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The Lemniscate of Bernoulli

Lecture presented at the Congress of Dutch Mathematicians at Delft
on April 6th, 1970; the present translation of the original Dutch text
was published as “The lemniscate of Bernoulli” in For Dirk Struik (ed.
by R.S. Cohen ¢.a., Dordrecht (Reidel}, 1974), pp. 3-14. ©1974 by D.
Reidel Publishing Company, Dordrechi-Holland. It is reprinted here
with permission of Kluwer Academic Publishers.

Introduction

On the evening of Wednesday, May 28, 1969, the Dutch radio network VARA
broadcast a piece of music entitled “The Lemniscate of Bernoulli”. The an-
nouncer, who had to introduce the piece, had rightly considered it necessary to
explain the title. He had therefore consulted van Dale’s Dutch dictionary and
an encyclopedia, and the following announcement was the result of his research:

The lemniscate is the foot-point curve of the equilateral hyper-
bola with respect to the centre, and also the inversion of it, with
respect to the same point; Bernoulli was a Swiss mathematician.

It was clear from his tone of voice that this explanation did not really clarify
matters for him. For me personally, the title of the piece of music was no help
for its understanding; it was a very modern piece for percussion instruments. In
short: those seven minutes of radio program displayed a complete breakdown
of communication between the fields of mathematics, history, and music.

Let us confine ourselves to mathematics and history, and ask how the an-
nouncer could have clarified the notion “lemniscate”. He might have informed
his audience that the lemniscate of Bernoulli belongs to the class of lemniscates
of Booth, which, in turn, are a special sort of cissoids; he could have remarked 1111811
that the lemniscate is a special conchoidal curve, as well as a special Cassini- ] | “ | II I “ |
curve, that the lemniscate belongs to the class of Watt-curves, and that also it
is a Lissajous-curve. He should then, of course, add in each case the defining
properties of the class of curves mentioned.
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; Figure 1. The Lemniscate

3 We may well suppose that after having considered these possibilities of clar-
i ifying the notion “lemniscate”, our announcer would conclude that only televi-
i sion could help him; for his colleagues in that medium could solve the problem
of explanation merely by putting the equation on the screen

el -

(x*+y2)? =al(x? -y}

together with a sketch of the curve (see Figure 1).

And indeed, such an announcement would be a sufficient clarification. For all
those properties of the lemniscate, all those classes to which it belongs, although
perhaps of importance in former times, are now almost forgotien. This is not
necessarily a matter for regret; mathematics is not a cumulative science, not a
science in which one keeps and cherishes all that has once been discovered. For
the mathematician it is often just as well to shake the dust of the past off his
[ feet and go on with his researches unencumbered by the past. And thus the
lemniscate belongs to the mathematics of the past, to the mathematics which,
as the saying goes, is “only of importance to historians”.

Now what does “importance to historians” mean? Is it the task of the histo-
i | rian of mathematics to study that mass of mathematics that is already dead and
buried? Of course not. The historian must have mastery of the mathematics
of the period he studies, but he must not leave it at that. Just as mathematical
research is more than doing complicated sums, historical research uses knowl-
: edge of earlier mathematics as a tool in the setting and solving of meaningful
o problems about mathematical activities in the past. What are these meaningful
_-: problems? Put more generally: which are the problems to which the discipline
of the history of mathematics directs its attention? The history of mathematics
i is still a young field and, therefore, has not yet achieved a consensus on it goals.
Therefore, 1 can only indicate those sorts of problems which in my opinion
should become recognized as the most important.

o To put it less formally: in connection with the lemniscate, I can try to raise
- and partly answer a number of questions which I consider of the sort to be
g studied in genuine history of mathematics.

o

The Bernoullis and the Lemniscate

I Our radio announcer did well to omit the first name of the Swiss mathematician
= Bernoulli, for both Jakob and Johann may be considered as the discover of the
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Figure 2. The Paracentric Isochrone
rall lemniscate. Jakob described this curve in an article which appeared in the Acta
sugh Eruditorum in September 1694;! Johann, Jakob’s brother, did the same in the
orl Acta’s October issue of that year.? It can be considered certain that they wrote
ota these articles independently of each other, since neither would allow the other to
For be in a position to use his unpublished research. Here arises the first question:
f his how is it possible that two mathematicians independently of each other found
the and studied the same curve at almost the same time? The answer to this question
rich, is easy: they found the same curve because they studied the same problem with
the same set of tools,
isto- The problem concerned the so-called paracentric isochrones, a name which
and Leibniz gave to curves with the following property: A point M (see Figure 2)
atics is supposed to move along the curve CAM B in a vertical plane, as if under the
tical influence of gravity. If the form of the curve CAM B is such that, during the
owl- motion of M along it, the radius r = CM varies linearly with the time, then
igful CAM B is a paracentric isochrone.
igful The problem of determining the paracentric isochrones was publicly pro-
sline posed by Leibniz in 1689.2 A long time passed before Johann and Jakob Bernoulli
atics solved it. We know that around 1692, Johann had reduced the problem to the
oals. following differential equation:
nion
(xdx +ydy)Wx =(xdy-ydx}v/a.
raise
o be But this is nothing more than a translation of the conditions of the problem into
differentials in rectangular coordinates; the real work was yet to be done. The
first step beyond this was Jakob's achievement in choosing new variables which
could yield differential equations with separated variables. The first equation
was
cian dr _ adz
f the var ~ Jaz(a-z?)’
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where r and z are as in Figure 2 (notice that z is not a cartesian coordinate).
Jakob transformed this equation into

i_ 2adu
N T

by the formal substitution az = u?.

The left-hand sides in (2) and (3) are integrable. You recognise the right-
hand sides in both equations as elliptic integrands which cannot be integrated
in closed form. We could therefore have expected that, afier some further
research, Jakob (as well as Johann, who had learned these differential equations
from an article by Jakob in the Acta of June 1694) would have left it at that,
considering the problem in differential equations as having been “reduced to
quadratures”. This, however, was not the case; Jakob, as well as Johann, sought
to interpret the right-hand sides as arc-length differentials of appropriate simple
curves. And this research led them to the lemniscate.

Johann considered an appropriate multiple of the right-hand side of (2) and
set it equal to an arc-length differential:

The task is then to discover expressions U(z), V{z) satisfying (4). Johann found
that such expressions are

Ulz)=vaz +zz V(z)=+Vaz -zz,

as one may verify by differentiation. By eliminating z in (5) one sees that U
and V are the coordinates of the algebraic curve

(Ur+ V) =2a4(U* - V),

that is, the lemniscate. Thus the right-hand side of (2) is interpreted as the
arc-length differential of an appropriate simple algebraic curve: the lemniscate.

In his article of October 1694 Johann described how the paracentric isochrone
can be constructed if one supposes as known the arc-length function for the lem-
niscate. His article is entitled “Simple construction of the paracentric isochrone
by rectification of an algebraic curve”.

Jakob’s result comes out of his work on a more general problem, namely
to find classes of curves with algebraically simple arc-length differentials. He
considers curves (U, V) with

U=+vbzm4czn, V=1vbzm—czn,

For b = ¢ = 1 and n = 2m these are lemniscates. In that case the arc-length
differentials are

z8-ld:z
dSL=—\/—Iﬁ
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For m = 2 one has
dS[_ =

the right-hand side of (3).

In the same way as Johann, Jakob used this result in his article of September
1694, which bears the title “Construction of the paracentric isochrone by way
of rectification of an algebraic curve”. In this article Jakob gave the lemniscate
its name, which means something like “braided band™.

Constructions and representations

Apparently both brothers considered it extremely useful to invent constructions
for transcendental curves—in this case for the paracentric isochrone—and, in
particular, constructions which assume as given an arc-length function of a sim-
pler curve. The question which now arises is: why? Let us first make sure that
we have here something more than a special hobby of the Bernoullis: Leibniz
also gave a construction of the paracentric isochrone by means of rectification;
and Huygens gave a constructions of the catenary by means of the rectification
of the parabola. These constructions are very remarkable indeed.

For if one is willing to accept an arc-length function as given, why not an
area-function? That is to say, why did one not just leave the integral there? Is
not [ f(x)dx simpler than [ +/1+(f"(x))*dx? The possibility to leave it at
area functions was indeed recognised: it was called “construction by means of
quadratures”. But, as Leibniz wrote to Johann Bernoulli, it is better to reduce
quadratures to rectifications because “the dimension of the line is simpler than
the dimension of the plane”. And often we read that the reduction of quadra-
tures to rectifications is useful because arc-lengths are more easily measured
than areas: one can take a chord and stretch it along the curve, thus measuring
1ts length.

From these quotations we can see that we must state our questions more
precisely. Apparently we are dealing with construction methods for curves,
primarily transcendental curves. And certain methods of construction are pre-
ferred to others. So we must ask; what was the importance of these construction
methods? How did they arise? How did they influence mathematical research?
Of this influence the case of the lemniscate is an example: its discovery was
the result of the commitment of the Bernoullis to constructions by means of
rectifications, as a solution of problems involving differential equations. As we
have seen, the problem of the paracentric isochrone was only considered solved
if a construction of the sought curve was given. And indeed, the importance of
constructions in the solution of problems concerning curves lay in its use for
the representation of curves. As such, this notion has vanished as a result of
the universal acceptance of representation by means of formal expressions.

To gain insight into the role of constructions in seventeenth century math-
ematics we have, therefore, 10 go into the methods used in that period for the
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representation of curves. Up to the beginning of the seventeenth century the
class of curves studied by geometers was rather small. Aside from the well-
studied conic sections, there were a few special curves, such as the conchoid of
Nicomedes and the quadratrix of Dinostratos. The representation of these var-
ious curves was accomplished by several means: either by a defining property;
or by an imagined mechanical device for their delineation; or by a recipe for the
construction of individual points on them; or by a combination of these. This
state of affairs was changed by Descartes, who introduced equations into the
study of curves. This change, however, was restricted to the class of algebraic
curves. The nonalgebraic curves, which after Leibniz we call transcendental,
were excluded by Descartes from geometry and relegated to the status of “me-
chanical”.

On the representation of algebraic curves Descartes’s innovation had the
result that, gradually, the representation of curves by their equations was con-
sidered as equivalent—and later even as preferable—to the representation of
curves by defining properties, construction recipes, or mechanical delineation
devices. This was a slow process and a great deal of the mathematics of the carte-
sians can be characterised as the exploration of the relations between defining
properties, construction recipes, delineation devices, and equations. Descartes’s
introduction of formulae also had another effect: a considerable increase in the
number of algebraic curves that were studied. For the powerful new tool of
algebraic techniques created (in the usual fashion) a new set of problems for its
exploitation.

In the case of the transcendental curves the development was different. The
number of transcendental curves that were studied also increased, but this
growth was not caused by the application of an appropriate system of sym-
bols and formulae. In this case it was the study of a certain important class
of problems which often led to these curves. These were the so-called inverse
tangent problems; they originated, as the name indicates, as the inversion of a
well-known, even classical problem, the tangent problem.

The tangent problem involves the construction of lines tangent to a given
curve; the inverse tangent problem seeks a curve whose tangent lines satisfy a
certain given condition. Such problems were set in geometry, and also in other
fields, notably in mechanics, where the study of accelerated motion often led to
inverse tangent problems. Translated into modern mathematical language, the
inverse tangent problems are first-order differential equations. It is, therefore,
not surprising that, even if the given condition of the tangent lines is formulated
algebraically, the solution of an inverse tangent problem will often be a tran-
scendental curve. And in the absence of an equation, the seventeenth century
mathematician had to represent the solution in that case by some other means,
usually a construction.

A
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y the Two examples

well- For illustration, let me show you two such constructions. The first example
id of is Leibniz’s construction of the tractrix (1693).% The tractrix is the curve with
:var- constant tangent a (see Figure 3); it is the path of a body which is dragged over

)er;t;r; a resisting horizontal surface by a cord one end of which moves along a straight
rine .
line.

ULt Leibniz’s construction (see Figure 4) proceeds as follows: starting from a

ct;rtahif: pair of perpendicular axes and a circle quadrant with radius &, he can construct
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Figure 4. Leibniz’s construction of the Tractrix
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to every abscissa ¥ a point z via the points # and v. These points =z lie on a
curve which Leibniz calls the /inea tangentium. The construction of the tractrix
itself is now performed by means of the quadrature of the linea tangentium: the
tractrix ordinate x corresponding to abcissa y satisfies ax = area yBz, and is
therefore “constructible” if the area y Bz is known, that is, if the quadrature of
the linea tangentium is known. Leibniz asserts that this quadrature is dependent
on the quadrature of the hyperbola; and so considers the tractrix problem as
adequately solved.

The second example concerns Huygens’s construction of the catenary,’ the
form of a chain suspended from two points. The construction dates from 1693.
With respect to a pair of perpendicular axes as in Figure 5 Huygens draws a
parabola with vertex 4 and focus F. To determine the ordinate v of the cate-
nary corresponding to abscissa x he constructs a point # on the horizontal axis
such that Fx = Fu; he draws the tangent uv to the parabola; and finally he de-
termines the difference between the arc-length Av and the length of the tangent
uv. This difference y = Av — uv is tie ordinate of the catenary corresponding
1o the abscissa x.

This construction proceeds by means of a rectification. Huygens knew well
that the rectification of the parabola in turn depends on the quadrature of the
hyperbola. He could, therefore, have expanded this construction to a construc-
tion by means of the quadrature of the hyperbola. From the fact that he did
not do so, we may conclude that he thought the representation of the catenary
by means of the arc-length of the parabola as good as, or perhaps even better
than, the representation by means of the quadrature of the hyperbola.
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Figure 5. Huygens’s construction of the Catenary
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na Criteria of adequacy
rix
the Of course there are often several different constructions possible for the same
| is curve. In these circumstances it was necessary to apply certain criteria of ade-
of quacy for assessing the merits of particular sorts of constructions. These criteria,
ent rarely stated explicitly and never as absolute conditions, nonetheless strongly
as influenced the methods of research; and thus they are a rewarding field of his-
torical study. Through them, we can see which relations were thought self-
the evident, and which difficult; which problems were considered important; and
03, how the mathematical objects themselves were conceived. The criteria under-
s a went changes in the course of time, and from these changes we can learn about
te- the changes in mathematical concepts and ways of mathematical thinking.
Xis The criteria of adequacy for constructions were twofold. On the one hand
de- one required the transcendental step in the construction (in our examples the
2nt quadrature and the rectification) to be performed on a simple standard curve.
ing Hence the endeavour to reduce constructions to quadratures of the hyperbola or
the circle; or, as we would now say, to logarithmic or inverse trigonometric func-
rell tions. On the other hand certain practical considerations play a curious role.
the Such practical considerations led Johann and Jakob Bernoulli to the lemniscate;
uc- they considered construction by rectification better in practice than construc-
iid tion by quadratures. As an example of these practical considerations there is a
ry passage in which Jakob describes a method of construction which he even con-
ter siders better than the reduction to rectification. This method uses curves “given

by nature”, such as the catenary. Jakob remarks® that before the draughtsman
has put the first lines of the construction of the hyperbola on paper, nature has
drawn a catenary: one needs only to suspend a small chain along a vertical piece
of paper.

The catenary is known to be constructible from the quadrature of the hy-
perbola. Conversely, therefore, the quadrature of the hyperbola is constructible
from the catenary, and thus all other curves which depend on the quadrature
of the hyperbola can be constructed by means of the catenary. Therefore it
is, according to Bernoulli, useful to reduce constructions—if possible—to the
catenary rather than to the quadrature of the hyperbola.

Questions

Apparently the mathematician of the seventeenth century saw his mathemat-
ical objects and operations—curves and constructions—quite differently from
ourselves. In the development of operations and procedures the idea of prac-
tical applicability played a role, and in this context curves were either drawn
lines, stretched cords, or suspended chains. In representing curves the seven-
teenth century mathematician applied neatness requirements which originated
in geometrical, almost mechanical, considerations, and which therefore were ]
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quite different from the neatness requirements which the mathematicians of
later times made in the representation of curves.

And this different context, this different way of conceiving mathematical
objects and operations, had a considerable influence on the direction of math-
ematical investigation in the later seventeenth century.

Now a large number of questions arise. Did one actually perform these
constructions mechanically? Or was this way of thinking a meaningless remnant
from some former time? If so, where did this way of thinking originate? Can we
study and understand the process in which these ways of thinking died out and
were replaced by a2 more abstract and formalistic style? Can we pass judgment on
the advantageous and disadvantageous side effects of this process of transition?

History

I will confine myself to raising these questions. This is not only for lack of
time, but also because I do not know the answers; I could only give you more
illustrations of these processes. And after all I did not promise you more than
1o raise questions which fascinate me and which I consider genuinely historical
questions. I hope to have convinced you that the study of these questions is
necessary for the understanding of the mathematics of the period under consid-
eration. If so, then I have convinced you of the importance of these questions
as historical questions. The history of mathematics belongs to the discipline of
general historical study. It is not an auxiliary science for mathematics. One
should not pursue historical studies on mathematics only in order to dig out old
theorems which provide diverting literature for the modern mathematician or
which might even be handy in modern theories.

If we grant that the study of the history of mathematics should be concerned
with the many different and ever changing conceptions of mathematical abjects
and operations, and that it should search for understanding and explanation
of the directions of the earlier development of mathematics, we must then ask
whether such a history would be of any use for the mathematics of the present
day?

I think it would. For the processes of change and evolution in the objects
and methods of mathematics, whereby problems and theories arise, flourish
and decline into oblivion, are present now as much as at any other time in
history. And perhaps the study of the history of mathematics can contribute to
the understanding of these processes, by which the mathematics of the future
is shaped.
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