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Abstract

The Van der Pol - Mathieu equation, combining self-excitation and
parametric excitation, is analysed near and at 1 : 2 resonance, using the
averaging method. We analytically prove the existence of stable and un-
stable periodic solutions near the parametric resonance frequency. Above
a certain detuning threshold, quasiperiodic solutions arise with basic pe-
riods of order 1 and order 1/ε where ε is the (small) detuning parameter.

1 Introduction

In an early but not widely known monograph, Tondl ([1]) formulated the
Van der Pol - Mathieu equation to model various engineering problems.
The analysis in [1] employs harmonic balance and analogue computer
methods. Recently, the Van der Pol - Mathieu equation has played an
important role in various other models of dynamical systems with para-
metric resonance. Momeni et al. ([2]) studied the dynamical behaviour of
charged dust grains near parametric resonance, while Pandey, Rand and
Zehnder ([3]) use the Van der Pol - Mathieu equation to model MEMS
devices. The analysis in [2] however is mathematically deficient and does
not describe all the periodic solutions and bifurcations. The analysis in
[1] and [3] aims at observing a numer of interesting phenomena without
proofs.

In the present paper, we use averaging and the second Bogoliubov the-
orem to obtain a more complete picture of the dynamics in the case of
small self-excitation and parametric excitation. We locate, approximate
and prove the existence of stable and unstable periodic solutions for para-
metric frequency near the 1:2 resonance. Interestingly, we find also stable
quasiperiodic (multifrequency) solutions on increasing the detuning of the
parametric frequency.
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2 Averaging

Following [2], we analyse the Van der Pol - Mathieu equation

d2x

dt2
− (α− β x2)

dx

dt
+ ω2

0(1 + h cos γt)x = 0, (1)

where we assume α, β, h and ω0 to be nonnegative. Our goal is to analyse
this equation for small parameter values. We therefore write α = εα0, β =
εβ0 and h = εh0 with α0, β0, h0 ∈ R+ =

˘
x ∈ R

˛̨
x ≥ 0

¯
. Furthermore,

we consider the parametric excitation frequency to be γ = 2ω0 + 2dε.
This way, we introduce a 2 : 1-resonance with a small frequency detuning,
controlled by the detuning parameter d. We introduce a new timescale
τ = (ω0 + dε)t, for which equation (1) transforms into

d2x

dτ2
+ x =

ε

ω0

»
(α0 − β0 x2)

dx

dτ
+ (2d− h0ω0 cos 2τ)x

–
+O(ε2) (2)

A number of aspects of this equation were discussed in [1]. As usual in
averaging we introduce slowly varying quantities by

x(τ) = a(τ) cos τ + b(τ) sin τ
dx
dτ

(τ) = −a(τ) sin τ + b(τ) cos τ
(3)

with a and b varying slowly in time. This allows us to apply the averaging
method discussed in [4] (for a more fundamental treatment see [5]) to
obtain

da
dτ

= ε
2ω0

ˆ
α0 a− (h0ω0

2
+ 2d) b− β0

4
(a2 + b2) a

˜
+O(ε2)

db
dτ

= ε
2ω0

ˆ
α0 b− (h0ω0

2
− 2d) a− β0

4
(a2 + b2) b

˜
+O(ε2)

(4)

From this point on, we will omit the terms of order ε2 since treatment up
to second order hasn’t revealed any new phenomena; only higher precision
is achieved.

3 Equilibrium points

The system of equations (4) has, next to the trivial equilibrium (a, b) =
(0, 0), four nontrivial equilibrium points. If the four equilibria are hy-
perbolic, according to the second Bogoliubov theorem (sometimes called
”theorem for periodic solutions by averaging”) they correspond with peri-
odic solutions with the same stability characteristics. The theorem can be
found in [6], chapter 6. We follow the formulation in [4], theorems 11.5-6,
where the proof is based on the implicit function theorem.

Theorem Consider the equation

ẋ = εf(t, x) + ε2g(t, x, ε) x ∈ D ⊂ Rn, t ≥ 0 (5)

and suppose that:

a. the vector functions f , g, ∂f
∂x

, ∂2f
∂x2 and ∂g

∂x
are defined, continuous

and bounded by a constant M (independent of ε) in [0,∞) × D,
0 ≤ ε ≤ ε0;

b. f(t, x) and g(t, x, ε) are T -periodic in t (T independent of ε);
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If p is a critical point of the averaged equation

ẏ = εf0(y) (6)

whereas ˛̨̨̨
∂f0(y)

∂y

˛̨̨̨
y=p

6= 0 (7)

then there exists a T -periodic solution of φ(t, ε) of equation (5) which is
close to p such that limε→0 φ(t, ε) = p.
In addition, if the eigenvalues of the critical point y = p of the averaged
equation (6) all have negative real parts, the corresponding periodic solu-
tion φ(t, ε) of equation (5) is asymptotically stable for ε sufficiently small.
If one of the eigenvalues has positive real part, φ(t, ε) is unstable.

Notice that, using the transformation (3) we can bring system (2) in the
desired form (5).

Returning to the nontrivial equilibrium points, we divide these four points
into two pairs, which are labeled symmetric and antisymmetric:

„
a
b

«s

±
= ±

vuut 4

β0h0ω0

 
α0 −

r
h2

0ω
2
0

4
− 4d2

!0@ q
h0ω0

2
+ 2dq

h0ω0
2

− 2d

1A(8)

„
a
b

«a

±
= ±

vuut 4

β0h0ω0

 
α0 +

r
h2

0ω
2
0

4
− 4d2

!0@ q
h0ω0

2
+ 2d

−
q

h0ω0
2

− 2d

1A(9)

We see that for any nontrivial equilibrium point to exist, the reality con-
dition

2|d| ≤ h0ω0

2
(10)

must be satisfied. Furthermore, existence of the symmetric pair demands
that

Γ :=

r
h2

0ω
2
0

4
− 4d2 ≤ α0 (11)

This puts limits on the detuning d of the resonance frequency for the
periodic solutions to exist.

4 Stability

We determine the stability of the equilibria by computing the eigenvalues
at the equilibrium points.

For the trivial equilibrium point (a, b) = (0, 0), we find the associated
eigenvalues λ0

± to be

λ0
± =

ε

2ω0
[α0 ± Γ ] (12)

We see that if reality condition (10) is not satisfied, the equilibrium point
is an unstable focus. If (10) is satisfied but (11) is not, we obtain a saddle
point. If both reality conditions (10) and (11) are satisfied, the equilib-
rium point is an unstable node.
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For the nontrivial equilibrium points, we observe that both points in
each pair exhibit the same stability behaviour, because for each pair, its
position and the system of equations (4) is invariant under the double
reflection (a, b) → (−a,−b). The eigenvalues for the symmetric (λs

±) and
antisymmetric (λa

±) pair are

λs
± =

ε

ω0

»
−1± 1

2
α0 + Γ

–
(13)

λa
± =

ε

ω0

»
−1± 1

2
α0 − Γ

–
(14)

Both points of the antisymmetric pair are stable nodes, while both points
of the symmetric pair are saddle points. The behaviour of the equilibrium
points is illustrated in Figure 1. The relevant bifurcation parameter turns
out to be Γ.

Looking at our transformation (3), it is clear that an equilibrium point
of the system of equations (4) corresponds with a periodic solution of the
original equation (2). Since we have found two stable equilibrium points
(the antisymmetric pair), we can translate this into two stable periodic
solutions (limit-cycles) of equation (2):

x(τ) = ±

s
4(α0 + Γ)

β0h0ω0

 r
h0ω0

2
+ 2d cos τ −

r
h0ω0

2
− 2d sin τ

!
(15)

The behaviour of this periodic solution of x is illustrated in Figure 2.
Notice that the period is equal to 2π for our rescaled time τ ; for the
original time t, the period is 2π

ω0+dε
= 2π

ω0
(1−d ε

ω0
)+O(ε2). As mentioned

before, the rigorous existence of these periodic solutions follows from the
second Bogoliubov theorem, see section 3.

5 Quasiperiodic behaviour

We look for a stable manifold in the (a, b)-plane which is invariant under
the flow of the system of equations (4). We assume this manifold to be
described by a quadric Aa2 + 2Bab + Cb2 = R. This assumption turns
out to be correct, with

A = α2
0 − 2d(h0ω0

2
− 2d) B = α0

h0ω0
2

C = α2
0 + 2d(h0ω0

2
+ 2d) R = 4α0

β0
(α2

0 − (
h2
0ω2

0
4

− 4d2)
(16)

Calculating the determinant of the coefficient matrix, we find AC−B2 =

(α2
0 + 4d2)(α2

0 − (
h2
0ω2

0
4

− 4d2)). We conclude that the quadric is an ellipse
when the reality condition (10) is not met, or when both (10) and (11)
are satisfied. This is equivalent to Γ ∈ iR+ resp. Γ < α0. When condition
(11) is not met (Γ > α0), the quadric describes a hyperbola.
Straightforward calculation shows that all nontrivial equilibrium points
lie on the quadric. This means that several asymptotic solutions in the
(a, b)-plane can be identified:

• When both (10) and (11) are satisfied, system (4) has four non-
trivial equilibria, all of which lie on the quartic describing an el-
lipse. This situation is depicted in Figure 5. The ellipse consists
of four orbits (ae, be), for which limτ→−∞(ae, be) = (as, bs)± and
limτ→∞(ae, be) = (aa, ba)±.
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• When only (10) is satisfied, system (4) has two nontrivial equilibria
(the antisymmetric pair). Each of them is located on a different
branch of the quartic describing a hyperbola. Since both nontriv-
ial equilibrium points are stable, they are positive attractors so all
orbits converge to one of these two equilibria. The symmetry axis
between the two branches of the hyperbola divides the (a, b)-plane in
two stability regions in each of which one of the equilibrium points
is the only attractor. In the caption of Figure 1 we identify the
corresponding subcritical pitchfork and saddle-node bifurcations.

In addition, if the reality condition (10) is not met (no nontrivial equilib-
rium points exist), the quadric (which is an ellipse in this case) contains
a periodic orbit. This follows from the fact that, for these parameter val-
ues, the origin is an unstable focus, while for a, b À 1 (outside the ellipse)
the direction field points inwards. Applying the Poincaré-Bendixson the-
orem to the averaged system (4) yields the existence of a periodic orbit
on the ellipse. This situation is depicted in Figure 6. The periodic orbit
corresponds with a torus in the original system (2) as follows from [5],
appendix C.

The period of this orbit can be found if we write the system of equa-
tions (4) in polar coordinates. Choosing a(τ) = r(τ) cos θ(τ) and b(τ) =
r(τ) sin θ(τ), we obtain

dr

dτ
=

ε

2ω0

»„
α0 −

h0ω0

2
sin 2θ

«
r − β0

4
r3

–
(17)

dθ

dτ
=

ε

2ω0

»
2d− h0ω0

2
cos 2θ

–
(18)

Substituting y(τ) = tan θ(τ), we can solve equation (18), yieldings
2d + h0ω0

2

2d− h0ω0
2

tan θ(τ) = tan

„
ε

2ω0
|Γ|(τ − τ0) + φ0

«
(19)

with tan φ0 =

r
2d+

h0ω0
2

2d−h0ω0
2

tan θ(τ0). Notice that, since (10) is not satisfied,

|Γ| =
q

4d2 − h2
0ω2

0
4

. From (19) we infer that the frequency ωε of this orbit

is ωε = ε
ω0
|Γ|, so the period of the orbit is 2π

ωε
= 2πω0

ε|Γ| .

This means that x(τ) exhibits quasiperiodic behaviour. We can distin-
guish two frequencies: the first one equal to unity for our time scale τ ,
the second one of order ε, equal to ε

ω0
|Γ|. This behaviour is illustrated

in Figure 3; a Poincaré section is depicted in Figure 4. Notice that this
behaviour only occurs when no nontrivial equilibrium points in the (a, b)-
plane exist. This is equivalent to the situation that the reality condition
(10) is not satisfied, so that the detuning |d| is above the threshold h0ω0

4
.

For our original time scale t, the new period becomes 2πω0
ε(ω0+dε)|Γ| = 2π

ε|Γ| (1−
d ε

ω0
) +O(ε).

5



6 Conclusion

We studied equation (1) for small (order ε) values of α, β and h. As in [2]
we considered the main resonance frequency γ = 2ω0 + 2dε, which means
that we are perturbing around the 1:2 resonance. As new features with
respect to [2], we found stable periodic and stable quasi-periodic solutions.
These more complicated modulations, quasiperiodic solutions, arise if the
detuning crosses a certain threshold.
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[2] M. Momeni, I. Kourakis, M. Moslehi-Fard, and P.K. Shukla. A Van
der Pol-Mathieu equation for the dynamics of dust grain charge in
dusty plasmas. J. Phys. A: Math. Theor., 40:F473 – F481, 2007.

[3] M Pandey, R.H. Rand, and A. Zehnder. Frequency locking in a forced
Mathieu - van der Pol - Duffing system. Nonlinear Dynamics, 54:3–12,
2008.

[4] F. Verhulst. Nonlinear Differential Equations and Dynamical Systems.
Springer, 2006.

[5] J.A. Sanders, F. Verhulst, and J. Murdock. Averaging Methods in
Nonlinear Dynamical Systems. Springer, New York, 2007.

[6] N.N. Bogoliubov and J.A. Mitropolskii. Asymptotic methods in the
theory of non-linear oscillations. Gordon and Breach, New York, 1961.

Acknowledgement Following the comments of one of the referees,
we have added more information and clarification to our exposition.

6



Figure 1: Bifurcation analysis of the equilibrium points of the system of
equations (4). The points of the symmetric pair are indicated by s± and
those of the antisymmetric pair by a±. The relevant bifurcation parameter

is Γ =
√

h2
0ω2

0
4 − 4d2. We see that if Γ < α0, four nontrivial equilibrium points

exist while the origin is an unstable node. For Γ > α0, only two nontrivial equi-
librium points exist; the origin has turned into a saddle point. We can therefore
identify a subcritical pitchfork bifurcation at Γ = α0 and two simultaneous
saddle-node bifurcations at Γ = 0.

Figure 2: The periodic behaviour of x(τ), as described by equation (15). The
function is plotted for α0 = 1, β0 = 1, h0 = 2, ω0 = 2 and d = 1. The sign in
(15) is chosen to be positive.
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Figure 3: The quasiperiodic behaviour of x(τ). The function is plotted for
α0 = 1, β0 = 1, h0 = 2, ω0 = 2 and d = 1, while ε = 0.1. Since 2|d| > h0ω0

2 ,
a and b exhibit periodic behaviour. This period of order 1

ε is indicated in the
figure. The initial frequency of order 1 is also visible.

Figure 4: The Poincare section (also known as the ”time=2π”-map or strobo-
scopic map) based on the original system (1), of the quasiperiodic solution of
x(τ) in phase space (x(τ), x′(τ)). The first 13 iterations are shown. In this plot,
ω0 = 1.
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Figure 5: The phase plane of the system (4) has been drawn for α0 = 1, β0 = 1,
ω0 = 1, h0 = 1 and d = 0. In this case, Γ < α0 so all four nontrivial equilibrium
points exist. The quadric, which is an ellipse for these parameter values, is
visible. The four nontrivial equilibrium points lie on the ellipse. For these
parameter values the origin is an unstable node, both points of the symmetric
pair are saddle points and both points of the antisymmetric pair are stable
nodes.
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Figure 6: The phase plane of the system (4) has been drawn for α0 = 1, β0 = 1,
ω0 = 1, h0 = 2 and d = 1. In this case, 2|d| > h0ω0

2 so no nontrivial equilibrium
points exist.. The quadric, which is an ellipse for these parameter values, is
clearly visible. All drawn solutions converge to the periodic elliptical orbit.
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