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SYMMETRY AND RESONANCE IN HAMILTONIAN SYSTEMS*
J. M. TUWANKOTTA'Y AND F. VERHULST?

Abstract. In this paper we study resonances in two degrees of freedom, autonomous, Hamil-
tonian systems. Due to the presence of a symmetry condition on one of the degreea of freedom, we
show that some of the resonances vanish as lower order resonances. After giving a sharp estimate
of the resonance domain, we investigate this order change of resonance in a rather general potential
problem with discrete symmetry and consider as an example the Hénon-Heiles family of Hamiltoni-
ans. We also study a classical example of a mechanical system with symmetry, the elastic pendulum,
which leads to a natural hierarchy of resonances with the 4 : l-resonance as the most prominent after
the 2 : 1-resonance and which explains why the 3 : l-resonance is neglected.
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1. Introduction. Symmetries play an essential part in studying the theory and
applications of dynamical systems. In the old literature, attention was usually paid
to the relation between symmetry and the existence of first integrals, but recently
the relation between symmetry and resonance, in particular its influence on normal
forms, has been explored using equivariant bifurcation and singularity theory; see
Golubitsky and Stewart [11], Golubitsky, Stewart, and Schaeffer {10], or Broer et al.
(5] and also [29] for references. For a general dynamical systems reference see (1, 6];
for symmetry in the context of Hamiltonian systems; see [6, 15, 28].

In the literature the emphasis is usually on the low order resonances like 1: 2 or
1:1 for the obvious reason that in these cases there is interesting dynamics while the
number of nonlinear terms to be retained in the analysis is minimal. This emphasis
is also found in applications; see Nayfeh and Mook [16] for examples of mechanical
engineering. Since in practice higher order resonance will occur more often than
the low order case we shall focus here on the theory and application of higher order
resonance, extending [21, 22].

In our analysis we shall use normal forms where in the usual way a small parameter
€ is introduced by rescaling the variables; see section 2. The implication is that, as
€ is small we analyze the dynamics of the Hamiltonian flow in the neighborhood of
equilibrium corresponding with the origin of phase space. Note that £2 is a measure
for the energy with respect to equilibrium. Putting & = 0, the equations of motion
reduce to linear decoupled oscillators.

Apart from considering frequency ratios one can also classify resonance in the
sense of energy interchange between the degrees of freedom. Terms like strong (or
genuine) resonance and weak resonance are used to express the order of energy inter-

“Received by the editors January 13, 2000; accepted for publicetion (in revised form) July 31,
2000; published electronically Decemnber 13, 2000. The rescacch of the Brst author was supported by
the Mathematisch Instituut, Universiteit Utrecht, The Netherlands and CICAT TUDelit.

http://www.slam.org/journals/siap/61-4/36532.html

tMathematisch Instituut, PO Box 80.010, 3508 TA Utrecht, The Netherlands (tuwankotta@math.
uw.nl, verhulst@math.uu.nl).

1On leave from Jurusan Matcmatilka, FMIPA, Institut Tekuologi Bandung, Gancsha no. 10,
Bandung, Indonesia.

1369



1370 J. M, TUWANKOTTA AND F. VERHULST

change on a certain time-scale which is characteristic for the dynamics of the system;
see the discussion in section 6.

Symmetries arise naturally in applications—think, for instance, of the plane of
symmetry of & pendulum or, on a much larger scale, the three planes of symmetry of
an elliptical galaxy; an introduction and references are given in {29].

In section 2 we present the framework of our analysis by indicating how symmetry
assurnptions affect resonance and the normsal forms. We use Birkhoff-Gustavson
normalization which is equivalent with averaging techniques. In section 3 we give a
new sharp estimate of the size of the resonance domain at higher order resonance.

Section 4 focuses on a special resonance, the 1 : 2-resonance for symmetric poten-
tial problems; we discuss an example from an important family of potential problems
for which applications abound. The classical example is the Hénon-Heiles problem
[12] which applies not only to axisymmetric galaxies but also to nonlinear chains as in
the Fermi-Pasta-Ulam problem; see [8]. Molecular dynamics uses such two degrees
of freedom formulations, for instance in {17, 24]. In mechanical engineering many
examples can be found in [16]; see also the treatment of the spring-pendulum in [5).

Section 5 discusses one of the classical mechanical examples with symmetry, the
elastic pendulum. This system has played a part in applications in aeronautical
engineering [9, 20|, celestial mechanics [18], astrophysics and aeronautics [13, 14, 18],
and biology [2, 19]. In this problem, we show that the symmetry assumption produces
& new hierarchy of resonances in which, after the well-known 2 : I-resonance, the 4 : 1-
resonance is the most prominent one. The asymptotic analysis is supplemented by
numerical calculations which show excellent agreement.

2. Higher order resonance triggered by symmetry. Consider the two de-
grees of freedomn Hamiltonian

1 1
(2°1) H(p1,q1,p2,q2) = 5“"1 (p? +qf) -+ iwg (pg-{-qg) +Hy+ Hy+:--,

with Hi, k& > 3, a homogeneous polynomial of degree £, We introduce a small
parameter ¢ into the system by rescaling the variables by g; = e7j,p; = 75,5 = 1,2,
and divide the Hamiltonian by 2. We can define successive nonlinear coordinate
(or near-identity) transformations that will bring the Hamiltonian into the so-called
Birkhoff normal form. In action-angle variables, a Hamiltonian H is said to be in
Birkhoff normal form of degree 2k if it can be written as

H=wn +uwina +EP(m,ma) + ' Ps(n, 1) + - - - + 22 Py (11, ),

where P;(7y,72) is a homogeneous polynomial of degree i in 7; = (p;*+¢;2),5 = 1, 2.
The variables 1), 72 are called actions; note that if Birkhoff normalization is possible,
the angles have been ecliminated. If a Hamiltonian cen be transformed into Birkhoff
normal form, the dynamics is fairly regular. The system is integrable with integral
manifolds which are tori described by taking 11, 7 constant. The flow on the tori is
quasiperiodic.

In normalizing, it is convenient if we transform to complex coordinates by

x; = g; +ipj,
Vi =4g; _i.pj: J = 1:21

with corresponding Hamiltonian A = 2iH. The idea of Birkhoff-Gustavson nor-
malization is to transform H (we have dropped the tilde) so that the transformed
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TASLE 2.1
This table presents lower order reacnant terms which cannot be removed by Birkhoff normal-
ization. The second column shows resonant terma in the general case while in the third column we
have added the symmetry condition H(zy,y1, —za, —y2) = H{z1, ¥y1.723,12).

S Resonant term
General Hamiltonian | Symmetric in x3, 17
1:2 1%y, Tamn® %t 2yt
2:1 z2°m, iyl Ty, zlg:’
1:3 =y, zapn? z1%93, 2
3:1 ziwd, z2i; 21218, z2%n?
1:1 =122, 22°m? 1%y2?, 23;?
ziimue, Tz
zivi®za, wizadyn
Hamiltonian becomes
(2.2) H(z1,y1,Z2,¥2) = Bi(r1,m2,€) + R{z1, 11, T2, 12, €),

where B; is in Birkhoff normal form with k as high as possible (r; = Jz;y;,7 = 1,2).
R is a polynomial which has degree of either 2k or 2k + 1 in (x1,y1,T2,42). The
terms R are also known as resonant interaction terms and H in this form is called
the Birkhoff-Gustavson or resonant normal form. In this paper we will refer to the
terms in R as resonant terms. For normalization one can use a generating function or
suitable averaging techniques. See, for example, [1, Appendix 7] or [28, Chapter 11].

The presence of resonant terms of the lowest degree in the Hamiltonian determines
until what order the normalization should be carried out. For example, consider the
Hamiltonian (2.1} and assume there is & pair of natural numbers (m,n) such that
m/n = w, fwy, where m and n are relatively prime. The resonant terms of the lowest
degree are generally found in Hy4q; wi ¢ w2 is said to be a lower order resonance if
the corresponding resonant terms of the lowest degree are found in Hy with k < 5. If
m +n > 5, the normal form (2.2) becomes

(2.3) H(z1, 11,22, y2) = 2i(Bi(r1,72,€) + €™ 2(Dz "™ + Dy "z2™)) + - - -.

It turns out that some of the lower order resonances are eliminated by symmetry
in which case m and n need not be relative prime. This is due to the fact that during
normalization symmetries can be preserved. See, for example, [7]. In Table 2.1 we
present a list of lower order resonances and its corresponding resonant terms of the
lowest degree. The second colurnn shows resonant terms in a general Hamiltonian sys-
tem while the third column is for a Hamiltonian system with symmetry in the second
degree of freedom, i.e., H(p;,q1, —p2,—q2) = H(p,q1.p2,92). Except for the 1: 1-
and 2 : 1-resonances, the other resonances are affected by the symmetry assumption.
For example, the 1 : 2-resonance in the general Hamiltonian has resonant terms of the
form z3ys or zay;. These terms vanish because of the symmetry assumption. Thus,
instead of these terms which arise from Hj, the resonant terms in the normal form
derive from Hpg in the form of z{y3 or z3y}.

It is also clear that symmetry in the second degree of freedom does not affect
the 2 : 1-resonance. If we assume the symmetry is in the first degree of freedom,
then this resonance will be affected while the 1 : 2-resonance will not. On the other
hand, both the 3 : 1- and 1 : 3-resonances are eliminated as a lower order resonance
by the symmetry assumption, no matier on which degree of freedom the symmetric
condition is assumed. As in mechanics, one often has symmetries. This may also
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explain why these resonances received not much attention in the literature, This is
demonstrated clearly for the elastic pendulum in section 5. For the 1 : 1-resonance,
symmetry conditions on any degree of freedom (or even in both) do not push it into
higher order resonance.

3. Sharp estimate of the resonance domain. In aseminal paper [21], Sanders
describes the flow of (2.1) for the m : n (m + n > 5) resonance cases on the energy
manifold as follows. Interesting dynamics of the flow takes place in the resonance
domain which is embedded in the energy manifold. The resonance domain, which
contains a stable and an unstable periodic solution, is foliated into tori on which the
interaction between the two degrees of freedom takes place. The time-scale of the
interaction is £~(m+n)/2 and the size d, of the resonance domain is estimated to be
O(e{m+n—4)/6), This estimate is an upper limit, due to the approximation technique
used there. Van den Broek [25, pp. 65-67] gave numerical evidence that the size of
the resonance domain is actually smaller., In this section we shall present a sharp
estimate of the size d, which we derive from a Poincaré section of the flow.

Consider the normal form of & Hamiltonian at higher order resonance as in [21]
in action-angle variables

(31)  H=wn +wm+62P (r1,72) + -+ + ™2 (11,7 cos(x),

where x = ng) — mpa + @, m/n = w; fu,; and a € [0,2r). Note that Py is a ho-
mogeneous polynomial of degree k and it corresponds to the Hax term in the Hamil-
tonian (2.1). Independent integrals of the system are I) = w7y + wame = Fo and
I =P, 12} + - +emin—d (1'1"‘1'2"‘)5 cos(x) = C. We will use these two integrals
to construct the Poincaré map.

The derivation runs as follows. First eliminate one of the actions, for instance by
setting 7y = (E, — waTy)/wy. Then we choose the section by setting ¢; = 0. Thus
we have a section in the second degree of freedom direction which is transversal to
the flow of the system. For simplicity, we put @ = 0. Substitute all of these into the
second integral T, and define 72 = (p* + ¢%)/2 and ¢, = arecos (g/(p® + ¢%)). We
then define P(g,p,e) = I, and from (3.1) we know that P has an expansion of the
form

(3.2) Pla,p,€) = Ps(q,p) +*Ps(q,p) + - -- + €™ "R (q,p,€),

where P) is nonhomogeneous polynomial of degree k and R is determined by the
resonant term. For a fixed value of E, and ¢, the contour plot of (3.2) gives us the
Poincaré map.

The contour plot of P mainly consists of circles surrounding the origin. This is
due to the fact that in the equations of motion, the equation for the actions vary of
order £™"~2 and the equation for x of order 2. This implies that for most of the
initial conditions, the actions are constant up to order e™*"~2 and only the angles
are varying. This condition fails to hold in a region where the right-hand side of the
equation for x is zero or becomes small. Up to order £2, the location of this region
can be found by solving

LR 0P _
81'1 &7a -
In phase space, (3.3) defines the so-called resonance manifold and on this manifold

there exist at least two short periodic solutions of the system (more if m and n are
not relatively prime).

(3.3) 0.
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In the contour plot, these short periodic orbits appear as 2m fixed points (ex-
cluding the origin) which are saddles and centers corresponding to the unstable and
stable periodic orbit. Each two neighboring saddles are connected by a heteroclinic
cycle. Inside each domain bounded by these heteroclinic cycles, also known as the
resonance domain, there is a center point. For an illustration, see Figure 5.1 in section
5. We approximate the size of this domain by calculating the distance between the
two intersection points of the heteroclinic ¢ycle and a straight line p = Ag connecting
a center point to the origin.

Suppose we found one of the saddles (g,, p,) and one of the centers (g, p.). Let
C? = P(gy, ps,£) and C¢ = P(g,pc,¢). Since the integral 7, depends only on the
actions up to order e™*"~* we have C? — C¢ = O(¢™*"~4). The heteroclinic cycles
are given by the equation P(g, p,£) = C? and the intersection with the line p = Aq is
given by solving P(q, Aq, &) = C!. Write ¢ = q. + "€, € R, We want to determine
v which leads us to the size of the domain.

Since (g, pc) is a critical point, we have P/(g., p.,£) = 0 where the prime denotes
total differentiation with respect to g. We expand P:

P‘l (ch ’\qC) -+ E2y ;Pdﬂ_(Qc. o\qc)fz LR
+ Ezpﬁ(Qm Age) + Ezu"2';-p5"(qn, Aq:)fz doee= C: + O(E"‘"’““‘),

Since Py(ge, Ae) +€2Pe(gey Age) + - + O™+~ 1) = C¢, we have v = (m +n —4)/2
and conclude the following.

Size of the resonance domain: In two degrees of freedom Hamiltonian systems at
higher order resonance m : n with m and n natural numbers satisfyingm+n =5, a
sharp estimate of the size d. of the resonance domain is

(3.4) d, = O(e™7").

Note that in cases of the presence of an appropricte symmeiry, the 2 : 1-resonance,
for instance, has 1o be viewed as a 4 : 2-resonance.

Of course, degeneracies in the normal form may change this estimate. It is in-
teresting to compare this with a formal method to derive the size of a resonance
domain, described in [28, section 11.7). If we repesat the balancing method {method
of significant degenerations) described there for our higher order resonance problem,
we recover estimate (3.4).

4. A potential problem with symmetry. We will now study the 1 : 2 reso-
nance in potential problems with a symmetry assumption. In the introductory section
we listed & large number of different fields of application. From those we briefly dis-
cuss protein cluster modeling from a paper by Shidlovskaya, Schimansky-Geier, and
Romanovsky [24] and the theory of galactic orbits as summarized by Binney and
Tremaine [3]. Substrate activation of the formation of the enzyme-substrate complex
can be considered as a classical (or potential) nonlinear mechanical system. In [24] the
authors consider a two-dimensional protein cluster model with linear bonds, which is
modeled as a mass suspended to walls by four springs as in Figure 4.1. The spring
constants depend on the type of enzyme involved in the process. For small oscil-
lations, it can be viewed as a potential Hamiltonian system with linear frequencies
wy = vk + k3 and wy = vka + kg

We rescale time to set one of the frequencies to be 1; we put w; =1 and wp = w.
The Hamiltonian with a potential, discrete symmetric in the second degree of freedom
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F1G. 4.1. The 2-dimensional model for prolein cluster with linear bonds.

becomes

S
H = 5@ +@)+ 5 +v’d)

1 1 1 1
e ( g0l + aquq%) = (3*’19? + ghadias + stq;) '

Assume w? = 4(1 + 6(¢)). The reason for the assumption of the perturbation 6(e)
is that in applications we never encounter eract resonances; & is an order function
which is called the detuning to be specified later. In any case §(¢) = o(1) as € — 0.
We note that this is exactly the same as the system considered in {24] with symmetry
condition (k3 = k4) and detuning parameter added. The symmetry assumption can
be imposed by choosing the appropriate enzyme.

Another application involving the same potential problem (4.1) arises in the the-
ory of three-dimensional axisymmetric galaxies; see [3, chapter 3] and [27] for the
mathematical formulation and older references. Among these galactic orbits the so-
celled box orbits correspond with orbits outside the resonance manifold which behave
like orbits of anharmonic two-dimensional oscillators. The closed loop orbits corre-
spond with the periodic sclutions in the resonance manifold; tube orbits are solutions
in the resonance manifold which stay nearby the stable periodic solutions.

The unperturbed form (¢ = 0) of the equations of motion derived from (4.1) is
linear and all solutions are periodic. The periodic solutions in one degree of freedom
only are called normal modes. The normsal mode of the p;,q direction will be called
the first normal mode and the other will be called the second normal mode. Using
averaging techniques, we will approximate other {(short) periodic solutions up to order
of £ on a time-scale 1/¢2. Details of the averaging techniques and the asymptotic
validity of the method can be found in [26] or [23)].

4.1. The resonance manifold. To apply the averaging techniques, we trans-
form the equations of motion into amplitude-phase form, by g; = r; cos(wit+9;),4; =
—w;r; sin(wit + ¢;), 7 = 1,2. The transformed equations of motion have average zero
to O(e). This means that on the time-scale 1/¢, both the amplitude and the phase
are constant, up to order . If § is of O(g), then there will be no fixed point in the
averaged system and there is no interesting dynamics on this time-scale. Putting

(4.1)
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§(g) = 6,2, we perform second-order averaging which produces O(e) approximations
on the time-scale 1/¢?; see [23].
We find for the approximate amplitudes p;, p2 and phases ¢, @9

(4.2)
= 0+O(53)v
5 3 1 1 1

s — _2ff9 2 9 2 2 22,1 2 3

lpl - £ ((1201 + Bbl) pl+ (2a1a2+ 15“‘2‘" 4b2) p2) +O(E )’

pz = 0+0(%),

p2 = —& 1aa +la2+1b P+ En'.12+£b p3—61 ) +0(%)
2 412 T gp T g2 JAI T L qgp T2 T g P2 T )

From system (4.2), we conclude that, up to order £ the amplitude of the periodic
solution is constant. This result is consistent with the result in (27].

‘We shall define a combination angle x which reduces the dimension of the averaged
system by one. Moreover, a lemma by Verhulst [22] (stated there without proof) can
simplify the equation for the combination angle. We present this theorem in a slightly
different form.

LEMMA 4.1. Consider the real Hamillonian

1
H= E(Plz +P22) + V(Qh‘]z):

where V(q,,q2) is analytic near (0,0) and has & Taylor expansion which starts with
$wilm? + wa?q?). Then the coefficient of the resonant term D in the Birkhoff-
Gustavson normal form (2.3) of the Hamiltonien can be chosen as a real number.

Proof. Assume w, /we = m/n, where m,n € N and the Hamiltonian is in potential
form as assumed in the lemma. By linear transformation the Hamiltonian can be
expressed as

[+ =]
H=jw (0 +01%) + jw2 (2% + 02) + ) _ Valan, 1),
k=3

where Vi is the kth term of the Taylor expansion of V. Define a transformation to
complex coordinates by =; = ¢; +ip; and y; = ;. In these variables the Hamiltonian
becomes

_ 1 g (Tt T2ty
H=2 {5(”1111}1 + wazays) + ZVic (%: —2")} .
k=3

Since the function inside the bracket is polynomial over R we conclude that the
Birkhoff-Gustavson normal form of the Hamiltonian is

(4.3) H=2i{P(r,72) + D (z."pa™ + 91" 22™) +---},

where 7; = 1z;y;, P is 2 real polynomial, and D € R. o
s Generalization of this lemma is possible by considering e wider class of Hamil-
tonians by allowing terms like p2?*qa*g! (s is a fixed natural number, & and
{ are natural numbers}) to exist in the Hamiltonian.
An important consequence of Lemma 4.1 is that in the equations of motion derived
from the normal form of the Hamiltonian we have the combination angle x = nip; —
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myp2 + a with a = 0. The phase-shift o will not affect the location of the resonance
manifold; it will only rotate it with respect to the origin but it will affect the location
of the periodic solutions in the resonance manifold.

Because of this lemma, define ¥ = 4y, — 2ip3. Then, the averaged equations
become

0, p2 =040,

p1
4.4 :
E) €2 (mp® +mpa® — 26,),

X

where 7 = —3a,2 + lajap + {5627 — 3b; + 1bs and 15 = 20,07 + [Ba? ~ by + $bs.
By putting the right-hand side of the last equation zero, the resonance manifold is
given by

(4.5) NP} + mps = 261.

This is equivalent with (3.3). The resonance manifold is embedded in the energy
manifold and contains periodic solutions; because of Lemma 4.1 we know the location.

Using the approximate energy integral, i.e., Eg = % +2p,?, assuming y; # 47
we can solve (4.5) for p,? and po? as follows:

2= 2"{2E0—861 ahd 2 __ 251 -271Eg.

4.6
(16) oS T = 2T Tm—dn

We shall now discuss what happens at exact resonance (§; = 0). It is clear that
0 < p? < 2E,, so that we have 0 < 72 /{72 =47;) £ 1. The last inequality is equivalent
with 4172 £ 0. If y; tends to zero, then the resonance manifold will be approaching
the first normal mode. For <. tending to zero, the resonance manifold approaches
the second normal mode. We exclude now the equality and will consider only the
resonance manifold in general position. We summarize in a lemma.

LEMMA 4.2 (existence of the resonance manifold in general position for exact res-
onance). Consider Hamiltonian (4.1) with §(c) = 0. A resonance manifold containing
periodic solutions of the eguations of motion induced by this Hamiltonian exists if and
only if 1y2 < 0. Those periodic solutions are approzimated by = = p,(0) cos(t+;(t))
and y = pa2(0) cos(2t + 2(t)), where py(0) and p2(0) satisfy (4.6) and ¢, and 3 are
calculated by direct integration of the second and the fourth equation of (4.2).

o Using a specific transformation, we can derive the mathematical pendulum
equation ¥ + 1y = O related to the system (4.2); see [22]. The fixed points
x = 0,m,% = 0 of the mathematical pendulum equation determine the locked-
in phases of the periodic solutions by setting 4y — 23 =0 or 4oy — 207 = 7,
The first one corresponds with the stable periodic solutions and the second
one with the unstable periodic solutions.

e From section 3 we know that the size of the resonance domain is d, = O(e},
and the time-scale of interaction is O{e~3). Note that the size d, is in agree-
ment with the work of van den Broek in [25).

4.2. Examples from the Hénon-Heiles family of Hamiltonians. An im-
portant example of Hamiltonian (4.1), with b; = by = by = 0, is known as the
Hénon-Heiles family of Hamiltonians; see [27]. The condition for existence of the
resonance manifold in exact resonance in Lemma 4.2 reduces to

Sa2.1 L 13 5
( 3a1+ g%182 + 1502) ( 2a)a7 + 502 <0.
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Assuming ap # 0 to avoid decoupling, we introduce the parameter A = a; /3az. Using
this parameter, the existence condition can be written as (45042 — 45 — 2) (360) — 13)
< 0 Thus, the resonance manifold for the Hénon-Heiles family exists for A < —55
or 3% < A < &. Note that for the Contopoulos problem (a; = 0) the resonance
manifold does not exist at exact resonance while in the original Hénon-Heiles problem
(a1 = 1 and a; = ~1) the resonance manifold exists.

From this analysis, we know that for A = ]"'5 the resonance manifold will coincide
with the first normal mode. Since for A > 125 the resonance manifold does not exist,
let A decrease on the interval (—oo, 151 The resonance manifold moves to the second
normal mode which it reaches at A = ﬁ%. After that the resonance ma.mfold vanishes
and then emerges again from the first normal mode when A = —3—0 The resonance

manifold then always exists and tends to the second normal mode as A decreases.

=0.02

-0
Delta

F1c. 4.2. Eristence of the resonance manifold in the presence of (acaled) detuning parameler
A= —-‘1— The vertical axis represents A and the horizonial azis A = —3- The domain 11 and the

unbounded domains 1 and 111 (both bounded by the parabola and the atm:.ght line) correapond with
erislence of the resonance manifold.

How is the effect of detuning in the case of existence of the rescnance manifold?
In the same way as before, in terms of parameters A and A = §;/(Ega;?), we can
write for the existence of the resonant manifold

—360A +13 — 240A

G, o< 3600A% — 7201 -3 sk

In Figure 4.2, the areas marked by I, II, and III represent the domains of exis-
tence of the resonance manifold in the parameter space. The parabolic boundary of
the domain represents the first normal mode (gq,,p; direction) and the straight line
boundary the second normal mode. By fixing the detuning coefficient, we have a
horizontal line on which we can move the resonance manifold from one normal mode
to the other as we vary A. The analysis can be repested for fixed A. The bold parts of
the horizontal axes are the cases of exact resonance. Note that the intersection points
are excluded as they correspond with the zero of the denominator in (4.6).
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4.3. The degenerate case y; = 4y;. Consider again the equations in (4.4).
With the condition 4, = 4+, equations (4.4) become

hn = 0+0(%),
(4.8) fr = 0+0(),
x' = 52 (2')’1E0 == 261) + 0(53).

System (4.8) immediately yields that at exact resonance there will be no resonance
manifold. Another consequence is that there exists s critical energy E. = %IK such
that the last equation of (4.8) is zero, up to order €%, It means we have to include
even higher order terms of the Hamiltonian in the analysis.

From the normal form theory in section 2, we know that for the 1 : 2-resonance Hj
does not contain resonant terms. Thus the next nonzero term would be derived from
Hg. As a consequence, the equations for amplitudes and phases are all of the same
order, i.e., O{¢%). It is also clear that in Hg besides terms which represent interaction
between twa degrees of freedom (resonant terms), there are also interactions between
each degree of freedom with itself (terms of the form ,°7;7).

To avoid a lengthy calculation and as an example, we consider & problem where
2; = a2 = 0. From the condition 42 = 4+, we derive b, = 3b; + l"’—sbg. Then the last
equation of (4.8) becomes

. 3 3 3 3
X = g2 ((—-Zbl + 6_4b3) ,(312 +4 (_Zbl + abg) pgg - 251) +0(Ea).

Introducing the critical energy E., we have a degeneracy in the last equation which
gives an additional relation, i.e.,

103, .3 2 4(=3p 4 2 2
&= 2 (( 4b1+6463)p1 +4( 4b;+64b3)p2 )
We also note that for 6, > 0 the critical energy exists providing &; < ﬁba.
We apply second order averaging to have an O(g?) approximation on the time-
scale 1/e'. We find for the approximations
3 5 3
s _ a9 (2, D M a2) 2 3.
o= e (lu + g5bibs + gobs )pz P17 sin(x),
3 5 3
o a9 fi2, O 9.2 4
P2 = €2 (61 + 3gbtbs + o )psz sin(x),

3 (p2.3 B2V (4 1 2 2
(b1 + 325153 + 512"3 ) (P; gh P cos(x),
3 1

1 1 1
—4b12 + Eblb!i + ﬁbaz) P‘f + — (—46b12 + =biby + —b32) pfpgz

a
It
m&
03

w
/-_'\g

64 4 128
e (—44b12 + %blba + %ba’) pz") .
(4.9)

It is clear that the analysis of periodic solutions obtained by setting x = 0 or
x = 7 runs along the same lines as in lower order resonance cases, Consider y = 0.
The fixed point of the averaged equations is determined by the last equation of (4.9).
Since we are looking for periodic solutions which are different from normal modes,
we assume both p; and g2 to be nonzero, Writing £ = (f,f)2 we obtain a periodic
solution by solving the quadratic equation

(4.10) at?+b+c=0,
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where a = —%b;z + biba + aﬁ—;abaz, = —%blz — &bibs - ﬁbaz, and ¢ =
— &% + 322b1bs + i2gba®. Assuming that b # 0, we have

33 3 27
a= ~1652+ 12—8P€+ m,
b AL o A 10

32 64 8192’
c= —gnz + -6—:-1-—-5+ 5

64 2048 32768°'

where k = %;-. It is easy to see that b < 0. Note that both the magnitude and the sign
of b3 is not important. We can also consider %1 instead if b3 = 0. We celculate the

discriminant D = #° — 4ac and—a, b, and ¢ being quadratic in x—plot the function
D{x) in Figure 4.3.

i Sc-D5
le-03
Se06
hY 7 =
1] am KL oy
06
1603

FiG. 4.3. Plot of D(x). Positivity of D(r) is a necessary condition for periodic solutions Lo
ezist of systemn (4.9) with x = 0, which are not normal modes.

There is an interval around x = 0 where the value of D is negative. The value
of x 8o that D is zero can be calculated using numerics. Thus we know that except
for small values of x, we always have two roots for the quadratic equation (4.10).
Knowing that we are looking for the root of (4.10) which is positive, we have to
add another requirement. If we require ¢/a to be positive and b/a to be negative
we will have two different periodic solutions. These requirements are satisfied by
k€ (& - @, 15). When & is at the lower bound of the interval, the periodic
solution coincides with the normal mode, in this case with the second normal mode.
Note also that this interval contains the interval where the discriminant becomes zero
or negative. The upper bound of the interval has to be excluded as @ vanishes there.
Thus if x increases toward zero, the periodic solutions become closer, then coincide
with each other and afterwards disappear. If we let x increase from zero, at some point
a periodic solution will emerge and split up by increasing x. For s € {(— %, & = @)
or (ﬁ, % + %) there is only one periodic solution. This is reasonable since one of
the periodic solutions coincides with one of the normal modes at the upper end points
of each interval. It is easy to see thet the case where a vanishes corresponds to the
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existence of one periodic solution. For other values of x the periodic solution does not
exist. Note that we are considering only the case ¥ = 0.

We have to apply the same reasoning to the other case and we expect conditions
where there is no periodic solution (apart from the normal modes), or one, two,
three, or four periodic solutions. Note that the analysis above also has to satisfy the
existence condition for the critical energy, i.e., if 6; > 0, the critical energy exists only
for k < % and if §, < @, for x > -llﬁ-.

5. The elastic pendulum. In this section we will study one of the classical
mechanical examples with discrete symmetry. Consider a spring with spring constant
s and length l;, a mass m is attached to the spring; g is the gravitational constant
and ! is the length of the spring under load in the vertical position. The spring can
both oscillate in the vertical direction &nd swing like a pendulum. This is called the
elastic pendulum.

Let r(t) be the length of the spring at time ¢ and ¢ the angular deflection of the
spring from its vertical position. In {26] van der Burgh uses a Lagrangien formula-
tion to analyze the elastic pendulum, while in this paper we will use a Hamiltonian
formulation. The Hamiltonian is given by

1
(5.1) H= o ( 3+f_—§) + %(r—lm)2 — mgrcos g,

where p, = m# and p, = mré.

Introducing the elongation of the spring by z = '—I_—'. we translate the origin of
the coordinate system to the fixed point of the system where the elastic pendulum is
hanging vertically at rest. By dividing by | we normalize the length of the spring; we
adjust also the momenta p, = Ip, to keep the Hamiltonian structure. The Hamiltonian
in the new variables is

1 P2 12 AL
{(5.2) H=W (pf+ (z+"’1)2) +%(z+ 7 ) —mgl(z + 1} cose.

Put o) = w.0 and az = wyo, where ¢ = ml®. We transform Z = \/o;2z and
? = /azp. To preserve the Hamiltonian structure we also transform p, = /@ p; and
P. = \/az Pp. Expanding this Hamiltonian the two leading terms of the Hamiltonian
are

Ho = s(i—1)*~mgl

1
H = T (sl(l-1,) -~ mgl) z.

We define the coordinate such that the pendulum is at rest in (p,, 2z, p,, ¢} = (0,0,0,0).
As a consequence the linear term of the Hamiltonian is zero. Thus we have s(I—1,) =
mg. This condition restricts the ratio of the frequencies of the two oscillators, i.e.,
w:fw, > 1. The restriction is natural since at the equilibrium position the resultant

force of gravitational force (mg) and spring force (s(l —1,}) is zero. With \/s/m = w,
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and /g/! = w,, the remaining terms in the expansion of the Hamiltonian are
Hy = gu: (2 +9]) + g, (b + 7).
H; ‘;u, 32¢° —2pt),
Heo= (1o de),
(53) Hy = -5 (hee' +282%2),
Heo= o (Aot +1(2) 92).

As expected, the—relatively few—terms in the Hamiltonian are symmetric in the
second degree of freedom and also in p,. Due to the restriction of the frequency ratio
above, we will not have the 1 : A-resonances with A > 1. On the other hand, the
symmetry condition on the second degree of freedom eliminates the 3 : 1-resonance
as a lower order resonance. The next resonant term of this resonance arises from Hj.
Thus, for lower order resonances, the remaining cases are the 2 : 1- and, if we allow
smell detuning, the 1 : 1-resonance. The 2 : 1-resonance has been intensively studied;
see [26] or [16]. This resonance is the one with resonant terms of the lowest degree.

As noted in [26], for the 1 : 1-resonance, second order averaging still gives only
zero for both the amplitudes and the pheses. (This is not rendered correctly in [29].)
1t follows that the 1 : 1-resonance is also eliminated as a lower order resonance. The
reason for this degeneracy is simple; by defining £ = rsin(yp) and y = r cos() we can
transform (5.1) to

1
H= Em(iz +3%) + %(:-72 +%) — mgy.

This means that for the 1 : 1-resonance we have the harmonic oscillator in which all
solutions are periodic with the same period. Thus we have isochronism. Let us now
assume that w; fw, # 1.

Introduce the transformation z = r cos(w,t + ¢),p: = —ry sin(w.t + ¢1),p =
3 cos(wet + ¢2), and p, = —r2 sin(w,t + ¢2). Assuming w: # 2w, and rescaling with
€ as usuel we find the second-order averaged equations for amplitudes and phases

Al 0+ 0(53):
p2 0+ ogé‘), . "
; . 3 (wy, —w ) {w:* + wew, — I,
wethh — w —go ¥ F TP @
'P¢1 :¢'2 4 (wz + 2{‘)?)(2“@ —20.1;)0' P1 , \
1 (wy — we)(w;:° + 13w, w,, + 20w,w,? — 28w,%)
16 wz(ws + 2wy W 2wy — w,,)

2

+ P22 + 0(53)1

(5.4)
where p) and p» are the approximations of r; and r; and #; and 4, are the approx-
imations of ¢, and ¢o, respectively. The resonance manifold is determined by the
requirement that the right-hand side of (5.4) vanishes. This implies the resonance
manifold exists for all resonances with w,/w, > (v13 —1)/2 & 1.30277... (We
exciude the 2 : 1-resonance and small detuning of it.)

We will now consider the most prominent higher order resonances which are
possible for the elastic pendulum problem. We start with the 3 : 2- and the 4 : 1-
resonance. For both resonances we know that in general the resonant terms arise
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Fic. 5.1. The Poincaré map for the 6 : 1-resonance in the sccond degree of freedom (& =
0.75 and the energy E = §; large values for illuatration purposes). The saddles are connected by
heteroclinic cycles and inside the cyclea fislends) are centers.

from Hj which implies that the amplitude variation will be zero up till second order
averaging. This is in agreement with (5.4). To determine which resonance in the
elastic pendulum arises from Hg, we have to normalize.

TABLE 5.1
This table presents the mosl prominen! higher order resonances of the elastic pendulum with
lowest order resgnant terms Hy. The third columnn gives the size of the resonance domain in which
the resonance manifold s embedded while in the fourth column we find the time-scalz of interaction
in the resoncnce domain.

wr :wy | Resonant part | de Interaction time-scale
4:1 Hs el'? g3
4:3 Ha M2 =72
6:1 He V2 e-72
3:1 Hg &2 e
8:1 Ha Pk W2
3:2 Hip &3 =5

The result is, for the 3 : 2-resonance, that there is no resonant term in the
normalized Hamiltonian up to degree 5. However, for the 4 : 1-resonance, there are
resonant terms in the normalized Hamiltonian of degree 5. The conclusion is, after
the first-order 2 : I-resonance, the 4 : 1-resonance is the most prominent resonance
in the elastic pendulum. Following the analysis in section 3, we can also determine
the sizes of the resonance manifolds which depend on the lowest degree of resonant
terms in the normal form. We repeat this for cases in which the resonant terms arise
in Hy,...,Hin. The results are summarized in Table 5.1. Note that a low order
resonance as the 3 : 1-resonance figures here &t relatively high order.

We checked our result numerically for some of the resonances by constructing the
Poincaré map and by calculating the size of the resonance domain. In the numerical
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0.3 -K}
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F1G. 5.2. The 6 : 1-resonance. Part of the map in the second degree of freedom direction for
several values of €, the energy £ = 5. The top-left figure is for £ = 0.25, the top-right figure is for
£ = 0.5, and the figure below is for e = 0.75.

B4} ’ '
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o0s 1 15 H L 1.1 115 12 125 3 13

Fic. 5.3. Part of the map in the second degree of freedom direction for the 4 : 1-resonance (left)
and the 6 : 1-resonance (right); € = 0.1 and the cnergy E = 5.

integrations we vary € and study how this affects the size of the resonance manifold.
We found confirmation for the 4 : l-resonance and the 6 : 1-resonance, i.e., the
numerical exponenis are 0.4971... and 1.4991.. ., respectively. As Table 5.1 shows,
the numerical integration takes a long time. Figure 5.1 shows the map for the 6 : 1-
resonance. To avoid long computation times, we increased the value of £. In Figure
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5.2 we demonstrate the size and visibility of the resonance domain as £ increases for
the 6 : 1-resonance. In Figure 5.3 the 4 : l-resonance and the 6 : l-resonance are
compared.

6. Conclusion and comments.

s In nearly all real-life applications symmetries and hidden symmetries play an
important part. We have mentioned a large number of examples. We have
shown that (reflection) symmetry assumptions strongly effect some of the
lower order and higher order resonances in two degrees of freedom Hamilto-
nian systems. In those cases, the symmetry assumption on one of the degrees
of freedom implies a degeneracy in the normal form. This degeneracy forces
us to extend the normalization as the resonant terms appear at higher order
as compared with the case without symmetry assumptions. The conclusion
is then that some of the lower order resonances behave like higher order ones.
This makes sense since we know that, for instance, the 1 : 2-resonance can be
viewed as 2 : d-resonance or 4 : 8-resonance, etc.

e In the general, mathematically generic case, lower order resonance corre-
sponds with strong interaction between the modes while higher order reso-
nance corresponds with weak interaction, restricted to resonance domains.
This happens, for instance, in a model for & protein cluster and in the theory
of galactic orbits. For symmetric potential problems in 1 : 2-resonance, we
have shown that at a certain critical value of the energy, localized in phase
space at some distance of equilibrium, the system behaves like & strong reso-
nance while for other values of the energy it produces higher order resonance.
We note that the presence of this critical energy involves the detuning pa-
rameter. This is an intriguing new phenomenon and more analysis is needed
to see what part this critical energy may play in applications.

s In applying the analysis to the elastic pendulum we have found a numerical
confirmation of our analytic estimates of the size of the resonance domain.
Also we have found & new hierarchy in the resonances due to two reasons:
first, because of physical restrictions the m : n resonances with m < n are
eliminated; second because of the symmetry assumption. As is well known
the 2 : l-resonance is the most prominent resonance, the next one turns out
te be the 4 : 1-resonance. It turns out that the 1 : l-resonance of the elastic
pendulum is a rather trivial case.
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