(t) we can show
that yo can be exponentially small and can be O(1).
Consider for instance the case x(t) = 0.5+ sint, see
Fig. 5.
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Fig. 4. Solution approaching the periodic solution in y = 0

of the modified logistic equation (5) with z(t) = sint,z(0) =
0,9(0) = 1, = 0.01. To the right of the y-axis, y = 0 corre-
sponds with an unstable slow manifold.

It is of interest to know whether this canard-
like behavior of the solutions of the modified logis-
tic equation (5) persist if the growth rate function
x(t) is quasi- or almost-periodic. Most of the results
of the periodic case carry over, although the argu-
ments are more complicated. A highly nontrivial
case arises if we have an almost-periodic function
with a spectrum that is not bounded away from
zero. If the generalized average of such a function
vanishes, it may still have an unbounded prim-
itive. Consider the almost-periodic function with
Zero mean average

(e 9]

1 /
f(t)zz(2n+1)2 Sm<2n+1>' ©)

n=0
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Fig. 5. Canard-like periodic solution of the modified logistic
equation (5) with z(¢t) = 0.5+ sint,e = 0.01. To the right of
the y-axis, y = 0 corresponds to an unstable slow manifold.
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Fig. 6. Canard-like periodic solution of the modified logistic
equation (5) with z(¢t) = 0.5+ f(t),e = 0.05 with f(¢) the
almost-periodic function (9); 0 < ¢t < 150.

In [Verhulst, 2005], appendix 15.8, the growth rate
with time of the integral of this function is esti-
mated. Remarkably enough it has been shown in
[Bakri, 2007], that the canard-like behavior of the
solutions of Eq. (5) persists for such functions. For
an example using the function (9), see Fig. 6; the
figure shows sudden population growth at irregular
times, triggered off by the almost-periodic function.

4. Discussion

In Sec. 2 we discussed the existence of periodic solu-
tions within slow manifolds. The idea used here, is
related to the much older analysis of the dynam-
ics in center manifolds. It is rather straightforward
to extend these results to existence results for tori
within slow manifolds of dimension 3 or higher.

The modified logistic equation (5) with alter-
nating negative and positive growth rates is a simple
metaphor for more complex models. It is interest-
ing that the solutions of this equation show sudden
“population explosions” related to canard behavior.

Both slow manifolds as discussed in this paper
and resonance manifolds in dynamical systems rep-
resent slow-fast dynamics. However the similarity is
superficial as in the equations for resonance mani-
folds nonhyperbolic features are so typical that a
different approach is needed.
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