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Averaging Techniques
and
the Oscillator-Flywheel Problem

B. van den Broek & F. Verhulst

Mathematisch instituut, Rijksuniversiteit Utrecht
Budapestlaan 6, 3584 CD Utrecht

We discuss normalisation and averaging techniques, which play a part in the
analysis of nonlinear dynamical systems, with special attention to the technique
of averaging over two or more angles. Under rather general assumptions we
show that in certain sets in phase-space, the resonance manifolds, the flow is
to first-order determined by a pendulum equation. The theory is illustrated by
an analysis of the oscillator-flywheel problem.

1. INTRODUCTION

There are many problems in engineering and in physics where small parame-
ters arise in a natural way. One can think of weak coupling between modes,
the effect of small friction, slow variation of coefficients in the equations
corresponding with variation of quantities as mass, length etc. We first con-
sider a simple example: a one-dimensional oscillating spring with small damp-
ing described for 1=0 by the equation of motion

5c'+qu'c+w2x+ef(x):0. H

The parameter ¢ will always be small and positive; u is a positive constant
independent of € and f(x) characterizes the nonlinearity of the spring. The
constant eu is often called the damping constant; w is the frequency of the
unperturbed (¢=0) oscillator which, in this first example, is a constant
independent of e It is convenient to introduce a coordinate transformation

X,Xx—r,y by

x = reos(wr +y), ¥ = —rosin(wt +1) . 2)
The equations for r and ¢ become

F=— f;sin(wz +)prosin(wr +) = f(r cos(wt +))]

: (3
Y= é; cos(wt + ) prwsin(wt +§) — f(r cos(wt + U]

for which we may add appropriate initial values. System (3) for the amplitude
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r and phase y is characterized by a slowly-varying righthand side (slowly
because of the small parameter ¢). Note that the periodic character of eq. (3)
arises from the introduction of the coordinate transformation (2) which was
inspired by the unperturbed (¢=0) solution of eq. (I). System (3) does not
appear to be simpler to handle than eq. (1); however, it turns out that systems
like (3) admit the application of a special technique, averaging, which produces
approximations in a relatively simple way. First we shall demonstrate this for
the more general system with prescribed initial value

y = €F1y), y(0) = pg 4)

with .y, FER",F is T-periodic in r. System (3) is of the form (4) with
n=2 T=2n/w.
We introduce the averaged vector function

T
Fo(y) = -%-; [ Fyydr
0

Note that y has been kept fixed during the averaging process. Suppose that we
can solve the averaged equation with the prescribed initial value

¥y = €eF°(p), y(0) = yq .
Under certain conditions, see [8] Chapter 2, we have the estimate
y(O)=p(t) = O(e), for e0,0< & <C

with C a positive constant independent of e This is often stated as: ()
approximates y(t) to O(e) on the time-scale 1/¢.

Returning now to system (3) we average the system over ¢, keeping the vari-
ables r and y fixed. Assuming that f'is a smooth function we find after an ele-
mentary calculation for the first equation

P ek
which integrates to
. .y
) =r0e 2 . (5)

It turns out that r(r) approximates r(s) on a larger interval of time than
predicted by the theory, in fact with error O(e) for e—0, 1e[0,00); see (8],
Chapter 4.

We omit the discussion of the phase ¢ and return to eq. (1). Suppose now,
as a second example, that the frequency w is not a constant but changes slowly
with time: w=w(er). We introduce a coordinate transformation x,x—r,¢ for
r>0 by

X = rsing, X = wrcosd. (6)

Putting r=e¢t we find from eq. (1)
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F o= f—prcostep— w;) cos’e a’;(:) - i(zi(’;) frsing)]

T = € (7
é‘) w(r) + Ofe) .

System (7) contains the dependent variables r,¢,7 and the righthand side is
periodic in ¢. Assuming that w(r) is bounded away from zero by a constant,
independent of ¢, the angle ¢ is a fast moving variable with respect to the
amplitude variable r and the variable 7. So we can treat ¢ as a time-like vari-
able and it is natural to average the slowly part of system (7), i.e. the equations
for r and 7, over ¢. We find for the averaged amplitude equation

11

r;:__l‘C[“ ié@_]
24 wdr’’

Integration produces

L L -
FHw’ (et) = r(O)w’ (0)e % . (8)

Eq. (8) includes the result of eq. (5). If we take u=0, the relation given by eq.
(8) represents a well-known adiabatic invariant of the system. In systems with
slowly varying coefficients, adiabatic invariants play a part analogous to the
part played by first integrals in classical mechanics. For a discussion see [1], [6]
and [7]. In general the accuracy of such an invariant is O(e) on the time-scale
1/¢; see [8] Chapter 5.

A large number of rather different problems, for instance gyroscopic systems
in mechanical engineering or gravitating systems in celestial mechanics, can be
written in a form like system (7):

X = eX(¢,x) + O(), xeDCR"
b = Qx) + 0), beT™.

T is the m-torus; system (9) contains n slowly varying variables x,, . . ., x,
and m angles ¢y, . . ., ¢,,.

In the Sections 2-4 we shall survey a number of techniques and theorems
while adding some new observations. In Section 5 we shall discuss an applica-
tion to an oscillator flywheel system, which is one of the prototype problems of
nonlinear mechanical engineering. The appendix has been added as it contains
some useful technical details which have been omitted in [8]. The emphasis is,
apart from the appendix, on the discussion of methods and ideas. Details can
be found in the literature given in the sections.

®
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2. NORMALISATION AND AVERAGING

The concept of the (or a) normal form of a vector field or any other mathemat-
ical object is based on the idea that by a suitable transformation one can put
such an object in a simpler form. One may hope that the object in normal
form is easier to study than before transforming. An example from linear alge-
bra is a nonsingular matrix with distinct eigenvalues which we can put into
diagonal form. A simple example of a differential equation put into normal
form shows the possibilities. Consider the two-dimensional system

Xy = 2xp +oapxt + ayxx, + a3 +

).62 = x, + b]X% + f)le)(z + b3x% +
The righthand side is analytic in a neighbourhood of (0,0) and we have written
out the first terms of the expansion. Introducing a near-identity transformation
of the form

X1 =yt k)

X2 = y2 T ha(yr.ya)
we can give a power series expansion for 4, and k, with coefficients such that
the system for (y,,y,) becomes of the form

71 =2 + o

Y2 =2
The constant ¢ depends on the coefficients a,,b;, etc. This is a remarkable
simplification.

An introduction to normalisation techniques can be found in [10], more
details in [1] and [8]. We shall demonstrate the technique for system (9) with
m =1, while using a near-identity transformation

X =y + eu(¢,y) (10)

However, u(¢,y) will not be given in the form of a power series. We substitute
(10) into system (9) assuming that the vectorfields are smooth enough to admit
expansion with respect to e. We find

X =y + e%{@(} +euy + O] + e-gg-jf = eX(9, y+eu) + O()

and after expansion with respect to e
. d
y = eX(gy) — egg-szg;a) + 0(&). (1)

One chooses u in the transformation (10) such that eq. (11) becomes simpler
than the first equation of system (9). We can achieve this by putting

¢
u(,y) = éég [ (X@.y) = x°(y)ae
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with averaged vector field
X°() = [ X(@.y)d¢
$

Equation (11) becomes with this choice
¥ = eX°() + O(&)

¢ = Uy) + 0.
Note that, because of the choice of u(¢,y), we have to stay away from the
zeros of §i(y); also that we still have some freedom left in the choice of u(¢,y)
as we have introduced an indefinite integral; we omit the details. System (12)
can be called the normal form to first order of system (9).

(12)

REMARK 1. Near-identity transformation in terms of formal power series as we
indicated for the two-dimensional example is usually called normalisation
according to Poincaré and Dulac. For system (9) we used normalisation by
averaging. Both procedures can be put in the same formal frame-work (which
can be technically rather complicated) and they lead in a certain context to
equivalent normal forms; see [1] and [8].

REMARK 2. One of the main advantages of averaging is, that it is an explicit
normalisation technique which makes it very useful as an operational tool.

3. ESTIMATES OF ACCURACY OUTSIDE THE RESONANCE MANIFOLD
The theory of approximation of the solutions of systems like (4) or (9) runs
along the following lines. First one calculates a suitable normal form of the
system; secondly one truncates the normalised system at a certain order and
solves the remaining system. Estimates of accuracy are then usually based on
contraction (Gronwall’s lemma), or equivalently, the implicit function theorem.
A first result is this:

THEOREM 1. Consider the system
X = eX(p,x) + O(&), x(0), xeDCR"
¢ = Qx) + O(e), H0), peS'.

We assume that the righthand side of the system is smooth and that
0<a< xig%i&l(x}{ < iggf&k{x}f <b<cw

where a and b are e-independent constants. Let (y, ) be the solution of
y = eX°(), y(0) = x(0)
¥ = ), WO) = ¢(0)

then, if y(t) remains in an interior subset of D

x{ty = y(t) + Ole} on the time —scale 1/¢
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oy = Y1) + Oflete”) .

PROOF. See [8] Chapter 5.

Theorem | can be extended to obtain higher-order accuracy ie. an O(e?)
approximation for x and an O(e) approximation for ¢ on the time-scale 1/¢.
The theorem is valid in domains which do not contain zeros of §(x). The
equation (x)=0 defines the resonance manifold(s) in R”. In and near a reso-
nance manifold we have to apply a local analysis as in boundary layer theory,
see [2].

The theory becomes rapidly more complicated if we use averaging over more
angles, for instance in the case of the 2-torus (m =2). We put

x = eX($1,¢,x), xeDCR"
¢ = Q(x) ¢ eS!
¢ = D(x) pres!

where X is 27-periodic in ¢; and ¢;. So the torus T2 is the product of two cir-
cles S' XS, in this case with length 27. Complex Fourier expansion of X
yields

X(bi,¢2,x) = S culx)e’*H T
k= ~c0

Averaging over the angles produces
1 2r 27

Q) [ [ X@1.¢2.0de1dey = coofx)

¢, =0¢, =0
provided that k¢; +/¢,50. In this case the averaged equation is
V= €(y), yeDCR". (14)

What happens if k¢, + /¢, =07

Suppose, that for some k,/ the coefficient ¢, (x) is not identically zero. Com-
bining the equations for ¢; and ¢, in (13) we observe that k¢, +/¢, can be
zero (or small) for some interval of time in subsets where

kéy + Igy = 0

or

kQy(x)y + Ih(x) = 0, kleZ, xeR" (15

If equation (15) has solutions in R", the combination angle k¢; +/¢; locally
varies slowly. Equation (15) defines the resonance manifolds in R” of system
(13). The set of resonance manifolds may have an infinite number of com-
ponents (solutions of equation (15)); sometimes this set 1s called the Arnold
web.
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The solutions of the equation for x outside the resonance manifolds can be
approximated by the solutions of equation (14). A straight-forward generalisa-
tion of Theorem 1 shows that outside the resonance manifolds, the solutions of
equation (14) with appropriate initial values approximate the solutions of the
equation for x in (13) to O(¢) on the time-scale 1/¢. The approximation is car-
ried out to the second-order in the appendix.

ExaMpLE. Consider the system
X = eX(¢),¢.x), xR
(i)l = X, (xbl EES]

¢ =1, ¢ es!
The initial values x(0), ¢;(0) and ¢,(0) are supposed to be given; X is 27-
periodic in ¢; and ¢,.
We perform Fourier expansion of X as before. The resonance manifolds are
given by equation (15) which becomes

kx +1 =0, kileZ, xeR .

The resonance manifolds in this case are represented by rational numbers. If
the Fourier expansion contains a finite number of terms only, it is easy to
define ‘inside and outside of resonance manifolds’. For instance take the case

X = %‘e—(cos(cf)l —d).

Since <}>; ~<§>2 =x —1, there is one resonance manifold: x =1. Qutside a neigh-
bourhood of x =1 we average to obtain y =3¢ So

y(t) = x(0) + Fer .

Outside a neighbourhood of x=1 we have x(¢)—y(1)=0(e) on the time-scale
1/€. 1t is interesting to note that this approximation does break down if one
allows for values of x in the resonance manifold; two one-parameter families
of exact solutions of the system are

x() = 1, ¢1(1) = $10) + 1, $olt) = $a(0) + 1
$1(0) — $(0) = =37

. . 1
so for these initial values y(r) — x(r) = Jet.

Solutions with x(0)<<1 will approach a neighbourhood of the resonance
manifold but in this example with one resonance manifold, these solutions can-
not be trapped. This can be shown as follows. Putting ¢ =¢; —¢, we derive the
equation

z;é + ecosy = {:e.

This equation has no attractors. Several solutions x(r), starting in a
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neighbourhood of x(0)=0, are shown in Figure 1.

Returning now to the case in which the Fourier expansion of X contains an
infinite number of terms, one observes that there can exist an accumulation of
resonance manifolds. For instance if one has c;(x) not identically zero for
k=0,1,2,..., and some finite / the point x=0 is a point of accumulation of
resonance manifolds. Near x =0, the averaged equation has no clear meaning
as regarding the original equation for x.

47
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FIGURE 1.

Two solutions of x=7e—ecos(¢; — ), qSl =x, ¢ =1; e=.1;
$1(0)=¢2(0)=0, x(0)= ~.3 and x(0)= — 4: 0<r<50.

4. THE FLOW IN THE RESONANCE MANIFOLD
As we have seen, resonance manifolds can accumulate; they can also intersect.
We shall consider now an isolated resonance manifold M which by a change of
coordinates has been placed at x; =0 in R". To be more explicit, consider the
system

x = eX(¢,x) , xeR”

$=0Qx) , ¢eI™
where @=(&;, ... ,Q,), x=(x,,...,x,) and with M defined by

ki&h(x) + - ky@,(x) = 0, xeR” and certain ky,... . k,cZ

(16)

with isolated solution x, =0.

A natural approximation scheme for the flow in and near M runs as follows.
Consider an O(8(¢)) neighbourhood of M with 8(e)=o(1). This is a boundary
layer in the sense of singular perturbation theory, see [2], where one uses a
focal variable ¢ defined by

Xy = §{£}$ .
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We put x=(x,n) with neR" ! and we replace ¢ by y=k,¢;+ - k¢,
and (m —1) independent angles, say ¢, . . . ,¢,,. System (16) becomes
(O = X\ (b2, - - - b B(OET)

X = eXWd, ... b, 008D, [ =2... . ¢
%L m] kiQi(s(f)E,"P)

i

i=

¢ = Q@©OLn) i=2....m.

Supposing that the vector functions are sufficiently smooth, we can expand to
obtain

le(\tb,(f’zs L. 9¢’ma09n) + 0(68(6))
= eXi($dn, ... 0, 0m) + O(edle), i = 2,....n

. m 89‘
Y = 8 Zl ki =(0,mé + O (9)

Il

3(e)é

X

¢ = QOm + 0©), i =1,2,...,m
A significant degeneration (for the terminology see again [2]) arises if B(e):e?.

In an O(e* ) neighbourhood of M the equations can then be written as
.4
£= € Xi@dr, ., 0m0m) + O
1= 0()
. om0,
b=¢ 2k 5—0mnk+ 0
i=1 i

. i
& = QO0n) + 0, i =2,...,m

1
This system is in the form of system (9) or (16) but with small parameter €,
slow variables £7,¢ and fast variables ¢,, - - - ,¢,,. Fourier expansion of X,
and averaging over the (m — 1) fast variables produce the system

E= ¢ (01(R) + exicosy + es(i)sind)
i=0

2 ,.:, " BQE o~
¥ =¢ g} ki e 0,m)¢

;i =QO0mn,i=2...,m.

In an O(¢ ) neighbourhood of M the solutions Esg} and ¢ with appropriate ini-

tial values, approximate §,n and ¢ with error G‘(e?} on the time-scale /€7 . As
7 is a constant in this approximation, we can derive for i the following
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fundamental equation by differentiation
v+ ealiycosd + ebiysing = ec(i) (17)

with a,b and ¢ constants depending on 7 only.

It is easy to show that if equation (17) contains critical points, these points
are saddles or centers. This means that in this general set-up, to first order the
flow in the resonance manifold is described in a structurally unstable way: the
(n —1) variables x,, - - - x,, are frozen, the combination angle  satisfies a
second-order pendulum equation without friction (notwithstanding the amount
of dissipation which may be present in the original system (16)).

The implication is, that to describe the flow in the resonance manifold adequately,
one generally needs at least a second-order calculation. Such a caleulation does
not only add more precision, a second-order calculation is essential to obtain a
correct qualitative and quantitative picture of the phenomena.

If equation (17) contains a center, the system will also have a homoclinic orbit
or saddle loop. In general system (16) will contain dissipation terms and the
second-order result will cause a break-up of the homoclinic orbit such that we
have the possibility of trapping of orbits or of chaos in the resonance mani-
fold. It turns out that the first possibility has been realised in the oscillator-
flywheel problem, Section 5.

We finally note that it is easy to give examples where one has an intersection
of resonance manifolds. Suppose p resonance manifolds, corresponding with
combination angles {;, - - - ¥, intersect and one introduces local variables
near this set of intersection. One can repeat the calculation of this section to
obtain a coupled system of the form

¥ +e é (@i cosy; +by sinyy) = ¢ é G i =1, p.
k=1 k=1

The 2Zp-dimensional phase-flow is divergence-free and again, a second-order
calculation is necessary.

5. THE OSCILLATOR-FLYWHEEL PROBLEM

To illustrate the difficulties which arise in the case of two angles, i.e. m =2 in
system (13), we analyse a model of the oscillator-filywheel. A wheel, which is
slightly excentric because of the mass m (see Fig. 2), is mounted on a spring
such that it can move up and down during rotation. The vertical displacement
of the wheel is measured by the variable x, while the posttion of mass m, caus-
ing the excentricity, is indicated by the variable ¢.
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FIGURE 2.
The oscillator-flywheel

The equations describing this system are:
4 x = d-x3—k+é cosp] + O(). (18)
¢ = d32—9) + (1-x)sing] + O(€) .

Here ¢ is a small number depending on m and the mass of the flywheel. For a
detailed formulation of this problem see [3] or [4]. In these books a prelim-
inary discussion of this problem has been given based on numerical tech-
niques.

We will present an analytical method to solve approximately system (18),
using second-order averaging theory over two angles. This analytical approach
has the advantage that general insight in the behaviour of the solutions can be
obtained.

The first step is to bring (18) in the standard form for averaging. Introduc-
ing a transformation x=rsin¢;, x=rcos¢,, ¢=¢;, and ¢, =, r>0 and
>0, system (18) takes the form:

Fo= ecosgy[—r?sin’g, —rcosg, + Q2cosd;] + O(&),
Q = d5(2-Q) + sing, — rsing; sings] + O) (19)
*?.51 =0,

. 2
¢ = 1 + {risin‘e, + %sin%z - %cos@i sing,] + O(€%) .

These equations are in the form of system (13). The resonance condition (15)
produces: k-2+/=0 for k,/eZ. We can write the right-hand side of (19) as a
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function of ¢; —¢,, ¢; +¢, and ¢,. Because >0 the only values of k and /,
which produce a combination angle y=k¢, +/¢,, which is slowly varying, are
k=1 and /=—1. In this case the resonance occurs if = 1. Other values of k
and / will produce combination angles = k¢, +/¢,, which do not appear in
the right-hand side of (19). So the resonance manifold M is defined by @=1.

This has important implications for the averaging technique, in which the
equations are averaged with respect to all variables with an O,(1)- derivative;
after averaging, these “faster moving” variables have been eliminated from the
right-hand side (O, -estimates ‘are 0 but not ¢’).

Averaging
We have to distinguish between two regions: the resonance manifold M
defined by Q=1 and its neighbourhood and the region away from M (the
outer region). We know that the resonance region is an O( € )-neighbourhood
of =1 (8], § 5.5.2).
In the outer region we can average (19) with respect o ¢; —¢, and ¢, (or ¢
and ¢) and obtain (compare with (14)):
P = —de + 0E) 0)
) = 12~ + 0@
We see that in the outer region r will be decreasing for all time and that .

increases towards its equilibrium value 2. In the resonance region we average
system (19) with respect to ¢, and obtain

= d-3r 32 cost] + 0@),
8 = 442~ —2rcosy) + 0() , @1

b= Q—]—-e{-g—rz*F%“%z‘ sin] + O(e?) .

System (21) contains two critical points;
A= V2I+06), 1+0(), ZT+0@) which is unstable and

(3 V2 +0(e), 14+ 0(e), — 2+0(e)) which is an attractor.

Taking the initial values #(0)=1.0, Q(0)=0.5 and varying Y{0), we expect the
solutions of system (19) to be attracted into the resonance region for some
values of Y(0). For some (0) the solution will stay in the resonance region for
all time (© near to 1 for all /) and for other Y(0) the solution will move
through the resonance region (& tends to 2 for large 7).

The physical meaning of these two situations can be made clear with the
help of Figure 2. The non-resonance situations implie for large ¢ that ~2 and
r=20, which means that there is no vertical motion and a fast rotating fly-wheel
(angular velocity 2). The resonance situation implies an equilibrium with
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rw%\/i—): and =1, which means a slower rotation of the wheel combined

with a notable vertical motion. In practice this phenomenon could damage the
construction.

As a numerical example we take ¢=0.01 and r(0)=1.0, 20)=05 and we
vary y(0)=1y; in system (19). If there is a finite T,, defined by UT,)=12, the
solution has passed through the resonance region; if not, we expect the solu-
tion to be attracted by the asymptotically stable equilibrium point. We write

Yo :76%6.297, keN, and obtain three intervals, leading to attraction, i.e. ke
[167:196], [452:485] and [758:774] (see Fig. 3).

840 “cﬂ

Q
L

FIGURE 3.
7, defined by UT,)=1.2 for each y; €[0,27]

In the following we shall show how these intervals can be approximated in an
analytical way.

We will distinguish two situations: € is in an O( \/;}—neighbourhood of 1 (the
resonance region) and £ is not in such a region (the outer region). If Q is not
in the resonance region we use system (19). q

=1

If © is in the resonance region, we introduce a local variable w= o in
Ve

system (19) and we shall neglect the O(e Ve -terms. The result is:

Fo= c{w%r+%c05gb}

o = Velg—3rcosy]—~ew 22)
z;& = \/;w + e{“*—g‘rz%é"ﬂi-}jj-]

We shall look for attraction in the resonance region, which is now given by
w=0. First, we approximate the solutions in the outer region. There are two
fast-moving variables in (19) and using second order averaging theory (for a
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theorem on second order averaging in the case of two angles see the appendix)
one can obtain O(e’) approximations of r and © and Ofe) approximations for

¥ and ¢, valid on the time scale —l~

This approximation will move in the direction of the resonance region. We

will determine a time 7+, such that for 1 =7+ the solution is “on the boundary”

of the outer and the resonance region, i.e. has a distance of O(Ve)to Q=1.1If

@=1—k Ve (k>0) we expect that the approximation of the solutions of the

equations of the outer region still have some as(ympt?iic validity, see [8], §
[*)~—

5.5.3. If we use this endpoint (r(1+),w(r+) :-Q“—\/):—%, Y{1#)) of the outer
€

equations as a starting point for the inner equations, we expect a good approx-
imation of the solution inside the resonance region, because the starting point
is in a O(\/c—)meigbourhood of §=1. (The asymptotic validity in the outer
and inner region can both be proven; the only problem left is the matching of
the approximations.)

We now have to solve the following problem: for which initial values
(r(#*), et *),(r*)) will the solution of the inner equations (22) be attracted by
the attractor? (Remember that (r(£*),0(1*).y(1*)) depends on Yo and ) We
rewrite (22) to obtain

2
%T—;ﬁ + Jreosy = 4 — \/E%(%%;f%si) + 09,

-d‘—’g = Ve[— 37+~ cosy] . (23)

_—

If €=0 we have a center and a saddle (we have seen this already in Section 4),
for €>0 a saddle and an attractor (see Fig. 4). For €=0 we can define an

energy function: E:-I—(iﬂ)z--i +“1‘°r5in\[/+c, with ¢ a constant. This
gy 2V T 2

energy function is shown in Fig. 4c.

ReMARK. If €=0 system (23) is a conservative system, in essence described by
a two-dimensional phase-space, which is shown in Fig. 4a. However, for ¢>0,
r is a slowly moving variable and the phase-space is three-dimensional. So the
phase portrait which is shown in Fig. 4b, is only a projection in the (,)-
plane.
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FIGURE 4.
System (23) for ¢=0 (a) and ¢>0 (b).
In (c) the energy corresponding to (a) is shown.
Y 1s the saddle.

For ¢>0 we take c:“i'xzzs-%“r sinf, so that the trajectory of Fig. 4a
corresponds to £ =0 (note that c is slowly varying because of r). Inspired by
work of HaBerman ([5]) we differentiate

gﬁ:urgg,Qi«giM —E-fl'j...‘ 4
d‘T ve(d’f} (4 Y2 P }+ 2 axﬁ_{,Slnzf’ Sﬁnl,{«’s} ! 0(6)7

and with the help of this expression we approximate the energy dissipated by
solution 1 and solution 2 of Fig. 4b (E, and E, resp.). We then conclude that
the solution will be attracted if its initial energy is between E, and E,.
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Details of the calculation of £, an
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d E, are given in [9].

- 1
12 f
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Y e =
Yo o
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FIGURE 5.
Trajectory corresponding to E,
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corresponding to E;

Now we have to determine those yy, for which the starting point of the inner

equations (r(1*),w(1*),y(t*)) is on

the trajectory defined by E =0, as it is for

those i that the solution will move towards the saddle. It turns out that for
¢=0.01 there are three such values of {4, which are listed in the table with

their corresponding E; and E,.

Yo Ey E;
228 002 615
244 002 015
261 002 015

So there are three different solutions, leading to the saddle; for other values of
Yo the solution (r(*),w(t*),Y(t*)) is not on the trajectory E =0, Now we have

to solve 0.02<E(0)=0.15, and th

e iy that solves this inequality corresponds

to a solution that will be in resonance for large 1 (see again [9] for details).
The result is that according to this first approximation, attraction will occur
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for ke [161:175], [497:506] or [791:801], with =

k
1 000.277. These values

should be compared with the values given earlier which have been obtained by
numerical integration.
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Appendix
Second Order Averaging over Two Angles

B. van den Broek

We start with 2 lemmas.

LEMMA 1. Consider system (1)
X =eX(¢,x) , x(W=xy ; xeDCR"
$= () +eba(@x) , HO)=¢ : peT>

We assume that the vectorfields are twice continuously differentiable with bounded

(M

derivatives in the domains considered We write o= j;; . Q= Q:; and
Q, = 92]
2T
s ik, + i)
Consider the Fourier expansion X(¢,x)= > e hiTig) Restricting oneself

k=~
to the pairs (k1) which arise non-trivially (i.e. ¢y not identically zero in D) one
assumes that there are no subsets in D such that kS (x)+ 1925(x)=0; (this
means that the combination angles k¢, +1¢, are not permitted to vary slowly in
Dy
Then the solutions of (1) can be writien as

x(1) = y(0) + e Dyy) + EuP,y)
A1) = Y1) + ey,

where y (1) and (1) are solutions of

v o= X%y + éfé’ﬁz{y} + 535’;,'}/’{{}} = yg {2
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V=) + QY0 + Ry, Y0) =
Here Q3(y)= f (d,y)de, R, and R, are uniformly bounded in DX T?;
XOI,XOZ,u“),u(K and v will be defined later on.

PrOOF. The spatial derivative with respect to the variable x or y will be indi-
Cen OX
cated by V; so ~8—;-Vk.
We have
¢ = 1[/+e-Q—v-t,lx + €Ty
W Y

= Q) + @) + 5%9,@) + 0@)

and on the other hand
¢ = @ teuV+u®y + h(t+eny +euV + 242
=0 + eV + y) + 0@
Comparing these two expressions for ¢ we have
%%=vmw+%~% 3)
and therefore
dv dv
Qim0+ Q= Q4 + Q, — Q4.
1 o 12 A 1 2 2

Note that the average of the right-hand side for (3) equals zero, so v is a
bounded function. Furthermore we have

ay . @

=g 4 fa§¢ ¥+ evully + 8-‘%—— + Evu?y
01 2 302 du'! 0 2 (1), y0I 2 9u® 3
=X Q’)+€XO(V)+68¢ (2, +€28) + ETuD. X0 + ¢ £ 2 +0()
= daxgy 4 Y o e, B M. yor . 9u® %
XV (y) + " Q]+ E[X%2p)+ £ Q5 +u + Em 2,14 0()

and on the other hand
x = eX(Y+teo, y e +y?)

= €X{¢?¥V)+(2%g"v+€2VX'u(” + O().

Comparing the two expressions for % we have

3540 (1
g;z,.__%fi_m + Q.. ul X(by)— X% ),

L 273y,
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uV u® ) — o () 02 oul o
Q” axl,] + 12 8\//2 - VXH Vu XO .4 81{/ Qz (4)

X0y = [X(Wop)dy.
Tz

These expressions define u'Y,u® and X%'. We require ¥ to have average
zero and have

X20) = [Py 4 gxath — it yoigy ®)
i 0
which defines X2, -

LemMMA 2. Consider the equation (2)

yZeXm(y)+er02(y)+e3R1 J(O)=y,

V=010)+B0) R UHO)= 4y,
Suppose that (z,§) is the solution of (2) truncated as follows

=X 2)+EX%(2) |, 2(0)=2z,

5 1(2)+e@3(2) » §0)=45,
then we have

y —zlI<(llyo—zoll + E11IR, e
where L is the Lipschitz-constant of X°'+eX%. If yo—20=0(&) we have
y=z+0(e) on the time-scale l

Furthermore  ||y—§ll <y — £0H +Mlly —zllt +e7‘tHR2H where M is the
Lipschitz-constant of @, +€Q9. If zo— yo=0(®) and Yy — & = O(€) we have

3)

Y = &+ Ofe) on the time -scale —(1—

ProOF. We have jy—z=¢(X"'(y)~X%(2)) +&(X?()—X2(z))+R,. Put-
ting L for the Lipschitz-constant of X% +eX% we get [[p—z|<eLlly —z|I
+e’[[Rll. Using Gronwall’s lemma, we have

f{}’ -z }g(,vy@“ZQ‘{“{’“f iizR; %i)e‘l‘g

For the angular variables we find
b= = 00) + () — 0() — Q3(z) + €R,
<Mly —z| + €R,

where M is the Lipschitz-constant of ; +¢QJ.
So we have [[y—&lI<llyy— &Il +€* IR, ]l2. This produces an O{e) estimate for

the angular variables if y —z = O(¢?) on the time-scale —. Now we can formu-
” €
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late the following

THEOREM. Consider system (1)
X =eX(p,x) X(0)=xg, xeDCR”,
9= () +els,x) 9(0) =gy, p T2,
and the associated system (3)
:=eX(2)+EX2(z) 2(0)=x, —euD(¢y,x0)
=00+ W0 =g

()

&)

[ei(kqh +1gy)

o0
Consider the Fourier expansion X (q&,x):k[ 2 . Restricting oneself
A= -0

to the pairs (k,!) which arise non-trivially (i.e. ¢y not identically zero in D) one
assumes that there are no subsets in D such that kQy(x) +IQ,(x)=0; (this
means that the combination angles k¢, +1¢, are not permitted 1o vary slowly in
D). If this condition is satisfied x(t)=z(t)+eu D), 2(1)) +0(€?) and

H)=(t)+ O(e), valid on time-scale e Here is

Bu() dul)
Q02 40, B0y — x0(),
2 2 W) )

X)) = [X(g,p)dg,
Tz

B0) = [D(o,0)ds,
TZ

X%y = va-u(’) + ‘Q‘K'v“)*Vu“)’XO’dzp,
7 O
M )
oy %‘:l'x + 912%:}'2— = v-uh + Q-4

PROOF. This is a straightforward application of Lemma 1 and Lemma 2.
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