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Comment apprécier les techniques indiennes
pour dériver des formules mathématiques?

Ce chapitre utilise les mathématiques indiennes pour montrer les erreurs qui
résultent d’une vision anachronique et européocentrigue de la nature des mathé-
matiques. Un examen de la jyotihastra, la branche des sciences védiques qui
concerne la connaissance astronomigue, révéle que les différences entre mathé-
matigues indiennes et européennes se situent au moins & deux niveaux : d'une
part, une différence évidente dans la présentation des résultats mathématiques
(par exemple, la forme poétique adoptée), d’autre part une différence encore
plus déterminante dans la méthodologie. Si les arguments déductifs étaient cer-
tainement présents dans de nombreux raisonnements mathématiques indiens, ils
n'étaient pourtant pas nécessaires. Beaucoup de résultats furent trouvés et ac-
ceptés sur la base d’une technique ad hoc.

Trois exemples de formules d’approximation incluant les fonctions trigonomé-
triques développées par les mathématiciens indiens & partir des cordes grecques
(dewx réussies et une défectueuse) sont utilisés ici pour montrer la maniére dont
les résultats étaient trouvés, mettant en évidence les forces et les faiblesses propres
4 cette approche,

Considérer les mathématiciens indiens comme des Grecs incompétents, ainsi
que le fit Pérudit musulman du xi° siécle al-Biruni, n’aide pas a compren-
dre les processus réellement en jeu. Il en va de méme de la réhabilitation des
mathématiciens indiens par des défenseurs cherchant avant fout a leur attribuer
les mémes connaissances déductives que celles connues en Occident. Ces éva-
luations, pour différentes qu’elles paraissent, négligent I'épistémologie propre a
la mise en ceuvre des textes indiens.

is made more difficult by the fact that some features of European mathe-

matics, inherited from the Greek tradition and now universal in mathema-
tical research, are often considered essential to the nature of mathematics itself.
‘Mathematical thought’ comes to mean the techniques that mathematicians now
use, and the history of mathematics becomes the process of searching out the de-
velopment of those techniques in the past. As aresult, amathematical tradition not
sharing these features is likely to be perceived as mathematics queerly distorted,
incompetently or improperly structured; or else as mathematics in disguise, with
‘normal’ mathematical processes concealed by a superficial difference in style.
An example of the possible misunderstandings arising from such assumptions is
furnished by some problems from Indian mathematics.

T HE TASK OF SEPARATING THE MYTHS OF EUROPEAN MATHEMATICS from its history

Indian mathematics and historians

The traditional Indian approach to the mathematics associated with jyotihsastra
(the branch of the Vedic sciences concerned with astronomical knowledge), which
was prevalent among Hindu astronomers from earliest times through the nine-
teenth century of our era, is apt to appear peculiar and unreliable to the modern
Western observer. Sometimes this tradition is criticized as inferior in quality to the
Greek and Islamic works that shaped much of European mathematics; sometimes
it is defended as essentially equivalent, or in some cases superior, to its Western
counterpart, although dissimilar in some points of style. It is suggested here
that in fact the difference between Indian and Western mathematics is twofold:
in the first place, there is an obvious difference in the presentation of mathe-
matical material, which serves to conceal an even more significant difference in
methodology.

The most apparent feature of the difference in presentation is the fact that
mathematical jyotih§astra is preserved in the form of poetry. This corpus of
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mathematical knowledge consists primarily of verse collections of briefly stated,
and sometimes ambiguous, rules and formulas related to astronomical or astrolo-
gical calculation. Since these computational rules are supposed to be memorized,
the aim is to provide an aide-mémoire rather than an expository treatise. There are
drawbacks inherent in this compressed format: owing to the demands of Sanskrit
prosody, in these texts vagueness of terminology is a virtue, and precision a
luxury. The form of a mathematical statement has to be fiexible enough to fit the
metre. In addition, there is no room provided in the written works for proof, so the
statements in the verses are not backed up by a structure of deductive reasoning.
The familiar hierarchy of the Euclidean tradition — definitions, axioms, and
theorems progressing in complexity — is entirely absent from the treatises, and
rare in supplementary works. Commentaries in prose and verse do sometimes
derive or demonstrate the results they discuss, but their function is more usually
limited to paraphrasing the text and glossing technical terms.

Thus a crucial task in the study of Indian mathematics is the problem of re-
constructing the processes of mathematical discovery. How were these concise
rules derived, or at least, why were they believed? What evidence was required to
convince a mathematician of the truth of some result? The silence of the texts on
this subject makes many reconstructions possible. But the prevailing tendency of
the historian is to assume the existence of a demonstration, whether geometrical
or algebraic, like those familiar in the Western tradition: that is, one in which
any mathematical statement is logically related to some other statement known
to be true. It is presumed that these derivations must have seemed as necessary
to an Indian mathematician as they would to a Greek one. One historian claims
that the presence of proofs in some commentaries “‘shows Indian mathematicians
too were not satisfied unless they could prove the results they used”. Where
demonstrations are not given, the conclusion is that “the explanation and the ra-
tionale were left to oral instruction” (Sarasvatt AMMa 1979: 3). But it is hard to
see how a principally oral tradition could have been depended upon to preserve
proofs satisfactorily. Complicated demonstrations would almost certainly have
had a short lifespan in such an environment, leaving the verse formulas with-
out any justification of their validity, and hence useless to mathematicians who
demanded such justification.

A somewhat different approach to considering the character of the Indian
methodology is illustrated in this paper. It assumes that while deductive argu-
ments were almost certainly present in much of Indian mathematical reasoning,
they were by no means required; and many quite sound results were achieved
and accepted on the basis of a more ad hoc, intuitive technique. Some argu-
ments in favor of this approach can be drawn from the following examples of
approximation formulas (which provided useful computational shortcuts in com-
plicated calculations) involving the trigonometric functions developed by Indian
mathematicians from the Greek chords.
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Approximation formulas

Brahmagupta (b. 598) in his Brahmasphutasiddhanta 14, 23-24 gives the follow-
ing formula, of which a somewhat different version is found in his contemporary
Bhaskara I's Mahabhaskariva:

bhujakotyamsSonagund bharddhamsas taccaturthabhigonaih |
paricadvindukhacandrair vibhajita vydasadalagunitdh ||23||

tajjye paramaphalajydsangunita tatphale vina jyabhih |

The degrees of half the circle diminished and multiplied by the degrees of
bhuja or koti [half-chords), divided by 10125 diminished by a fourth part
of that, multiplied by the radius, are the sines of those [bhuja/kori arcs],
without sines. (BRAHMAGUPTA, Brahmasphutasiddhdnta: 243)

From this we rewrite the rule as the following approximation to the sine function,

well known in various forms from medieval Indian treatises, but never accompa-
nied by a proof:

) Sing ~ —R6(180—-6)
40500 — 8(180 — 0)

where R is the radius of the standard circle and Sin8 = R sing.

As noted by Havasti (1991: 46), the above formula is consistently accurate
to within 0.2% error. The excellence and ingenuity of this algebraic rule have
inspired many conjectures as to its origin. A geometrical derivation has been
offered by INAMDAR (1950) and discussed by Gupta (1967), as well as by Hayashi.
[t relies on the fact that the length of an arc of a circle is greater than that of the
chord subtending it to produce the following inequality:

]
R
FIGURE 1
1 2R
Sind ~ Crdé - Crd(180 — 8)
) N 2R _ 2R 360\°
C8 C(180-9) ~ 4(180—6) \ C }
360 360

where C is the circumference of the circle.
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The inventor of the rule is then assumed to have replaced the above inequality
by the approximation

o 1 2R (360 2+
sne Poaso—e)\ C d

and then to have used the known values of Sin @
Sind =R for 8 =90,
R
Siné = 5 for 6 =30,

to solve for the constants p and ¢ as follows:

10125 ( €\ 1
P=%r (360) A Y
Substituting p and g in equation (3) and solving for Sin 8 yields equation (1).

In short, we imagine the inventor considering the half-chord or sine function
in terms of the geometrical relations among the sine and other chords and arcs of
a circle, and then adjusting the resulting expression so that it is exact for § = 30
and 6 = 90. This is a very reasonable hypothesis, except that, as Hayashi points
out, the initial idea of solving for the inverse of Sin# is perhaps not an obvious
one. Hayashi suggests that a clue may lie in Bhaskara I's description of his
approximation as “the computation without [225], etc.” This is a reference to the
common practice in Indian treatises of providing values of Sin & for 8 at intervals
of 225 minutes, or 3;45 degrees. The texts also frequently supply lists of Sine-
differences, or values of Sinf — Sin(d — 225'), for use in linear interpolation.
Relying on the small-angle approximation, they give Sin(225") = 225, where
R = 3438; so the first (non-zero) Sine and the first Sine-difference are both 225.
Hence a “computation without [225), etc.” is an expression for Sine that avoids use
of linear interpolation with the Sine-differences. Hayashi notes that 40500 may
be rewritten as 180 - 225, and proposes that “the origin of [this approximation] is
ultimately related to Aryabhata’s theory of trigonometry”, but no details are given.
However, in view of the fact that Brahmagupta also characterizes this rule as a
way to derive the sine “without sines,” the actual presence of 225 in the formula
may not indicate a direct theoretical relationship between this approximation and
the function it replaces.

A different approach to the derivation of the same formula is proposed by
Gupra (1967: 13). He notes that the behavior of the sine function is qualitatively
similar to that of the function

@) p = 6(180 —6),

which in fact is explicitly defined by Bhaskara IT in his version of this approxima-
tion given in the Lildvari (212-213). His sixteenth-century commentator Ganesa
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points out that this function increases with the sine and reaches a maximum at

the same point. Gupta suggests that the function 3-% was accepted as a first

approximation to % and then modified to agree exactly with the known value
at § = 30. Following Gane$a’s hint that “some trairdsika [rule of three] was
applied”, he rewrites the equation

p Sin#@ 5 1
8100 R 9 2
(5) : —— =
p-Sind  Siné 5 1
8100.R R 18 2
to yield equation (1).

This is a very plausible conjecture, although it is by no means the only possible
one (Gupta in fact offers three other hypotheses besides the geometrical one
mentioned before). Again, the source of the first intuitive step — in this case,
realization of the resemblance between the sine function and p — remains a
puzzling quv::sticm.l Nonetheless, this derivation seems to be the simplest so far
proposed for this approximation, and may be simplified even further by treating
the procedure semewhat less formally, as follows: Suppose that the inventor of
the formula, having arrived at the first approximation &, computes the value
for = 30, producing $%2. Knowing that the desired value is 1, he commences
to modify the proportion by multiplying the numerator by some integer n and the

denominator by n 4 1. Successive experiments with the factors % %, and ‘51 yield

i Tans, and 7520 respectively. But the denominator of the last result differs

from the required value by 4500, which is just p(30); so the inventor, perhaps
after confirming his guess by checking other values of 8, accepts as a general rule
the approximation

©) Siné _ 4p

R 581000 —p
This conjecture, like the others, though it may be reasonable, is impossible
to prove. But this approach of hypothesizing a quite intuitive, experimental
methodology is not only consistent with the apparent lack of emphasis on formal
deduction, but can be usefully applied to the reconstruction of other discoveries.
One of these, another trigonometric approximation, is mentioned by Bhas-
kara II (b. 1114) in the Karanakutihala (and, to my knowledge, nowhere else):
dasabdhyanvitdksaprabhdsagstibhdgo
"ksakarndnviias tena bhaktdksabha 5a |
khanandahata daksinah syuh paldmsah
A sixtieth part of the equinoctial shadow increased by 410 is increased
by the equinoctial hypotenuse. The equinoctial shadow is divided by this
[anlq’] )multiplied by 90. (Buaskara II, Karanakutihala: 2, 16 a~c and
P- 5

1. It is intriguing to note that the fact that p reaches a maximum at ¢ = 180 — # might have been
known to the authors of the ancient geometrical works, the Sulbasiras, in relation to the maximization
of the area of a rectangle; but that is only speculation.
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The commentary which is provided by Ekanatha (ff. 1370) consists of a worked
example (EKANATHA, Karanakurahalasika: f. 16) that guides the interpretation of
the verse to the following formula:

90.5‘0

e e
T 60

where ¢ is the local terrestrial latitude, 5o the shadow at noon on the equinox of a
standard gnomon of length 12 digits, and %, the hypotenuse of the right triangle
formed by the shadow and the gnomon. This astronomical rule is easily seen to
be equivalent to a more general approximate trigonometric identity:

Sun

I

FIGURE 2

90Sin 6
Siné + %2 Cos#
60

(8) g~
R+

The formula in equation (7), like that in equation (1), is an ingenious way of
obtaining the desired quantity directly, without the use of a sine table, and in
addition is extremely accurate. For very high terrestrial latitudes (about which no
Indian astronomer would be concerned in any case}, the error is somewhat worse
than 1%, but up to ¢ = 60 itis approximately 0.01%. An attempt has been made
by a nineteenth-century editor of the Karanakutithala to derive this rule from the
previously given sine approximation (BHAskara II, Karanakutiahala: 17-18), but
the relationship between the two formulas is complicated and contrived. More
simply, let us suppose that the inventor of this rule (who, as far as we know, is
Bhaskara II himself), in searching for a useful way to relate ¢ and the length of
the equinoctial shadow, chose as a first approximation the following:

¢ __ S
®) 90"k
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Since, as is apparent from Figure 2, % = S"—;ﬁ, it is evident that this formula
is quite crude. Bhaskara therefore sought to improve it by adapting it to fit
specific cases. Choosing the simple cases of ¢ = 45, s = g = 12, and ¢ = 30,
so = ko/2, and using the customary sexagesimal notation for fractional quantities,
he arrived at

so 6,56 ﬁ l
ke 1%52° 90 3

He recognized that this sine approximation to a linear function worsened for
larger values of ¢, increasingly overestimating the exact result. It was therefore
necessary to add to the denominator some term that increased with ¢. Such a
term can'be found in each case by solving the following expression for x:

$ _ _So
90  ky+x

(10)

For the case of ¢ = 45, this yields x = 7; 2, and for ¢ = 30, x = 6; 56.
But the discrepancy between these values is very close to one-sixtieth of the
difference between the corresponding shadows; so Bhiskara simply added the
required difference, 6; 50 plus one-sixtieth of sy, to the denominator. Again, he
presented this solution as general, producing the following formula for any ¢:

S
o TR v
O+E+ ]

which when rewritten in decimal notation is just equation (7).

Analogy, rigour, result:
another example

We have examined two samples of admirably successful results of a non-rigorous
method of mathematical inference. We may wonder what happens when a re-
semblance between specific cases is misleading and the analogy inferred is false.
In fact, the inability of this kind of method consistently to prevent such errors can
perhaps be illustrated by a result preserved in the Aryabhatiya of Aryabhata. This
work, written in the late fifth century Ap, is one of the earliest and best known of
Indian mathematical treatises. In verse 6 of the second chapter, the author says:

tribhujasya phalasariram samadalakotibhujardhasamvargah |
ardhvabhujatatsamvargdrdham sa dhanah sadasririti (6|
The area of a triangle is the product of the perpendicular and half the

base. Half the product of the area of that and the height, that amount is a
six-edged [solid). (Arvasnata, Aryabhativa: 39-40.)
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This gives the following formulas for the area A of a triangle of base & and
altitude 4, and for the volume V of a triangular pyramid with a base of area A
and height A:

1
12 = —hb,
(12) A=3

(13) V= %hA.

While equation (12) is true, equation (13) is clearly incorrect: it should be
V = 1hA. This error, combined with the juxtaposition of the two formulas in
one verse, suggests that in this case reasoning by analogy led Aryabhata astray.
Realizing that the area of a rectangle of base b and height £ is just hb, and that the
volume of a corresponding rectangular solid is A A, he reasoned that a triangular
pyramid is to a rectangular solid as a triangle is to a rectangle, and erroneously
took the volumes of the former to have the same proportion as the areas of the
latter.

Some effects on perception and transmission

This manner of doing mathematics, therefore, if it is as we have reconstructed it,
is both strengthened and weakened by its ‘intuitive’ character. Its flexibility is an
advantage in that correct results are intuitively reasonable and simply expressed,
and require no laborious proofs before they can be put to use. On the other hand,
incorrect results that look equally reasonable and simple may not be detected as
errors. A mathematics thus lacking the restrictions and the reliability of deductive
proof is naturally difficult for a mathematician trained in the Euclidean tradition
to accept. The eleventh-century Muslim scientist and scholar, al-Birini, who
resided in India for several decades, had this to say about the indigenous science
of the land of his exile:

The Hindus had no men of this stamp [i.e., equal to the Greek philoso-
phers] both capable and willing to bring sciences to a classical perfection.
Therefore you mostly find that even the so-called scientific theorems of the
Hindus are in a state of utter confusion, devoid of any logical order, and in
the last instance always mixed up with the silly notions of the crowd [...]
and I can only compare their mathematical and astronomical literature, as
far as I know it, to a mixture of pearl shells and sour dates, or of pearls and
dung, or of costly crystals and common pebbles. Both kinds of things are
equal in their eyes, since they cannot raise themselves to the methods of a
strictly scientific deduction. (aL-BiRot, India: I, 25.)

And he claims to have made Indians themselves realize the inferiority of their
system to that of Greek science:
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On having made some progress [in understanding Indtan learning], 1 began
to show them the elements on which this science rests, to point out to
them some rules of logical deduction and the scientific methods of all
mathematics, and then they flocked together round me from all pars,
wondering, and most eager to learn from me. (ALBRROM, India: 1, 23.)

But despite this demonstration of enthusiasm, al-Biriin1 does not seem to have
inspired a mathematical revolution among the Indians, who persisted in the use of
their own techniques. As the preceding remarks make clear, al-Birini was far from
seeking a sympathetic understanding of these techniques. It is doubtful whether
he ever viewed Indian scientists as anything but rather incompetent Greeks; for
in his presentation of the results of the treatises he studied, he commends those
that are corroborated by the deductive system with which he is familiar and
deplores those that are erroneous or ‘unscientific’. For al-Biriini, it appears,
the successes of Indian science had to be the result of some attempt at what he
knows as scientific deduction; and its failures were produced by the intervention
of idolatry or stupidity that interfered with correct deduction. He did not believe
— and by his own account, he did not think that even his Indian colleagues could
believe — that a non-rigorous, non-deductive scientific method might possess
any advantages or produce worthwhile results.

This attitude is interesting in light of the development of the Islamic mathema-
tics that was later assimilated by Latin Europe. The influence of classical Greek
mathematics on the structure, if not always the content, of these works is apparent
in the presence of, e.g., geometrical proofs. This is hardly surprising, since much
Islamic mathematics was directly inspired by the Greek works that the Muslims
collected and translated. But it should be bome in mind that Indian mathematics
too made its appearance early in Islam, with translations of Indian works into
Arabic beginning in the eighth century. And Islamic works freely incorporated
developments such as the Indian decimal numerals and the sine function, but
without adopting the style of the Indian siddhdntas. There has been speculation
that this may have affected the development of Islamic mathematics:

From the time of Brahmagupta the Indians had a much better system of
algebraical notation than the Greeks and had gone further that the Greeks
in general methods for the solution of indeterminate equations. Arabic
adoption of Indian methods in algebra would have led to a much more
rapid development of algebra in Europe. Were they ignorant of these Indian
methods, or were they attracted rather to the more practical and geometrical
Greek form of algebra than to the more speculative and generalizing Indian
algebra? (CLark 1937: 368.)

The preference for a Greek over an Indian technique may be due at least in part
to ease of comprehension for strangers to the tradition. As al-BiriinT complains
about the Sanskrit verse treatises:

Now it is well known that in all metrical compositions, there is much
misty and constrained phraseology merely intended to fill up the metre
and serving as a kind of patchwork, and this necessitates a certain amount
of verbosity [...] From all this it will appear that the metrical form of
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literary composition is one of the causes which make the study of Sanskrit
literature so particularly difficult. (aL-BirOM, India: 1, 19.)

The prose exposition of Greek treatises was doubtless easier to interpret. On the
other hand, as the previous remark suggests, it may have been the mathematical
style itself that influenced the choice. We do not know for certain what most
Islamic scholars’ opinions on the relative merits of Greek and Indian mathematics
were; al-Biriini, as he himself points out, is unusual in attempting to analyze rather
than absorb Indian knowledge, and his views are no doubt influenced by his own
training in the Greek methodology. But it seems reasonable to suppose that the
axiomatic deductive method, with its capacity for systematic development, simply
proved more appealing than an intuitive approach.

The influence of the axiomatic deductive method, now accepted as indispens-
able to mathematicians, has in its turn affected the perception and understanding
of Indian techniques. As we have seen, many scholars expect logical foundations
for mathematical results, and if such verification is not found, the results may be
disparaged as incoherent jumbles of miscellanea. One historian, concurring with
al-Biriin’s assessment, remarks that “the work of Aryabhata is indeed a potpourri
of the simple and the complex, the correct and the incorrect” (Boyer 1968: 233).
This is undeniably true from the point of view of modern mathematics, but does
not help us to understand the thought processes of Indian mathematicians, unless
we rest satisfied with calling them confused and incomprehensible. The situation
is notimproved by ‘defenders’ of Indian science who try to ascribe its successes to
a hidden foundation of very advanced deductive knowledge: e.g., the suggestion
(KuLkarn1 1988) that a fourth-century ec rule for the dimensions of a water-clock
may indicate contemporary knowledge of hydraulics and integral calculus! In
effect, these different evaluations reflect the same premise: namely, that the In-
dian and Western traditions share in essence the same criteria for mathematical
thought, though they may not be equally successful in applying them. The texts
themselves, being generally silent on the question of origins and methods, cannot
explicitly contradict this view. But one should be very cautious about imposing
an essentially Greek mathematical philosophy upon them, whether to their credit
or discredit. It may be more just to say of the traditional Indian mathematician
what the mathematician J. E. Littlewood said of his colleague Ramanujan: “if
a significant piece of reasoning occurred somewhere, and the total mixture of
evidence and intuition gave him certainty, he looked no further.”
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