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Abstract To study the dynamics and bifurcations of periodic solutions and tori, we consider
a self-excited as well as parametrically excited three-mass chain system (a Tondl model) in
1:2:3 resonance. For the analysis both averaging-normalization and numerical simulations
are used. First, we consider the case with the upper and lower mass almost equal, but not
necessarily in 1:2:3 resonance. Surprisingly, this case simplifies at first order to a system of
two coupled oscillators and one uncoupled. A set of necessary and sufficient conditions is
then given for the general system to be in 1:2:3 resonance; the conditions can be resolved
analytically. Using averaging-normalization, we are able to locate different periodic solutions.
A bifurcation diagram is produced for each of the resonances generated by the quasi-periodic
solutions, revealing interesting dynamics like a stable 2-torus, torus doubling and in the
neighborhood of a Hopf–Hopf bifurcation a stable 3-torus. These tori eventually break up,
leading to strange attractors and chaos, in agreement with the Ruelle–Takens (Commun Math
Phys 20:167–192, 1971) scenario. Comparing the results of averaging-normalization with
the dynamics of the original system shows good agreement. The bifurcation diagram of the
normal form shows a complex accumulation of period doublings.
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1 Introduction

The bifurcation theory of equilibria is well-developed in the general dissipative setting; see for
instance [3,10] or [17]. Especially the generic codimension 1 bifurcations like saddle–node
and Hopf have found wide application. A Hopf bifurcation of a periodic solution or a fixed
point of a map characterising a dynamical system is usually referred to as Neimark–Sacker
bifurcation; such a bifurcation produces a torus around the periodic solution or an invariant
circle around a fixed point of its Poincaré map. The flow on the torus is quasi-periodic and
may contain isolated periodic solutions. In its turn, such a torus may experience bifurcations
of its quasi-periodic flow, resulting in interesting complex dynamics. In a visionary paper by
Ruelle and Takens it is argued that an equilibrium can produce a periodic solution by Hopf
bifurcation, followed in subsequent bifurcation by a torus. In addition, bifurcations of a torus
can produce very complex dynamics. As stated in [21, Sect. 9]: “a quasi-periodic flow on
a torus gives flows with strange attractors and more generally, flows which are not Morse-
Smale.” The quasi-periodic solutions produce an infinite number of resonances, resulting in
fractal (Cantor) sets for the bifurcations in parameter space. It was also suggested in [21]
(see also [22]) that this route to chaos could be essential for understanding the nature of
turbulence; this conjecture is still open.

A number of papers have studied the bifurcations of invariant circles in maps which is the
analogue of bifurcations of a 2-torus in a system of differential equations. Early papers in
this context are [2,4,25]. Important new directions in the theory can be found in [11,20,31]
and [9]. For an extensive bibliography see [10].

Application of these ideas in mechanics are still relatively rare. The case of two coupled
oscillators producing torus bifurcations is considered in [6] where evolution to non-smooth
tori and ‘strange’ dynamics is one of the aspects. Related dynamics has also been found and
studied in [5,6,19,27,30] and the references therein.

However, in this respect there is not much known about systems of three coupled oscilla-
tors involving parametric excitation which corresponds with the analysis of six-dimensional
maps. To study such cases, we consider a system of three coupled oscillators that was first
proposed by Tondl (2002, Private communication) to model a mechanical device subjected
to self-excited vibration. Abadi [1] did a restricted inventory of the equilibria using the aver-
aging method. He also established under which conditions of the involved parameters, the
trivial solution is asymptotically stable. The perspective of [1] and (Tondl, 2002, Private com-
munication) corresponded with the engineering wish to suppress ‘undesirable’ oscillations
by stabilising the trivial solution. However, we are interested in more or less the opposite
questions i.e. we will investigate these ‘undesirable’ oscillations and study their bifurcations;
it turns out that in this higher-dimensional setting, we will find new phenomena.

The analysis can be carried out by averaging-normalization [23] and numerical bifurcation
techniques developed and contained in AUTO [8,15], Content [18] and Matcont [26].

The engineering context is as follows. Consider the three-mass system as sketched in
Fig. 1. The mass m2 is self-excited by flow, which is modeled by a Rayleigh term. The
masses m1 and m3 are coupled to m2 and can be parametrically excited. If one wishes to
quench the motion of the self-excited mass m2, with a suitable tuning, the masses m1 and
m2 can be used as energy absorbers. The equations of motion are as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m1 ÿ1 + bẏ1 + k0(1 + ε cosωt)y1 − k1(y2 − y1) = 0,

m2 ÿ2 − β0U 2(1 − γ0 ẏ2
2 )ẏ2 + 2k1 y2 − k1(y1 + y3) = 0,

m3 ÿ3 + bẏ3 + k0(1 + ε cosωt)y3 − k1(y2 − y3) = 0.

(1)
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Fig. 1 The three-mass system
under consideration

Here y1, y2 and y3 represent the deflections of the masses m1,m2 and m3 respectively. The
parameters k0, k1, γ0 are assumed to be positive. The parameter ε is assumed to be small and
positive. The Rayleigh excitation parameter β0 and the damping coefficient b are assumed
to be O(ε), b = εκ̄ and β0 = εβ̄, whereas all the remaining parameters are constants which
do not depend on ε.

In this study we shall distinguish between two cases, the relatively simple symmetric case
m1 = m3, which will be discussed for general mass ratio m1/m2 in Sect. 2, and the case
m1 �= m3. The dynamics of these two cases turn out to be very different from each other. From
Sect. 3 on, we choose m1 �= m3 and as an interesting case the internal 1:2:3 resonance because
this case is one of the first-order resonances to study (the notion of internal resonance applies
to the ratio of the basic frequencies of the three coupled oscillators where certain perturbations
are omitted). The basic frequencies if ε = 0 are ω0, 2ω0, 3ω0. After obtaining the variational
equations for the internal 1:2:3 resonance, the O(ε) terms contain parametric excitations
that can be in resonance with the basic oscillations (frequencies nω0, n = 1, 2, 3); there are
nine possibilities. From Sect. 4 on, we consider the case n = 1. The other eight parametric
resonances are still open problems.

Apart from many codimension one and codimension two standard bifurcations, we will
find very complex dynamics involving 2-tori, 3-tori, torus doubling and a route to chaos.

2 The Almost-Symmetric Case m3 = (1 + ερ)m1

Let’s start by considering the first case i.e. m3 = (1 + ερ)m1, with 0 ≤ ε � 1 and ρ a
parameter that does not depend on ε. Consider system (1) with this choice of m3 and apply
the transformation τ = ω0t with ω0 = √

2k1/m2; we find with some rearrangements the
following system:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y′′
1 + q2 y1 − M

2 (y2 − y1) = −ε(κ̄ y′
1 + q2 y1 cos ητ),

y′′
2 + y2 − 1

2 (y1 + y3) = εβ̄V 2(1 − γ y′2
2 )y

′
2,

y′′
3 + q2 y3 − M

2 (y2 − y3) = −ε
(
κ̄ y′

3 + q2 y3 cos ητ − ρ
(

q2 + M
2

)
y3 + ρ M

2 y2

)
+ O(ε2).

(2)

In the above M = m2
m1
, κ = b

m1ω0
, κ = εκ̄, q2 = k0

m1ω
2
0
, γ = ω2

0γ0, β = β0U 2
0

m2ω0
, β = εβ̄, η =

ω
ω0
, V = U

U0
and U0 is a chosen reference value for the flow velocity. System (2) can be

written in the vector form:

Y ′′ = AY + εF(Y ′, Y, τ ),

with

A =

⎛

⎜
⎜
⎝

− (
q2 + M

2

) M
2 0

1
2 −1 1

2

0 M
2 − (

q2 + M
2

)
.

⎞

⎟
⎟
⎠

In what follows we transform the system into quasi-normal form by a coordinate transfor-
mation. Using this new form, we can see from the eigenvalues of A which basic resonances
the system can possibly take. How this is done is briefly sketched below. The eigenvalues of
the matrix A are:

λ1 =α,

λ2 =1

2

(

α − 1 −
√

(α − 1)2 − 4q2

)

, (3)

λ3 =1

2

(

α − 1 +
√

(α − 1)2 − 4q2

)

,

with

α = −
(

q2 + M

2

)

. (4)

Remark One can easily check that λ1 �= λ2 �= λ3 for all the values of the parameters in the
parameter space under consideration. This guarantees the diagonalisation of the matrix A.
The corresponding eigenvector matrix is:

C =
⎛

⎝
−1 1 1

0 d e
1 1 1

⎞

⎠ , with inverse matrix C−1 =
⎛

⎜
⎝

− 1
2 0 1

2

d ′ e′ d ′

d ′ −e′ d ′

⎞

⎟
⎠ .

The parameters d ′ and e′ are related to the parameters d and e which can be computed easily
by determining the eigenvectors of the matrix A. How exactly e′ and d ′ are related to e and
d is not important at this stage. Applying the transformation Y = C X yields the following
system of equations in X which is now in quasi-normal form.

x ′′
i + ω2

i xi = ε〈C−1(F(C X ′,C X, τ )), ei 〉, i = 1, 2, 3 and ω2
i = −λi . (5)

Where 〈. , .〉 denotes the standard inner product in R
3.
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Proposition 1 System (5) will always decouple after first-order averaging no matter what
the involved parameters and resonances are.

Proof To see this, we will show that the first equation decouples from the other two. Let’s
write down explicitly the first equation of system (5). We shall in what follow omit the bars
for notational simplicity. We get the following equation:

x ′′
1 + ω2

1x1 = ε

2

[

−2κx ′
1 + 2q2x1 cos ητ + ρ

(

q2 + M

2

)

x1

+ ρ

(

q2 − M

2
(d − 1)

)

x2 + ρ

(

q2 − M

2
(e − 1)

)

x3

]

+ O
(
ε2) . (6)

One can easily check that

ω2
1 = q2 + M

2
, ω2

2 = q2 − M

2
(d − 1), and ω2

3 = q2 − M

2
(e − 1).

The first equation reduces then to the following:

x ′′
1 + ω2

1x1 = ε

2

[−2κx ′
1 + 2q2x1 cos ητ + ρω2

1x1 + ρω2
2x2 + ρω2

3x3
] + O(ε2). (7)

Introducing the phase amplitude coördinates, xi = Ri cos(ωiτ +φi ), and omitting the O(ε2)

terms, we get the following equation for R′
1 and φ′

1.

R′
1 = ε

4ω1

[(
−2κω1 + 2κω1 cos(2φ1 + 2ω1τ)ρω

2
1 sin(2φ1 + 2ω1τ)

− q2 sin(2φ1 − ητ + 2ω1τ)− q2 sin(2φ1 + ητ + 2ω1τ)
)

R1

−
(

sin(φ1 − φ2 + (ω1 − ω2)τ )+ sin(φ1 + φ2 + (ω1 + ω2)τ )
)
ρω2

2 R2

−
(

sin(φ1 − φ3 + (ω1 − ω3)τ )+ sin(φ1 + φ3 + (ω1 + ω3)τ )
)
ρω2

3 R3

]
.

φ′
1 = ε

4ω1 R1

[(
−ρω2

1 − q2 cos ητ − ρω2
1 cos(2φ1 + 2ω1τ)

− q2 cos(2φ1 − ητ + 2ω1τ)− q2 cos(2φ1 + ητ + 2ω1τ)
)

R1

−
(

cos(φ1 − φ2 + (ω1 − ω2)τ )+ cos(φ1 + φ2 + (ω1 + ω2)τ )
)
ρω2

2 R2

−
(

cos(φ1 − φ3 + (ω1 − ω3)τ )+ cos(φ1 + φ3 + (ω1 + ω3)τ )
)
ρω2

3 R3

]
.

One observes in the expressions for R′
1 and φ′

1 that the averaged system will couple if and
only if ω1 = ω2 or ω1 = ω3. This means λ1 = λ2 or λ1 = λ3. Combining this with equation
(3) we get the following equation for α:

α + 1 = ±
√

(α − 1)2 − 4q2.

It follows that M must be equal to zero which is equivalent to the case m2 = 0. This is however
excluded in our study otherwise we would only have a system of two coupled oscillators.
This concludes the proof. 	
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2.1 Conclusion

The case m3 � m1 always reduces, after averaging, to a system of two coupled oscillators
and one completely decoupled. In other words, the symmetric case implies a remarkable
simplification. This does not mean however that one of the masses oscillates completely
independently of the other two. Note that a coordinates transformation has been made before
putting the mechanical system in quasi-normal form so that we no longer can relate (without
transformation) the new coordinates to a single mass.

System (2) is interesting from a dynamical systems point of view, but as we will focus in
this paper on phenomena in a three degrees-of-freedom context, we will not continue with
this case.

3 The Case m1 �= m3 in 1:2:3 Internal Resonance

In this case the system does not necessarily decouple as we shall see later on. We focus in
what follows on the 1:2:3 resonance case in system (1). The other primary resonances are
1:2:1, 1:2:2 and 1:2:4; these resonances merit separate papers.

One can assume without loss of generality k0 = 1 and m1 = 1. With λ = 1/m2 and
μ = 1/m3, system (1) can be transformed, after some rescaling, into the following system.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y′′
1 +

(
1
k1

+ 1
)

y1 − y2 = −ε
[

b√
k1

y′
1 + 1

k1
cos ωτ√

k1
y1

]
,

y′′
2 − λy1 + 2λy2 − λy3 = ελβ0U 2√

k1
(1 − γ0k1 y′2

2 )y
′
2,

y′′
3 − μy2 + μ

(
1
k1

+ 1
)

y3 = −ε
[

bμ√
k1

y′
3 + μ

k1
cos ωτ√

k1
y3

]
.

(8)

3.1 Conditions for the System to be in 1:2:3 Resonance

When a system like (1) or (8) is in 1:2:3 resonance, its frequencies will beω0, 2ω0, and 3ω0.
We shall in what follows refer toω0 as the ‘basic frequency of the system’. With the parameter
k1 given, to force the system into the 1:2:3 resonance, the parameters μ, λ must satisfy the
following system of equations:

⎧
⎪⎪⎨

⎪⎪⎩

−aμ− 2λ = 14θ + a,

−a2μ− (2a − 1)λ− (2a − 1)λμ = −49θ2,

2a(1 − a)λμ = 36θ3,

(9)

where θ = −ω2
0 and a = (1/k1 + 1).

Remark on symmetry System (9) has a hidden symmetry: if (μ, λ, θ) is a solution, then so is
(μ−1, λμ−1, θμ−1). Solving system (9) for the mass ratios μ and λ yields

⎧
⎨

⎩

μ = (2a − 1)+ 14
a (2a − 1)θ + 98

a θ
2 + 36(2a−1)

a2(a−1)
θ3,

λ = −a2 − 14aθ − 49θ2 − 18(2a−1)
a(a−1) θ

3,
(10)
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where θ is a root of the following sixth degree algebraic polynomial

P(x) = 648(1 − 2a)2x6 + 3528a(1 − 3a + 2a2)x5 + 14a(−18 + 469a

−938a2 + 487a3)x4 − 2a2(343 − 2112a + 3213a2 − 1444a3)x3

+49a3(1 − a)2(12a − 5)x2 + 28a4(a − 1)2(2a − 1)x

+a5(a − 1)2(2a − 1). (11)

From this polynomial we see that the 1:2:3 resonance occurs at most at six different places
in (μ, λ)-parameter space.

Example a = 2
In this case the polynomial P(x) is irreducible. We therefore compute numerically its

roots. There are two real roots. Namely, θ1 � −.250224 and θ2 � −0.641144. Using
equation (10), these two values of θ yield μ1 � 0.390277, μ2 � 2.56228, λ1 � 0.36129
and λ2 � 0.925727.

Remark One can easily check that μ2 = μ−1
1 , λ2 = λ1μ

−1
1 and θ2 = θ1μ

−1
1 .

Remark Using the hidden symmetry mentioned above we were able to produce the following
factorisation of the polynomial P(x) in the case a = 2.

P(x) = − 8

243

(

−21 + 3 3
√

19 +
(
−98 + 7 3

√
19 + 3√

192
)

x − 81x2
)

×
(

147 + 21 3
√

19 + 3
3√

192 +
(

1353 + 147 3
√

19 + 21
3√

192
)

x

+
(

4291 + 316 3
√

19 + 49
3√

192
)

x2

+
(

5292 + 189 3
√

19 + 27
3√

192
)

x3 + 2187x4
)

. (12)

From this expression we can exactly compute the roots of the polynomial P(x). We find two
real roots:

θ1 = 1

162

(

−98 + 7 3
√

19 + 3√
192 +

√

3066 − 381 3
√

19 − 147
3√

192

)

, (13)

θ2 = 1

162

(

−98 + 7 3
√

19 + 3√
192 −

√

3066 − 381 3
√

19 − 147
3√

192

)

. (14)

From these explicit formula’s for θ , and using Eq. (10), one gets exact formula’s for the mass
ratios μ and λ to produce the 1:2:3 resonance.

Example a = 3
P(x) is reducible and has six real roots which can be computed in radicals. We give here

the roots in five decimals.

θ1 = −2.21525, θ2 = −0.451416, θ3 = −2.22248, θ4 = −0.826402, θ5 = −0.470972,

and θ6 = −0.346815.

From these explicit formula’s for θ , and using Eq. (10), one gets exact formula’s for the mass
ratios μ and λ needed to be on the 1:2:3 resonance. We see that there are in this case six
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different places in the (μ, λ)−parameter space where the 1:2:3 resonance occur. We find the
following values for μ and λ

μ1 =4.90735, μ3 =4.71887, μ4 =2.38284,

λ1 =6.64573, λ3 =6.97905, λ4 =0.710559.

The remaining values of μ and λ can be obtained from these values using the symmetry.

3.2 The Basic Frequency ω0 and the Mass Ratio as a Tends to Infinity

One can continue the roots of the polynomial P(x) with respect to the parameter a. Starting
at the point θ = θ1 and a = 2 we found that the roots collapse and disappear in a fold
(saddle–node) bifurcation; (LP) in Figs. 2 and 3 indicates a fold bifurcation as the parameter
a decreases. For increasing values of the parameter a, the frequencies become almost linear

0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15
-0.4

-0.32

-0.24

-0.16

-0.08

0

Fig. 2 The behaviour of the frequency θ = −ω2
0 as a tends to infinity

1 2.9 4.8 6.7 8.6 10.5 12.4 14.3 16.2 18.1 20
0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15
0

0.2

0.4

0.6

0.8

1

Fig. 3 The behaviour of the mass ratio μ and the ratio λ/a as a tends to infinity; LP indicates a fold (saddle–
node) bifurcation

123



J Dyn Diff Equat

proportional to the parameter a. The graph of the mass ratio μ as a function of the parameter
a has two horizontal asymptotes. See Figs. 2 and 3, generated by Content [18], below.

This looks peculiar; however the explanation for this limiting behaviour is that the poly-
nomial P(x) can be written as follows:

P(x) =a8 Qa

( x

a

)
, (15)

with

Qa(x) =
(

−2 + 1

a3 − 4

a2 + 5

a

)

+
(

28

a3 − 112

a2 + 140

a
− 56

)

x

+
(

245

a3 − 1078

a2 + 1421

a
− 588

)

x2

+
(

686

a3 − 4224

a2 + 6426

a
− 2888

)

x3

+
(

252

a3 − 6566

a2 + 13132

a
− 6818

)

x4

+
(

−3528

a2 + 10584

a
− 7056

)

x5 +
(

−648

a2 + 2592

a
− 2592

)

x6.

Note that P(x) = 0, if and only if Qa
( x

a

) = 0. As the parameter a tends to infinity the
polynomial Qa(x) tends to the following:

Q∞(x) = −2(1 + x)2(1 + 4x)2(1 + 9x)2.

This polynomial has three double roots. This means lima→∞
(
θ
a

) = l, with l ∈
{−1,− 1

4 ,− 1
9 }. It explains the almost linear behaviour of θ with respect to the parameter

a, for high values of a shown in Fig. 2 above. Solving system (10) for a tending to infinity
yields the following possible solutions for the 1:2:3 resonance.

(θ̃1, μ1, λ̃1) =(−1, 4, 9/2), (θ̃2, μ2, λ̃2) = (−1, 9, 2),

(θ̃3, μ3, λ̃3) =(−1/4, 1/4, 9/8), (θ̃4, μ4, λ̃4) = (−1/4, 9/4, 1/8),

(θ̃5, μ5, λ̃5) =(−1/9, 1/9, 2/9), and (θ̃6, μ6, λ̃6) = (−1/9, 4/9, 1/18).

With

λ̃i =λi

a
, and θ̃i = θi

a
.

Note that the symmetry is not lost in the limiting system.

3.3 Conclusion

To remain in 1:2:3 resonance while the parameter k1 tends to zero (i.e. the mass m2 tends to
be a free particle), the mass ratios μ, θ̃ and λ̃ have the six possibilities described above.

Remark All the possible numerical values to which the parameter μ tends as a goes to
infinity are exactly known. We have in the case a = 2 in Fig. 3, μ∞ = μ6 = 4/9 and
μ∞ = μ4 = 9/4. The point where the fold bifurcation takes place can also be computed
exactly. One finds that the two roots collide and disappear at the critical value ac = 8/5, λc =
6/5, and θc = −2/5. This follows from the fact that at the fold point we have μ = 1 which
is understandable because the symmetry relation becomes the identity.
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3.4 The Almost-Harmonic System

Now that it is exactly known when and under what conditions the system is in 1:2:3 resonance,
we can proceed with the study of the normal form and the involved bifurcations in this
resonance. Following [1], we will first focus on the relatively easy case k1 = 1, after this
we will study the case k1 �= 1. Using the method sketched in the previous section, it can be
shown that system (8) can be transformed into almost-harmonic form (in engineering called
quasi-normal form). We find:

C =
⎛

⎝
a11 a21 a31

1 1 1
a12 a22 a32

⎞

⎠ , (16)

with ai j , i = 1, 2, 3, j = 1, 2 all nonzero and depending uniquely on the parameters k1, λ

and μ. This produces the almost-harmonic system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x ′′
i + (iω0)

2xi = ε〈C−1(F(X)), ei 〉, i = 1, 2, 3 and ω2
0 = −θ,

F(X) =
[

− S1(X) cos ω̃t
k1

− bS′
1(X)√
k1
,
β0λU 2 S′

2(X)(1−γ0k1 S′
2(X)

2)√
k1

,−μS3(X) cos ω̃t
k1

− μbS′
3(X)√
k1

]T

,

S1(X) = a11x1 + a21x2 + a31x3, S2(X) = x1 + x2 + x3,

S3(X) = a12x1 + a22x2 + a32x3, X = [x1, x2, x3]T and ω̃ = ω/
√

k1.

Written down explicitly in the new variables xi , with i = 1, 2, 3, the quasi-normal form
becomes:

x ′′
i + (iω0)

2xi = ε
(
θi1x ′

1 + θi2x ′
2 + θi3x ′

3 + (Qi1x1 + Qi2x2

+ Qi3x3) cos(ω̃t)+ Bi (x ′
1 + x ′

2 + x ′
3)

3
)
, (17)

with,

� = (θi j ) = 1√
k1

C−1

⎛

⎜
⎝

−ba11 −ba21 −ba31

β0λU 2 β0λU 2 β0λU 2

−a12μb −a22μb −a32μb

⎞

⎟
⎠ ,

Q = (Qi j ) = 1

k1
C−1

⎛

⎜
⎝

−a11 −a21 −a31

0 0 0

−μa12 −μa22 −μa32

⎞

⎟
⎠ , and

B = [B1, B2, B3]T = −β0λU 2
0 γ0

√
k1C−1e2.

Based on averaging-normalization in the case of system (1), we have to first order
the following possibilities for parametric excitation of the internal 1:2:3 resonance: ω =
n
√

k1ω0, n = 1, . . . , 9.
We shall now proceed with the study of one of the nine different cases, ω = √

k1ω0. The
other eight cases are still open for investigation. We have seen in the case k1 = 1, that there
are two possibilities for the system parameters to produce 1:2:3 resonance. In each case, these
possibilities will be investigated. To keep the study concise, we will be interested only in the
isolated nontrivial equilibria of the averaged system and their bifurcations. These equilibria
correspond in the original system with periodic solutions. The bifurcations of the periodic
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solutions may lead to tori, their break-up and eventually to chaos. To study this we introduce
the phase-amplitude coordinates:

xi = Ri cos(iw0t + φi ), i = 1, . . . , 3.

4 The Parametric Excitation Case ω = √
k1ω0

Assume k1 = 1, λ = 0.36129, μ = 0.390277, ω̃ = ω0 = 0.500224. After applying the
time transformation ω̃t → t̃ (with appropriate scaling of the coefficients Bi , θi j , and Qi j ),
and omitting the tildes for notational simplicity, the averaged system becomes:

R′
1 = 1

8
ε
(
3B1 R3

1 + 24B1 R2
2 R1 + 54B1 R2

3 R1 + 4θ11 R1

− 9B1 R2
1 R3 cos(3φ1 − φ3)+ 36B1 R2

2 R3 cos(φ1 − 2φ2 + φ3)

− 2Q12 R2 sin(φ1 − φ2)) ,

R′
2 = 1

8
ε
(
12B2 R3

2 + 6B2 R2
1 R2 + 54B2 R2

3 R2 + 4θ22 R2

+ 18B2 R1 R3 cos(φ1 − 2φ2 + φ3)R2 + Q21 R1 sin(φ1 − φ2)

− Q23 R3 sin(φ2 − φ3)) ,

R′
3 = − 1

24
ε
(−18B3 R3 R2

1 − 81B3 R3
3 − 72B3 R2

2 R3 − 12R3θ33

+ B3 cos(3φ1 − φ3)R
3
1 − 12B3 R2

2 cos(φ1 − 2φ2 + φ3)R1

− 2Q32 R2 sin(φ2 − φ3)) ,

φ′
1 = ε

8R1

(
9B1 R3

(
R2

1 sin(3φ1 − φ3)− 4R2
2 sin(φ1 − 2φ2 + φ3)

)

− 2Q12 R2 cos(φ1 − φ2)) ,

φ′
2 = − ε

8R2
(Q21 R1 cos(φ1 − φ2)+ Q23 R3 cos(φ2 − φ3)

− 18B2 R1 R2 R3 sin(φ1 − 2φ2 + φ3)) ,

φ′
3 = − ε

24R3

(
B3 sin(3φ1 − φ3)R

3
1 + 12B3 R2

2 sin(φ1 − 2φ2 + φ3)R1

+ 2Q32 R2 cos(φ2 − φ3)) . (18)

Applying the substitution for the combination anglesψ1 = φ1−φ2, ψ2 = φ2−φ3, andψ3 =
3φ1 − φ3, system (18) becomes:

R′
1 = 1

8
ε
(
3B1 R3

1 + 24B1 R2
2 R1 + 54B1 R2

3 R1 + 4θ11 R1 − 9B1 R2
1 R3 cos(ψ3)

+ 36B1 R2
2 R3 cos(ψ1 − ψ2)− 2Q12 R2 sin(ψ1)

)
,

R′
2 = 1

8
ε
(
12B2 R3

2 + 6B2 R2
1 R2 + 54B2 R2

3 R2 + 4θ22 R2

+ 18B2 R1 R3 cos(ψ1 − ψ2)R2 + Q21 R1 sin(ψ1)− Q23 R3 sin(ψ2)) ,
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R′
3 = − 1

24
ε
(−18B3 R3 R2

1 − 81B3 R3
3 − 72B3 R2

2 R3 − 12R3θ33

+ B3 cos(ψ3)R
3
1 − 12B3 R2

2 cos(ψ1 − ψ2)R1 − 2Q32 R2 sin(ψ2)
)
,

ψ ′
1 = ε

8R1 R2

((
Q21 R2

1 − 2Q12 R2
2

)
cos(ψ1)+ R3 (Q23 R1 cos(ψ2)

− 9R2
(
2

(
B2 R2

1 + 2B1 R2
2

)
sin(ψ1 − ψ2)− B1 R2

1 sin(ψ3)
)))
,

ψ ′
2 = ε

24R2 R3

(−3Q21 R1 R3 cos(ψ1)+ (
2Q32 R2

2 − 3Q23 R2
3

)
cos(ψ2)

+ R1 R2
(
B3 sin(ψ3)R

2
1 + 6

(
2B3 R2

2 + 9B2 R2
3

)
sin(ψ1 − ψ2)

))
,

ψ ′
3 = ε

24R1 R3

((
B3 R2

1 + 81B1 R2
3

)
R2

1 sin(ψ3)+ 2Q32 R1 R2 cos(ψ2)

− 18Q12 R2 R3 cos(ψ1)+ 12R2
2

(
B3 R2

1 − 27B1 R2
3

)
sin(ψ1 − ψ2)

)
. (19)

For more details about how the averaged system and the corresponding asymptotic estimates
are obtained, we refer to [23,28] and [29].

4.1 Nontrivial Relative Equilibria

Putting the righthand side of system (19) equal to zero to locate relative equilibria, yields a
system of equations which we were unable to solve explicitly. The roots can quite easily be
approximated numerically. The isolated roots of the averaged system correspond with 2π-
periodic solutions of the original system. In this way, studying periodic solutions becomes
the study of the isolated relative equilibria of the averaged system which is much easier and
quite straightforward. We choose for this purpose the following representative parameter
values b = β0 = γ0 = U = 1, ε = 0.1, and find, using a convenient choice of the phase
combinations, easily the following relative equilibria:

P1 = (R1, R2, R3, ψ1, ψ2, ψ3) =(0.5131, 0.0554, 0.0045, π/2, π/2, 0), (20)

P2 = (R1, R2, R3, ψ1, ψ2, ψ3) =(0.4994, 0.0542, 0.0040, π/2, π/2, π). (21)

Linearising system (19) at P1 and P2 yields a following matrix of the form:

A =
(

A1 ∅
∅ A2

)

, (22)

with Ai , i = 1, 2 and ∅3 × 3 matrices.
When studying the dynamics, one considers how the eigenvalues of the matrix A depend

on the parameters in order to produce a bifurcation diagram. However, in this case the
expressions for the equilibria have not a closed form as a function of the parameters. We
shall therefore continue our study numerically.

Note, that we can still significantly reduce the dimension of the parameter space rel-
evant for the bifurcation study. First we easily see that the parameters β0 and U can be
replaced by one parameter, say β = β0U 2. This reduces the dimension of the parame-
ter space to 3. We also can get rid of the parameter γ0 by applying the transformation
ỹi = √

γ0 yi , i = 1, . . . , 3 before averaging. This reduces the dimension of the parameter
space to 2. Note that this transformation is always possible as γ0 is assumed to be strictly
positive.
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One might ask why not study the original system numerically if we are bound to continue
the study numerically from now on? The advantage of the averaged system is that it indicates
with great precision where the periodic solutions are in the form of relative equilibria, regard-
less of their stability character. Hopf bifurcation of such an equilibrium will then correspond
with Neimark–Sacker bifurcation of a periodic solution. For instance, the emergence of 3-
tori, as we shall see later on, is detected using continuation software packages like Content
[18] or Matcont [13,14,26]. This is difficult for the original system as the continuation of
tori (see [24]) yields many complications owing to dense (Cantorized) sets of resonances.

We use the parameters b and β as control parameters in the bifurcation study. From the
eigenvalues of the equilibria at the parameter values mentioned above, we derive that P1 is
a stable node and P2 is a saddle.

Remark We have not yet proved that we have found all the isolated nontrivial equilibria of
the system. Putting this system entirely in software packages like Maple or Mathematica and
trying to solve it numerically was not successful. Therefore, we proceed as follows. The last
three equations of system (19) can be viewed as linear in the variables cosψ1, cosψ2, sinψ3.
Solving this system yields:

cosψ1 =α1 sin(ψ1 − ψ2), (23)

cosψ2 =α2 sin(ψ1 − ψ2), (24)

sinψ3 =α3 sin(ψ1 − ψ2), (25)

with

α1 = −18 B1 (4 B3 Q23 + 9 B2 Q32)

c ((B3 Q12 Q23)− 9 B1 Q21 Q32)
R2 R3, (26)

α2 = 18 B3 (B2 Q12 + 4 B1 Q21)

c (B3 Q12 Q23 − 9 B1 Q21 Q32)
R1 R2, (27)

α3 = −12 (B3 Q12 Q23 + 3 (B2 Q12 + B1 Q21) Q32)

(B3 Q12 Q23 − 9 B1 Q21 Q32)

R2
2

R1
2 . (28)

Combining the fact that sin(ψ1 −ψ2) = sinψ1 cosψ2 − cosψ1 sinψ2 with the expressions
obtained above for cosψ1 and sinψ1 we conclude:

Either sin(ψ1 − ψ2) = 0, this case yields the equilibria P1 and P2, or

sinψ1 = 1

α2
+ α1

α2
sinψ2. (29)

Combining (23) and (24) we get

cosψ1 = α1

α2
cosψ2. (30)

Using (29) and (30) and the fact that cosψ2
1 + sinψ2

1 = 1, we derive the following formula:

sinψ2 = α2
2 − α2

1 − 1

2α1
. (31)

This expression yields the following formula:

sinψ1 = α2
2 − α2

1 + 1

2α2
. (32)

123



J Dyn Diff Equat

Combining the expression cos(ψ1−ψ2) = cosψ1 cosψ2+sinψ1 sinψ2 with all the previous
results, we give the following expressions:

cos(ψ1 − ψ2) = − 1 + (α2
1 + α2

2)

2α1α2
, (33)

cosψ3 = ±
√

1 − α2
3

(
1 − cos(ψ1 − ψ2)2

)
. (34)

Note, that there are two possibilities for the expression of cos(ψ1 − ψ2):

cos(ψ1 − ψ2) = − 1 ± (α2
1 + α2

2)

2α1α2
.

We can however rule out the possibility with the minus sign as it always yields a value outside
the interval [−1, 1]. Applying the substitution into the first three equations of system (19)
yields a polynomial system of three equations with the amplitudes R1, R2, R3 as unknown.
This system can be solved numerically. It does not yield any new equilibria.

4.2 Stability of the Relative Equilibrium P1

Continuing the stable node equilibrium P1 with respect to the parameter b and β does not
yield any interesting bifurcations before hitting the singularity at R2 = 0; see Fig. 4. To
avoid this singularity, which is inherent to phase-amplitude coordinates, we use the follow-
ing nonsingular coordinate transformation before averaging and continue the corresponding
isolated nontrivial equilibrium P1.

xi = xi1 cos(iω0t)+ xi2

iω0
sin(iω0t), i = 1, . . . , 3. (35)

The continuation of P1 in these new coordinates yields two ‘different’ Hopf bifurcations. See
Fig. 4. Because of symmetry, twice as many Hopf bifurcations are detected. These correspond
however with the same object, a 2-torus, and consequently need not be studied separately.
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Fig. 4 Continuation of the equilibrium P1 with respect to the parameters b and β in nonsingular coordinates
(35) projected onto the R1 R2-plane (left). The letters mean that the curve was obtained by continuation with
respect to that parameter. No bifurcations were detected except a branching point at the origin. This picture
is however incomplete as we cross the singularity R2 = 0. Continuation of P1 in the more suitable variables
(right). The bifurcations which are symmetrically situated with respect to the origin should be identified
because of the Z2 symmetry in the averaged vector field. They correspond with the same object. The first
quadrant in the R1 − R2 coordinates corresponds with the second quadrant in the x12 − x21 coordinates
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The first Hopf bifurcation is subcritical and occurs at the critical value b1 = −0.052101
with first Lyapunov coefficient l1 = 4.898 · 10−2. Below this critical value of b the, at
that moment, unstable equilibrium P1 undergoes once again a Hopf bifurcation (this time
a supercritical one), at the critical value b2 = −0.05453 with corresponding Lyapunov
coefficient l1 = −2.861. In both cases the cycle emerging from this Hopf is unstable. (Note
that we use the term ‘cycle’ in the sense of closed curve or circle.) Continuation of P1 with
respect to the parameter b in the opposite direction yields nothing special. The equilibrium
P1 collides with the origin at the value b = 1.065.

Remark At the second Hopf bifurcation the first Lyapunov coefficient is negative which
means the emerging cycle is stable on the centre manifold. In this case however the centre
manifold itself is unstable as the equilibrium P1 is unstable in the full phase-space. Conse-
quently the emerging cycle is unstable.

It is known from the theory of averaging that nondegenerate Hopf bifurcations of the iso-
lated nontrivial equilibria in the averaged system correspond with Neimark–Sacker bifurca-
tions of the corresponding periodic solution in the original system yielding stable or unstable
2-tori, depending on the normal form coefficient at the bifurcation point and the stability of
the centre manifold.

4.3 Stability of the Relative Equilibrium P2

Continuation of this equilibrium yields two subcritical Hopf bifurcations. The first one occurs
at the parameter value bc1 = 0.0824 with first Lyapunov coefficient l1 = 0.631 and emerging
frequency equal to ωh1 = 0.00747. The second Hopf-bifurcation occurs at bc2 = 0.0108
with corresponding first Lyapunov coefficient l1 = 0.550 and emerging frequency equal to
ωh2 = 0.0108.

The unstable cycle emerging from the first bifurcation is continued with respect to the
parameter b, see Fig. 5. This cycle undergoes first a fold bifurcation at the parameter value
b = 0.0899 then, after a branching point bifurcation at b = 0.0784, the cycle stabilizes
and becomes hyperbolic yielding a stable 2-torus in the corresponding original system. This
torus was numerically localized in the original system as well, see Fig. 6. Because of the
normal hyperbolicity of the cycle in the averaged system, we have persistence and therefore
the torus can be traced in the original system despite the higher order terms omitted by
averaging.

Fig. 5 Continuation of the
equilibrium P2 with respect to
the parameter b projected onto
the x11x22-plane. Two Hopf
bifurcations were detected, the
first one is subcritical and the
second one supercritical. The
bifurcations which are
symmetrically situated with
respect to the origin should be,
because of the Z2 symmetry in
the averaged vector field,
identified. They correspond with
the same object
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Fig. 6 Continuation of the cycle emerging from the first Hopf-bifurcation of P2. The small black cycle
corresponds with the fold bifurcation, the bigger one corresponds with the branching bifurcation after which
the cycle stabilises, yielding a 2-torus in the corresponding original system (17) (left). Stroboscopic Poincaré
section of the original system projected onto the x1x2-plane shows the presence of a stable 2-torus with
ε = 0.05, b = 0.0755, β = 1.1 (right)

5 Bifurcation Diagrams in the Parametric Excitation Case ω = √
k1ω0

It has been shown in [11,9,20] and [31] that when quasi-periodic solutions are involved, the
set of possible bifurcations in parameter space can be very complex. In general there will
be an infinite number of Arnold resonance tongues, the bifurcation sets are expected to be
of fractal nature. This complexity will take of course different forms for explicit mechanical
(dynamical) systems, depending on symmetry and other modeling assumptions.

In what follows, we shall first study in detail the codimension one and codimension two
bifurcations of the normal form (the first averaged system to first order); then we return to the
original system to see how many of these bifurcations survive the addition of higher order
terms. In order to avoid singularities that occur using the phase-amplitude coordinates, we
shall from now on use the more suitable nonsingular coordinates as given by Eq. (35). The
averaged system in these new coordinates is given in appendix 1. The averaged system has
two 3D invariant manifolds.

�1 = {{x11, x12, x21, x22, x31, x32} ∈ R
6, x11 = x22 = x31 = 0

}
and,

�2 = {{x11, x12, x21, x22, x31, x32} ∈ R
6, x12 = x21 = x32 = 0

}
.

The stable relative equilibrium P1 found in the preceding section lies on the invariant manifold
�1, the unstable relative equilibrium P2 on �2.

The main bifurcation diagram was obtained using Matcont 2.2.9 under Matlab 7. How
this bifurcation diagram is built up is explained in the captions of Fig. 7 and 8. The terminology
on bifurcations is not uniform in the literature. Because of the use of Matcont, we shall
adopt here more or less the same notation as in [17] to establish which scenario holds
in our case. To assist the reader we will regularly indicate other nomenclatures between
brackets.

Consider Fig. 7. Various codimension one and two bifurcations were detected. A promi-
nent one involves the relative equilibrium P2 and occurs at the parameter values b = 0.056
and β = 1.447. The normal form, of the averaged system, around this codimension 2 bifur-
cation, usually referred to as the Hopf-Hopf (HH) bifurcation, has been studied in detail;
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Fig. 7 Bifurcation diagram of the averaged system. Starting on the horizontal line (Eq1), the unstable relative
equilibrium P2 is continued with respect to the parameter b. Two Hopf bifurcations were detected, indicated by
H. Continuation of the two Hopf points yields the curves HP1 and HP2. Various codimension two bifurcations
are detected on the curves HP1 and HP2 among which a generalised Hopf bifurcation (GH), a fold–Hopf
bifurcation (also known as zero-Hopf or ZH), a Bogdanov–Takens bifurcation (BT ) as well as a Hopf–Hopf
bifurcation (HH). More to the left, we find the bifurcation curves involving the stable relative equilibrium P1.
See Fig. 8 for more details and a magnification of the rectangular area

see for example [17]. In this case, the relative equilibrium has two pairs of purely imaginary
eigenvalues λ1,4 = ±iω1, and λ2,3 = ±iω2, with ω1 �= ω2 and satisfying certain nonde-
generacy conditions. We refer to [17] for all the topologically different cases that may occur
in the vicinity of this bifurcation. Various bifurcation branches lead on from the bifurcation
point HH; for details see the caption of Fig. 7.

In the notation of [17]: Analysing the normal form coefficients of the nontrivial relative
equilibrium P2, computed with Matcont, we find:

p11 p22 = −1, θ = −2.430, δ = −24.494, � = −1.017 × 103 and � = 1.160 × 105.

From these coefficients one can establish that we have the case p11 p22 < 0 under subcase
4. This means the presence of a T

2 torus in the vicinity of the Hopf–Hopf bifurcation corre-
sponding with a T

3 torus in the original system. This torus is unstable because the equilibrium
P2 was unstable, yielding an unstable centre manifold on which the torus lies. Consequently
this torus is numerically ‘undetectable’

The second Hopf–Hopf bifurcation involves the stable equilibrium P1 and occurs at
the parameter values b = −0.05328 and β = 0.5038 with the following normal form
coefficients:
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Fig. 8 Magnification of the rectangular area in Fig. 7 shows the bifurcations involving the stable relative
equilibrium P1. There are two Hopf bifurcation curves (HP3) and (HP4), also various codimension two
bifurcation points were detected. Starting on the horizontal line (Eq2), the stable relative equilibrium is
continued. After hitting the Hopf curve HP3, the stable emerging cycle is continued in the horizontal direction
with respect to the parameter b until we hit the fold bifurcation where this cycle collides with an unstable one
and vanishes. The locus of the fold (saddle-node) points is indicated by curve LPC. Before hitting the fold
curve at b = −0.053447955, the cycle was continued in the vertical direction with respect to the parameter
β. A Neimark–Sacker bifurcation is detected. The Neimark–Sacker curve (NS) is obtained from this point
by continuation. The point CH indicates a Chenciner (also called degenerate NS bifurcation). The point R4
indicates a 1:4 resonance and the point LPNS corresponds with a fold–Neimark–Sacker bifurcation where
the curves LPC and NS cross. After the Neimark–Sacker bifurcation, the cycle undergoes a period-doubling
bifurcation, the locus of which is indicated by the curve (PD). The PD curve shows remarkable behaviour in
the sense that there is an accumulation of unusual period-doubling points to a segment in the parameter space

p11 p22 = −1, θ = 6.013, δ = 0.970, � = 2.720 × 104 and � = 64.380 × 105.

We will zoom in into the neighborhood of the Hopf–Hopf bifurcation of P1 in Fig. 8. This
case as well yields a 2-torus in the neighborhood of the Hopf–Hopf bifurcation as it cor-
responds , according to [17], to the case p11 p22 < 0 under subcase 2. The 2-torus which
should be called a ‘relative torus’, corresponds with a 3-torus in the original system; it
is stable as it has a negative Lyapunov coefficient. This means the torus is numerically
detectable.

We find the following interesting codimension one and two bifurcations:

NS-bifurcation Continuing with respect to the parameter b and the stable nontrivial equilib-
rium starting at the values b = −.04, β = 0.48, we hit the Hopf line at the parameter value
b = −0.053091803. The bifurcation is supercritical. The stable cycle Ls emerging from this
bifurcation is then continued until the value b = −0.053447955. This cycle is then continued
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with respect to the parameter β. A supercritical Neimark–Sacker bifurcation is detected at the
parameter value β = 0.50846183 yielding a 2-torus in the averaged system corresponding
with a 3-torus in the original system. The locus of these Neimark-Sacker points is indicated
by the curve (NS). See Fig. 8 and 13 (also discussed in the next section).

Fold bifurcation (saddle–node) From the generalised Hopf point emanates an LPC curve
where the stable cycle Ls collides with the unstable one,Lu , and vanishes. See the dashed
curve in Fig. 8.

Chenciner bifurcation (degenerate NS) On the Neimark–Sacker curve, there is a Chenciner
bifurcation point at the parameter values b = −0.0543 and β = 0.5420. Here the Neimark–
Sacker bifurcation changes from supercritical (for b > −0.0543) to subcritical.

The 1:4 resonance On the Neimark–Sacker curve we hit twice the strong 1:4 resonance (R4)
at the parameter values b = −0.0548, β = 0.5688 and again at the values b = −0.0561 and
β = 0.7024.

The 1:1 resonance The Neimark-Sacker curve ends at the point labeled R1. Here, the complex
conjugate multipliers on the unit circle collide and become both equal to 1.

The Fold-Neimark–Sacker bifurcation The LPC curve and the NS curve cross at the
parameter values b = −0.055675192 and β = 0.65078135 yielding a Fold–Neimark–
Sacker (LPNS) bifurcation where two multipliers are complex and on the unit circle and a
third multiplier is real and equals 1. This occurs at the parameter values b = −0.056576 and
β = 0.80280.

Branching point bifurcation A cycle branches from Lu along the curve BR1. Another cycle
branches from Ls along the curve BR2. These two curves emanate from the point labeled
BR on the LPC curve which lies too close to be distinguished from the 1:1 resonance point
R1 on the Neimark–Sacker curve; see Fig. 8.

Accumulation of pitchfork-flip, generalised PD and 1:2 resonance When continuing the
cycle Ls , emerging from the Hopf bifurcation at b = −0.05453 and β = 1, with respect to
the parameter b until the value b = −0.055, then with respect to the parameter β, it under-
goes a supercritical period doubling bifurcation at the value b = −0.055, β = 1.1371. An
unstable period 2 cycle emerges corresponding with a 2-torus (double torus) in the original
system. The period-doubling curve is continued using auto[15]; see Fig. 8. Remarkably
enough we observe a repetitive pattern of codimension two bifurcations. A sequence of
respectively generalised period doubling (GPD), pitchfork-flip (LPPD), 1:2 resonance (R2),
generalised period doubling (GPD), 1:2 resonance (R2) and pitchfork-flip (LPPD) keeps
repeating and accumulating in the parameter space. See for this phenomenon Fig. 9. This
is an interesting and new bifurcation sequence, the dynamics of which we do not quite
understand. The accumulation is due to the presence of a saddle-node homoclinic bifurca-
tion, see Fig. 10 and next item. It might be very interesting to generate a map exhibiting
these properties and study it in detail to improve our understanding. Note that this phe-
nomenon involving the period doubling curve occurs entirely on the invariant 3D manifold
�1. The period 2 cycle emerging from the period doubling of the cycle Ls does however
not belong to �1. This means that the restriction of the flow to �1 does not yield this
remarkable period doubling curve. Another interesting question might be whether this par-
ticular sequence of codimension two bifurcations is universal, at least in systems with this
symmetry.
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Fig. 9 Magnification of the period doubling curve in the vicinity of the accumulation region showing a
repetitive pattern of the following codimension two bifurcations occurring alternatively: GPD (generalised
period doubling), LPPD (pitchfork-flip) bifurcation, R2 (1:2 resonance), GPD, R2 and LPPD. As we approach
the accumulation region in the parameter space, the period of the cycle Ls grows rapidly resulting in the
emergence of a saddle-node homoclinic orbit connecting a nonhyperbolic nontrivial equilibrium to itself. See
Fig. 10

Saddle-node homoclinic bifurcation In region I, see Fig. 10, two extra nontrivial equi-
libria emerge and disappear along the fold curves f1 and f2 that coalesce at the cusp
point. On the line segment C1C2 the nonhyperbolic, nontrivial equilibrium has a saddle-
node homoclinic orbit. Continuation of this saddle-node homoclinic orbit yields the curve
(HOM). At the codimension two bifurcation points C1 and C2, the homoclinic orbit to
the saddle-node becomes non-central, meaning, in this case, that it returns to the equi-
librium along the stable manifold forming a nonsmooth loop. Using our toolboxes, we
can switch between saddle-node and saddle homoclinic orbits. This results in a sharp, but
smooth turn to the right of the curve (HOM) after passing the point C1 where it approaches
the LPC curve. After performing the switch at the codimension two point C2, the homo-
clinic curve is continued. We observe that it approaches the Bogdanov-Takens point, see
Fig. 10. The corresponding homoclinic loops in the three situations (i.e. between the BT
point and C1, between C1 and C2 and after passing the point C2) are given in phase-space
in Fig. 11.

NS-bifurcation of the double period orbit Continuing the cycle Ls emerging from the
Hopf bifurcation at b = −0.05453 and β = 1, with respect to the parameter b until the value
b = −0.055, then with respect to the parameter β, the cycle undergoes a period doubling
bifurcation at the value b = −0.055, β = 1.1371. The unstable period 2 cycle is continued
with respect to the parameter β. A supercritical Neimark–Sacker bifurcation is detected at the
parameter values b = −0.0550039, β = 1.137694, yielding a stable 2-torus in the averaged
system corresponding with a 3-torus in the original system, see Fig. 12. This torus, as we
shall see later, eventually breaks up according to Shilnikov’s scenario [2], yielding a strange
attractor.
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Fig. 10 Parametric portrait of the normal form in the vicinity of the accumulation region. In region I, the cycle
Ls has disappeared by the homoclinic bifurcation. Instead two nontrivial equilibria emerge and vanish along
the fold curves f1 and f2. On the curve (HOM) there are two codimension two bifurcation points C1 and C2
where the homoclinic orbit becomes non-central as it looses smoothness because it returns to the equilibrium
along the stable manifold

6 Torus Bifurcations in the Parametric Excitation Case ω = √
k1ω0

We consider some of the bifurcations of the preceding section in more detail.

6.1 The Torus Emerging from the Hopf–Hopf Bifurcation

Figure 13 shows the Poincaré section of the orbits through the section
� = {{x11, x12, x21, x22, x31, x32} ∈ R

6, x11 = 0
}

in the vicinity of the NS curve involving
the period 1 cycle in the neighborhood of the Hopf–Hopf bifurcation. The closed curve in
the Poincaré section confirms the presence of the stable 2-torus in the averaged system as
predicted by the normal form analysis, see Fig. 13; it is a ‘relative torus’ and corresponds
with a 3-torus in the original system. The computation of the Lyapunov exponents confirms
the torus character of the closed curve. We found the following Lyapunov exponents: λ1 =
−1.4 × 10−5, λ2 = −1.8 × 10−5, λ3 ≈ λ4 = −4.0 × 10−3, λ5 = −2.0, and λ6 = −2.4.
The Poincaré section � will in what follows always be used as cross-section.

6.2 Torus Doubling from Period 1 Cycle

The 2-torus in the averaged system emerging from the Neimark–Sacker bifurcation of the
period 1 cycle undergoes one torus doubling, see Fig. 14. The Lyapunov exponents are as
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Fig. 11 Phase portrait of the nonsmooth homoclinic orbit (upper left) projected onto the x21x32 plane with
b = −0.0547168, β = 1.1925. corresponding in the parameter space to a point on the HOM curve, somewhere
between C1 and the LPC curve. The upper right figure shows a saddle-node homoclinic orbit somewhere along
the line segment C1C2, b = −0.054778, β = 1.1824. The last figure shows a nonsmooth homoclinic orbit
with b = −0.054202, β = 1.1735. corresponding, in the parameter space, to a point on the segment of the
curve HOM connecting the point C2 with the Bogdanov-Takens point

follows: λ1 ≈ λ2 = O(10−5), λ3 = −5.7 × 10−4, λ4 = −5.7 × 10−3, λ5 = −2.0 and
λ6 = −2.4. After that, the torus eventually breaks up by loosing smoothness, through a loss
of normal hyperbolicity, leading to the birth of a strange attractor. The Figs. 15, 16, 17 show
how this happens. After the period doubling has occurred, and as the parameter β varies,
we enter once the 1:17 Arnold tongue near β = 0.5735, and leave it without detecting any
interesting bifurcation. The torus was immediately detectable and smooth when passing the
tongue. We have therefore omitted this from the sequence of figures.

6.3 Torus Doubling from Period 2 Cycle

For this purpose we keep the parameter b = −0.0550039 constant and vary the parameter β.
After a sequence of phase lockings where we cross numerous Arnold tongues, we end up at
the 1:11 resonance tongue of the fifth iterate of the Poincaré map around the parameter value
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Fig. 12 Poincaré section of the averaged system projected onto the (x12, x22) plane, with x11 = 0 as a
cross-section at the parameter values b = −0.0550039, β = 1.13768. The Neimark–Sacker bifurcations took
place at the parameter values b = −0.0550039 and β = 1.1377694. Above this value of β there is a stable
period 2 cycle corresponding with a stable 2-torus in the original system. Below this value of β, there is
a stable 2-torus (‘relative torus’) in the averaged system. The closed curve shows the torus in the averaged
system corresponding with a 3-torus in the original system
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Fig. 13 Projection of the Poincaré section onto the (x21, x32) plane showing a smooth stable 2-torus in the
averaged system in the vicinity of the Hopf–Hopf bifurcation, b = −0.0534, β = 0.56, corresponding to a
3-torus in the original system

β = 1.1376769. If one wishes to generate a figure, the Runge-Kutta (78) integration scheme
can be used. To view the closed curve one should follow the unstable manifolds of the saddles.
See for example the results of Krauskopf and Osinga [16]. We omit the figure. At the parameter
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Fig. 14 Poincaré section projected onto the (x21, x32) plane showing a smooth double T
2 torus just after

the period-doubling has occurred, b = −0.0534, β = 0.57. The Lyapunov exponents are: λ1 ≈ λ2 =
O(10−5), λ3 = −5.7 × 10−4, λ4 = −5.7 × 10−3, λ5 = −2.0 and λ6 = −2.4
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Fig. 15 Poincaré section projected onto the (x21, x32) plane showing the double T
2 torus becoming more

deformed and starting gradually to loose normal hyperbolicity as λ3 becomes close to zero. b = −0.0534, β =
0.5742. λ1 ≈ λ2 ≈ 0, λ3 = −8.0 × 10−4, λ4 = −8.3 × 10−4, λ5 = −2.0 and λ6 = −2.4.

value β = 1.13767675 the phase locked periodic solution undergoes a period doubling
bifurcation in the direction of the unstable manifolds of the saddles. At this stage the period 2
torus is completely destroyed according to one of the scenarios described in [2]. Decreasing
the parameter even further we observe the emergence of a strange attractor, see Fig. 18.

7 The Original System in the Parametric Excitation Case ω = √
k1ω0

In order to study for reasons of comparison the original system, we consider the time-periodic
Poincaré map using the same parameter values as in the averaged system i.e. b = 1, β = 1

123



J Dyn Diff Equat

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

−0.9

X
21

X
32

Fig. 16 Poincaré section projected onto the (x21, x32) plane showing loss of normal hyperbolicity of the
double T

2 torus, b = −0.0534, β = 0.575. λ1 ≈ λ2 ≈ λ3 ≈ 0, λ4 = −1.7×10−4, λ5 = −2.0, λ6 = −2.4.
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Fig. 17 Poincaré section using � as cross-section showing the strange attractor emerging after the torus has
been destroyed. b = −0.0534, β = 0.576. The fact that two of the six Lyapunov exponents are still equal to
zero indicates that the remnants of the torus are still involved in the dynamics within the attractor. We found
λ1 = 1.8 × 10−4, λ2 ≈ λ3 ≈ 0, λ4 = −4.4 × 10−4, λ5 = −2.0, λ6 = −2.4. The Kaplan-Yorke dimension,
DK Y = 3.4.

and ε = 0.1. Note that the original system and consequently the original system in quasi-
normal form (17) possesses a Z2 symmetry, i.e. it is invariant with respect to the following
transformation:

T :
⎛

⎝
x1

x2

x3

⎞

⎠ �→
⎛

⎝
−x1

−x2

−x3

⎞

⎠ .
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Fig. 18 Numerically computed
Poincaré section of the period 2
torus using x11 = 0 as
cross-section in the 1:11
resonance tongue at the parameter
values b = −0.0550039, β =
1.1376769 showing the presence
of a strange attractor
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Fig. 19 Time-periodic Poincaré section plotted onto the b− x1 plane obtained by Content using the original
system (17) through continuation with respect to the parameter b of the stable equilibrium, corresponding
with the 2π -periodic solution. ε = 0.1, NS stands for Neimark–Sacker bifurcation and LP stands for fold
bifurcation. The fold points are absent in the averaged system

7.1 The Neimark–Sacker Bifurcation of the 2π -Periodic Solution

A stable fixed point, corresponding with a 2π -periodic solution, was detected using the
software package Content [18]. Continuation with respect to the parameter b yields two
Neimark–Sacker bifurcations: at the value b = −0.0504, averaging-normalization gives a
Hopf bifurcation of the stable equilibrium at b = −0.052101; at the second value, b =
−0.0548, averaging-normalization produces b = −0.0545.

The unstable cycle is found through further continuation with respect to the parameter
b. After hitting the fold bifurcation, the unstable cycle is located. This cycle undergoes two
Neimark–Sacker bifurcations: at b = −0.0033, the unstable relative equilibrium by averaging
produces b = −0.0824; the second one at b = 0.077, by averaging we find b = 0.0108..
See Fig. 19.
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Note that the normal form method of averaging predicted the bifurcation points of the
stable solutions with good accuracy. This accuracy improves, as predicted by the theorems
on averaging, when decreasing the value of the parameter ε or by computing higher-order
normal forms. We took ε = 0.1 which is too large for an O(ε) approximation of these
bifurcation values. Taking ε = 0.05 for example yields the following parameter values
where the Neimark-Sacker bifurcation predicted by averaging-normalization took place. We
found that the stable cycle undergoes a Neimark-Sacker bifurcation at b = −0.00548 and at
b = −0.0504. The unstable cycle undergoes a Neimark-Sacker bifurcation at b = 0.0056
and at b = 0.08. We see that the accuracy regarding the predicted bifurcation values of the
unstable cycle has significantly improved by just halving ε.

Bifurcation Diagrams and the Emergence of 3-Tori

We computed a bifurcation diagram by Content [18] using system (17). When considering
the stroboscopic Poincaré map, the periodic orbit corresponding with the nontrivial equilib-
rium P1 of system (18) is first numerically spotted and then continued with respect to the
parameter b. Exactly the same procedure was carried out as in the case of the averaged system.
All the dynamics present in the original system is very well captured by the averaged system.
The bifurcation diagram in Fig. 7 is similar to that of the original system. As an indication of
how well the averaged system approximates the original one, we give here the parameter val-
ues where the double-Neimark–Sacker bifurcation (NS–NS) occurs and the corresponding
parameter values of the Hopf–Hopf (HH) bifurcation in the averaged system for ε = 0.1.

The double Neimark-Sacker (NS–NS) in the original system occurs at b = −0.05322,
β = 0.5017 and the Hopf–Hopf in the averaged system occurs at b = −0.05328,β = 0.5038.
This is a rather good approximation. The stable 3-torus as well as the double 3-torus emerging
from respectively the double-Neimark–Sacker bifurcation and the supercritical torus doubling
as predicted by the normal form were numerically localized in the original system. See Fig. 20.
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Fig. 20 Time-periodic Poincaré section projected onto the plane x2x6 showing the presence of a stable 3-torus
(left) in the original system in the vicinity of the NS–NS bifurcation, as predicted by the normal form. To
generate this figure, the Runge-Kutta (78) integration scheme was used with the following initial conditions
ε = 0.1, b = −0.0534, β = 0.52, x1 = 0.1635, x2 = 2.3570, x3 = 0.0638, x4 = −0.0680, x5 =
−0.1264, and x6 = −1.3430. The flow was integrated over the time interval t ∈ [0, 0, 5 × 105]. A stable
double 3-torus (right) emerged after a period doubling of the 3-torus (left). To generate this figure, the Runge-
Kutta (78) integration scheme was used with the following initial conditions ε = 0.1, b = −0.0534, β =
0.57, x1 = 0.1635, x2 = 2.3570, x3 = 0.0638, x4 = −0.0680, x5 = −0.1264, and x6 = −1.3430. The
flow was integrated over the same time interval t ∈ [0, 0.5 × 105]
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Table 1 Frequency analysis of
the data obtained by integrating
the original system showing the
presence of a double T

3 torus

ω Frequency Amplitude

ω1 7.804718971343821e-03 3.104569561705033e-01

ω2 9.369393216950331e-03 1.443367758753760e-01

ω2 − ω1 1.564660658988895e-03 2.978702176331686e-02

ω2 + ω1 1.717409259141677e-02 1.590363241756515e-02

2ω2 − ω1 1.093407933327835e-02 1.479297670093936e-02

2ω1 − ω2 6.240029591658622e-03 1.358047157776031e-02

2ω2 1.873875305580177e-02 9.621203439704008e-03

2ω1 1.560941256009615e-02 7.737656805482373e-03

2ω2 + ω1 2.654347195181721e-02 2.534263314754040e-03

2ω1 + ω2 2.497882520003850e-02 2.033942947810174e-03

A frequency analysis was performed on the data to establish the presence of the 3-torus.
Two extra frequencies were found in the data. This indicates that the object in Fig. 20 can be
identified as a 3-torus. See Table 1.

7.2 Qualitative Differences

Choosing the parameter ε relatively large, ε = 0.1, the original system shows topological
differences from its normal form; see Figs. 19 and 21. The fold bifurcations detected are
not present in the normal form. Outside this range of the parameter b the periodic solutions
disappear but in the normal form they are still present. This is due to the fact that the parameter
ε is too big to guarantee applicability of the corresponding theorems. Altogether, inside the
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0.203716

0.416077

0.628438

0.840798

1.05316

1.26552
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R1

FNβ

b

Fig. 21 Bifurcation diagram generated by Content. ε = 0.1. NN stands for Double Neimark–Sacker corre-
sponding with the double Hopf bifurcation in the averaged system, DN stands for Degenerate Neimark–Sacker,
corresponding with the generalised Hopf bifurcation in the averaged system. R1 is a 1:1 resonance point cor-
responding with the Bogdanov–Takens bifurcation and FN is a Fold Neimark–Sacker corresponding with the
fold–Hopf bifurcation in the averaged system
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Fig. 22 Time-periodic Poincaré section plotted onto the b−x1 plane obtained with Content by continuation
with respect to the parameter b of the unstable equilibrium, corresponding with the 2π -periodic solution;
ε = 0.05, β = 1, NS stands for Neimark–Sacker bifurcation and BP stands for branching point bifurcation.
Here the saddle periodic solution collides with the trivial solution in a pitch–fork bifurcation. This branching
does also occur in the normal form near the same parameter values but was not shown because it is not relevant
to further study of the equilibria

range of existence of the stable and unstable periodic solutions, the normal form predicts
surprisingly well the location of the Neimark–Sacker bifurcation involving the stable cycle
although the theorems do not guarantee that. Decreasing the parameter ε, for instance taking
ε = 0.05, we have found, as expected, topological equivalence between the solutions of
the original system and its normal form; see Fig. (22). The persistence of phenomena, in
particular periodic solutions, for larger values of the small parameter ε has attracted the
attention of several authors; for references see [29, Sect. 10.5].

8 Discussion and Conclusions

1. Using the normal form method of averaging, we were able to detect easily and with
very good accuracy bifurcations present in the original system. The mechanical system
illustrated by Fig. 1 turns out to have very rich dynamics. In our paper a codimension
two bifurcation, the Hopf–Hopf bifurcation plays an important part. The flow around this
bifurcation yields stable 3-tori. These tori eventually break-up, leading to strange attractors
and ultimately to chaos. Moreover, a new phenomenon was discovered in the bifurcation
diagram of the normal form, i.e. the accumulation of period doubling bifurcations in the
parameter space yielding a repetitive pattern of the following sequence of codimension two
bifurcations: Generalised period doubling (GPD), pitchfork–flip (LPPD), 1:2 resonance
(R2), generalized period doubling (GPD), 1:2 resonance (R2) and pitchfork–flip (LPPD).
These bifurcations could have been missed easily if one studied the more complex original
system directly. It would be interesting to verify whether the period doubling curve of the
torus in the original system also exhibits this strange behaviour. To do this, we need to
be able to continue tori with respect to parameters. This is however still a very difficult
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task to perform numerically. It would be useful to produce a map exhibiting this property
and to study it for better understanding the dynamical and geometric meaning of this
phenomenon.

2. In the introductory Sect. 1, we have cited the literature on torus bifurcations of maps. It
is clear that many of the phenomena found there, can be recognized in our three degrees-
of-freedom mechanical system (the Tondl model). The Arnold tongues and resonances
that are present are making the dynamics very complex. Still, there emerges a dominant
bifurcation picture as many of the resonances give birth to solutions located in thin sets.
This picture is reminiscent of Hamiltonian systems near stable equilibrium where the
short-periodic solutions, contained in infinite families of invariant tori, dominate the
phase-flow, although an infinite set of higher order periodic solutions (of longer period)
with associated sets of invariant tori complicate the picture.

3. A study of the system in another possible 1:2:3 resonance, choosing

(ω, μ, λ) = (
√−0.641, 2.562, 0.925),

did not produce new phenomena and will therefore be omitted here.
4. We gave some attention to the case m1 ≈ m3. In this case the normal form reduces to

two coupled oscillators and one uncoupled oscillator. This is still of interest to explore,
but because of our focus on phenomena in three degrees of freedom, we have not pursued
this.

5. The method of averaging in combination with numerical bifurcation tecniques turns out
to be highly efficient to study this type of problems. All the bifurcations detected by the
normal form did have their corresponding bifurcations for small values of ε in the original
system and were highly accurate.

6. Important open problems are to study the dynamics of the mechanical system described
here for other parametric excitation frequencies and also for the basic 1:2:2, 1:2:1 and
1:2:4 resonances.

7. New features of Matcont to compute normal form coefficients of codimension two
bifurcations of limit cycles, see [12], could be exploited.

Acknowledgments Thanks are due to W.L.J. van der Kallen and R.W. Bruggeman for their contribution in
the factorisation of the 6-th degree polynomial P(x) (Sect. 3). Comments by J.J. Duistermaat and H.W. Broer
are gratefully acknowledged.

Appendix

The Normal Form in xi j Coordinates in the Case ω̃ = ω0

The averaged system in the case ω̃ = ω0 is as follows

x ′
11 = ε/8(3x3

11 B1 − 9x2
11x31 B1 + 9x2

12x31 B1 + 36x2
21x31 B1 − 9x2

22x31 B1

+12x21x22x32 B1 − x22 Q12 + x11(3x2
12 B1 + 24x2

21 B1 + 6x2
22 B1

+54x2
31 B1 − 6x12x32 B1 + 6x2

32 B1 + 4θ11)),

x ′
12 = ε/8(3x3

12 B1 + 18x11x12x31 B1 + 36x21x22x31 B1 + 3x2
11(x12 − x32)B1

+3x2
12x32 B1 − 12x2

21x32 B1 + 3x2
22x32 B1 + 2x21 Q12 + x12(24x2

21 B1

+6x2
22 B1 + 54x2

31 B1 + 6x2
32 B1 + 4θ11)),
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x ′
21 = ε/24(18x2

11x21 B2 + 18x2
12x21 B2 + 36x3

21 B2 + 9x21x2
22 B2

+162x21x2
31 B2 + 18x21x2

32 B2 + 9x11(6x21x31 + x22x32)B2

+3x12(9x22x31 B2 − 6x21x32 B2 − Q21)− x32 Q23 + 12x21θ22),

x ′
22 = ε/8(6x2

11x22 B2 + 6x2
12x22 B2 + 12x2

21x22 B2 + 3x3
22 B2 + 54x22x2

31 B2

+6x22x2
32 B2 + 6x12(6x21x31 + x22x32)B2 + 2x11(−9x22x31 B2

+6x21x32 B2 + Q21)+ 2x31 Q23 + 4x22θ22),

x ′
31 = ε/24(−(x3

11 B3)+ 12x12x21x22 B3 + 3x11(x
2
12 + 4x2

21 − x2
22)B3

+18x2
11x31 B3 + 18x2

12x31 B3 + 72x2
21x31 B3 + 18x2

22x31 B3 + 81x3
31 B3

+9x31x2
32 B3 − x22 Q32 + 12x31θ33),

x ′
32 = ε/8(x3

12 B3 + 12x11x21x22 B3 + 3x12(−4x2
21 + x2

22)B3 − 3x2
11(x12

−2x32)B3 + 6x2
12x32 B3 + 24x2

21x32 B3 + 6x2
22x32 B3 + 27x2

31x32 B3

+3x3
32 B3 + 2x21 Q32 + 4x32θ33).

The Normal Form in the xi j Coordinates in the Case ω̃ = 2ω0

The averaged system in this case is as follows

x ′
11 = ε/24(9x3

11 B1 − 27x2
11x31 B1 + 27x2

12x31 B1 + 108x2
21x31 B1

−27x2
22x31 B1 + 36x21x22x32 B1 + 6x12 Q11 − 2x32 Q13 + 3x11(3x2

12 B1

+24x2
21 B1 + 6x2

22 B1 + 54x2
31 B1 − 6x12x32 B1 + 6x2

32 B1 + 4θ11)),

x ′
12 = ε/8(3x3

12 B1 + 36x21x22x31 B1 + 3x2
11(x12 − x32)B1 + 3x2

12x32 B1

−12x2
21x32 B1 + 3x2

22x32 B1 + 2x11(9x12x31 B1 + Q11)+ 2x31 Q13

+x12(24x2
21 B1 + 6x2

22 B1 + 54x2
31 B1 + 6x2

32 B1 + 4θ11)),

x ′
21 = ε/8(6x2

11x21 B2 + 6x2
12x21 B2 + 3x12(3x22x31 − 2x21x32)B2

+3x11(6x21x31 + x22x32)B2 + x21(12x2
21 B2 + 3x2

22 B2 + 54x2
31 B2

+6x2
32 B2 + 4θ22)),

x ′
22 = ε/8(6x2

11x22 B2 + 6x2
12x22 B2 − 6x11(3x22x31 − 2x21x32)B2

+6x12(6x21x31 + x22x32)B2 + x22(12x2
21 B2 + 3x2

22 B2 + 54x2
31 B2

+6x2
32 B2 + 4θ22)),

x ′
31 = ε/24(−(x3

11 B3)+ 3x11(x
2
12 + 4x2

21 − x2
22)B3 + 18x2

11x31 B3

+18x2
12x31 B3 + 2x12(6x21x22 B3 − Q31)+ 3x31(24x2

21 B3 + 6x2
22 B3

+27x2
31 B3 + 3x2

32 B3 + 4θ33)),

x ′
32 = ε/8(x3

12 B3 + 3x12(−4x2
21 + x2

22)B3 − 3x2
11(x12 − 2x32)B3

+6x2
12x32 B3 + 2x11(6x21x22 B3 + Q31)+ x32(24x2

21 B3 + 6x2
22 B3

+27x2
31 B3 + 3x2

32 B3 + 4θ33)).
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