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Nonmonotone Satura  on Profi les 
for Hydrosta  c Equilibrium 
in Homogeneous Porous Media
Recently, the observaƟ on of nonmonotonicity of traveling wave soluƟ ons for saturaƟ on 
profi les during constant-fl ux infi ltraƟ on experiments has highlighted the shortcomings 
of the tradiƟ onal, seventy year old mathemaƟ cal model for immiscible displacement in 
porous media. Several recent modifi caƟ ons have been proposed to explain these observa-
Ɵ ons. The present paper suggests that nonmonotone saturaƟ on profi les might occur even 
at zero fl ux. Specifi cally, nonmonotonicity of saturaƟ on profi les is predicted for hydrostaƟ c 
equilibrium, when both fl uids are at rest. It is argued that in tradiƟ onal theories with the 
widely used single-valued monotone consƟ tuƟ ve funcƟ ons, nonmonotone profi les should 
not exist in hydrostaƟ c equilibrium. The same applies to some modifi caƟ ons of the tradi-
Ɵ onal theory. Nonmonotone saturaƟ on profi les in hydrostaƟ c equilibrium arise within a 
generalized theory that contains the tradiƟ onal theory as a special case. The physical origin 
of the phenomenon is simultaneous occurrence of imbibiƟ on and drainage. It is argued 
that indicaƟ ons for nonmonotone saturaƟ on profi les in hydrostaƟ c equilibrium might have 
been observed in past experiments and could become clearly observable in a closed col-
umn experiment.

A fundamental unresolved problem in the physics of porous media is the quan-
titative prediction of fl uid saturation profi les during immiscible displacement. Despite its 
failure to predict residual saturations, the traditional theory (established in Buckingham, 
1907; Richards, 1931; Muskat and Meres, 1936; Wyckoff  and Botset, 1936; Buckley and 
Leverett, 1942) has remained the most popular mathematical model for numerous applica-
tions such as reservoir engineering (see Lake, 1989) or groundwater hydrology (see Marsily, 
1986) for more than 70 years.

Many authors, such as Geiger and Durnford (2000), DiCarlo (2004), Nieber et al. (2005), 
Rezanezhad et al. (2006), Annaka and Hanayama (2007), van Duijn et al. (2007), Cueto-
Felgueroso and Juanes (2008, 2009), DiCarlo et al. (2008, 2010), and Eliassi and Glass 
(2001), have recently emphasized the shortcomings of the traditional theory for nonmono-
tone traveling saturation profi les (so-called saturation overshoot) during constant-fl ux 
infi ltration into homogeneous porous media. Alternatives and generalizations have been 
proposed that give nonmonotone traveling wave profi les (see, e.g., van Duijn et al., 2007; 
Nieber et al., 2005; DiCarlo et al., 2008; Cueto-Felgueroso and Juanes, 2008, 2009). In 
Geiger and Durnford (2000) saturation overshoot is related to dynamic soil water entry 
pressures, while in DiCarlo (2004) it is attributed to pore-scale fi lling mechanisms. Other 
proposals include dynamic capillary pressure (van Duijn et al., 2007; Nieber et al., 2005), a 
macroscopic apparent surface tension of the macroscopic wetting front (Cueto-Felgueroso 
and Juanes, 2008, 2009), or nonmonotone imbibition capillary pressure to generate eff ec-
tively negative macroscopic “capillary diff usion” (DiCarlo et al., 2008). Richards’ equation 
(see Richards, 1931) with standard imbibition or drainage curves fails to predict nonmono-
tone profi les for traveling saturation fronts (see Eliassi and Glass, 2001). Experimental 
conditions for the occurrence of nonmonotone saturation profi les seem to coincide pre-
cisely with those for the occurrence of gravity-driven fi ngers and preferential fl ow (see 
Geiger and Durnford, 2000; DiCarlo, 2004). Many authors have thus concluded that 
saturation overshoot is the primary cause for fi ngering instabilities and preferential fl ow 
during infi ltration into porous media.

Despite the fundamental discrepancies between the traditional theory and experimental 
observations, most models generalize the traditional constitutive parameters by additional 
terms such as the dynamic capillary pressure (van Duijn et al., 2007; Nieber et al., 2005) 
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or the “effective surface tension” (Cueto-Felgueroso and Juanes, 
2008, 2009). Experimental observations, however, indicate 
that the dynamic switching between drainage and imbibition 
plays an important role for saturation overshoot (see Geiger 
and Durnford, 2000; Rezanezhad et al., 2006). It is therefore 
important to test mathematical models against past and future 
experimental observations.

Given the fundamental importance of nonmonotone traveling 
wave saturation profi les for fi ngering instabilities and preferential 
fl ow, it is our objective in this paper to show that nonmonotone 
saturation profi les may arise not only during constant-fl ux infi ltra-
tion (or inside gravity fi ngers) but must be expected more generally. 
Laboratory experiments on closed columns seem to support this 
prediction (see Templeton et al., 1961; Briggs and Katz, 1966; 
Karpyn et al., 2006), as discussed below in more detail. Our specifi c 
objective in this paper is to report numerical experiments within 
a recent generalized theory for macroscopic capillarity (see Hilfer 
and Besserer, 2000a, 2000b; Hilfer, 1998, 2006a, 2006b, 2006c, 
2009; Hilfer and Doster, 2010) that resemble these experimental 
observations and indicate the general existence of nonmonotone 
saturation profiles in hydrostatic equilibrium when all veloci-
ties vanish. Recently, the seventy year old traditional theory of 
Buckingham (1907), Richards (1931), Muskat and Meres (1936), 
Wyckoff  and Botset (1936), and Buckley and Leverett (1942) was 
generalized by introducing percolating and nonpercolating fl uid 
phases into the traditional mathematical model (see Hilfer, 2006a, 
2006b, 2006c). In the new theory, which is based on earlier ideas 
advanced in Hilfer (1998) and Hilfer and Besserer (2000a, 2000b), 
capillary pressure and relative permeabilities become obsolete as 
constitutive functions. At the same time, simultaneous imbibition 
and drainage processes are possible. Moreover, the theory predicts 
hysteresis and provides equations of motion for the spatiotemporal 
behavior of residual (trapped or immobile) fl uids.

 Problem Formula  on
Th e traditional theory can be formulated for a one-dimensional 
homogeneous medium in terms of two coupled nonlinear partial 
diff erential equations for the pressure P(x,t) and the saturation 
S(x,t) of the wetting phase (called water) as
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where x and t denote position and time, respectively, ∂x = ∂/∂x, and 
g is the acceleration of gravity. Th e constitutive parameters are the 
densities ρW, ρO and viscosities μW, μO of water (index W) and oil 
(index O, nonwetting fl uid), the porosity φ, and the permeability k 
of the porous medium. Two (nearly incompressible) liquids, water 

and oil, are discussed here, because the focus is on macroscopic 
capillarity but not on compressibility eff ects. Th e results are read-
ily transferred to the case of one liquid and one gas phase, which is 
typical for vadose zone research. Th e so-called capillary pressure Pc 
and relative permeabilities r

Wk  and r
Ok  are assumed to be simple 

constitutive parameter functions of one variable, S.

In hydrostatic equilibrium, both fl uids are at rest. In this case, 
the expressions inside the square brackets in Eq. [1] vanish and 
∂S/∂t = 0. Integration gives

( ) ( )0 W 0P x P g x x= +ρ −  [2a]

( ) ( )( )1
c c0 W O 0S x P P x x− ⎡ ⎤= − ρ −ρ −⎣ ⎦  [2b]

where x0 is an arbitrary fi xed position inside the column and Pc
−1 

denotes the inverse function of Pc. Here P0 = P(x0) and Pc0 = 
Pc[S(x0)] are the pressure and capillary pressure at x = x0.

Suppose now that in hydrostatic equilibrium the saturation S(x) had 
a nonmonotone behavior. Th en Eq. [2b] implies that also the slope 
of the constitutive capillary pressure function Pc(S) changes sign in 
some saturation interval. As a consequence, Eq. [1b] then predicts 
a driving force that tends to reduce S. Without gravity and pres-
sure gradients, this implies spontaneous drainage. But spontaneous 
drainage is not normally observed in experiments. Th us, the exis-
tence of nonmonotone saturation profi les in hydrostatic equilibrium 
seems incompatible with the assumption that Pc(S) is a single-valued 
constitutive parameter function characterizing the porous medium 
and its wetting properties. It follows that nonmonotone saturation 
profi les in hydrostatic equilibrium are not compatible with widely 
used constitutive assumptions of the traditional theory.

We argue now that nonmonotone saturation profi les might occur 
even in homogeneous porous media. While nonmonotone satura-
tions are ubiquitous in macroscopically heterogeneous media, we 
are, at present, not aware of an experiment demonstrating clearly 
and unambiguously their existence also in a macroscopically 
homogeneous medium, although possible indications are discussed 
below. Th is paper suggests that nonmonotone saturation profi les 
may occur more generally if imbibition and drainage occur simul-
taneously and the nonpercolating phase velocities are negligible.

Th is suggestion emerges from studying a simple modifi cation of 
the closed column experiments discussed in Hilfer (2006a, 2006b, 
2006c). Assume that one half of a homogeneous, closed, porous 
column is fi lled with a wetting fl uid (water) and the other half 
with a lighter nonwetting fl uid (oil). Initially, water fi lls the upper 
half and oil the lower half of the closed column. Th e two fl uids 
are separated by a diaphragm, which is removed instantaneously 
at time t = 0. Drainage will then occur in the upper part, while 
imbibition takes place in the lower part.
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The traditional model with a fixed and given triple of simple, 
single-valued constitutive functions Pc(S), r

W ( )k S , and r
O( )k S  

cannot cope with simultaneous drainage and imbibition. It is 
therefore not possible to test our predictions within the standard 
theory. Recently, however, a new theory was developed by Hilfer 
(1998, 2006a, 2006b, 2006c) that does not require capillary pres-
sure functions or relative permeabilities as input. Th e new theory 
contains the traditional theory as a special case (see Hilfer, 1998, 
2006a, 2006b, 2006c). Numerical solutions of the new theory 
for displacement processes involving simultaneous drainage and 
imbibition were computed in Hilfer and Doster (2010), Doster et 
al. (2010), and Doster (2011). Th e results seem to be supported, at 
least qualitatively, by the experiments reported in Templeton et 
al. (1961), Briggs and Katz (1966), and Karpyn et al. (2006) with 
respect to initial and fi nal profi les.

 Theory
Th e equations of the new theory are summarized here for a one-
dimensional, homogeneous, porous medium as
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where η2 and η4 are dimensionless constitutive parameters, φ is 
the porosity, S is the total water saturation, and S2 and S4 are the 
saturations of nonpercolating (trapped or disconnected) water and 
oil, respectively. Th e volume fl ux
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results from gravity and capillarity. Th e coeffi  cients
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are derivatives of the capillary terms (see Hilfer, 2006c). Th e con-
stitutive parameters are the densities ρW and ρO of water and oil, 
respectively, the acceleration of gravity g, the pressures Πa*, Πb*, 
P2*, and P4*, and the real numbers α , β, γ, and δ. Th ey have been 

determined experimentally from capillary pressures at differ-
ent saturations, as shown in Hilfer (2006a, 2006b, 2006c). Th e 
fractional mobility λ results from viscous forces and was given 
explicitly by Doster and Hilfer (2011) as
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where R11 and R33 are viscous resistances of water and oil, respec-
tively, and

( ) ( ) ( )1 2, , ,S x t S x t S x t= −  [7a]

( ) ( ) ( )3 4, 1 , ,S x t S x t S x t= − −  [7b]

are the saturations of percolating water (S1) and percolating oil (S3).
Th e parameters S*W, S*2, S*4 are defi ned by
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where SWdr and SOim are limiting saturations for S2 and S4, respec-
tively, and Θ denotes the Heaviside unit step function.

Th is system of equations contains the traditional model with hys-
teretic capillary pressure and relative permeabilities as shown in 
earlier works (see Hilfer, 2006a, 2006b, 2006c). Equations [3–8] 
are solved with initial and boundary conditions in the domain 
0 ≤ x ≤ L, with L = 2.5 m, and for times 0 ≤ t ≤ t∞, with 
t∞ = 200 days. Th e column is closed and there is no fl ow across 
the boundaries, so that the boundary conditions for the fl ux are

( ) ( )0, 0 and , 0q t q L t= =  [9]

The saturations are free to vary at the boundaries. It will be 
assumed throughout that the motion of S2 and S4 can be neglected.

 Numerical Experiments
Four kinds of initial conditions are considered. Th e fi rst case starts 
from S(x,0) ≈ 1 − Θ(x − xc), S2(x,0) ≈ 0, and S4(x,0) ≈ 0, where 
xc is the discontinuity separating water from oil. In this case, pri-
mary drainage occurs in the upper part (left  part in fi gures), while 
primary imbibition occurs in the lower (= right) part. Th e second 
case is close to S2(x,0) ≈ SWdrΘ(x − xc), S4(x,0) ≈ SOim[1 − Θ(x 

− xc)], and S(x,0) ≈ (1 − SOim)[1 − Θ(x − xc)] + SWdrΘ(x −xc). 
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In the second case, the upper (= left ) part contains initially non-
percolating residual oil, while the lower (= right) part contains 
nonpercolating irreducible water. Th e third and fourth cases are 
similar to the second case but more smoothed out. More precisely, 
the initial conditions are given as

( ) ( ) ( )c,0 , ,b p bS x S S S f x x bκ= + −  [10a]

( ) ( ) ( )2 2 2 2 c,0 , ,b p bS x S S S f x x bκ= + −  [10b]

( ) ( ) ( )4 4 4 4,0 , ,b p b cS x S S S f x x bκ= + −  [10c]

where fκ(x,xc,b) = fκ(x,xc) − fκ(x,b) and the smoothing

( ) ( ){ }1
, 1 tanh

2
f x y x yκ ⎡ ⎤= + κ −⎣ ⎦  [11]

was introduced for numerical reasons in Fig. 1 and to model the 
initial data in Fig. 2. Th e values of these parameters for the initial 
conditions are given in Table 1.

Th e initial and boundary value problem is solved using an adaptive 
moving grid solver developed in Blom and Zegeling (1994), van 
Dam and Zegeling (2006), Zegeling et al. (2011), and Zegeling 
(2007). It is the same solver that was used in Doster et al. (2010), 
but here it is applied to a diff erent set of equations. An additional 
equation had to be adjoined to stabilize the algorithm numerically 
and to permit the formulation of nonlinearities in ∂tS (for details, 
see Doster, 2011). We have checked that the solutions presented 
below do not depend on artifi cial numerical parameters appearing 

in the additional equation. Details of our procedure were given in 
Doster (2011). For numerical reasons, the parameters g, Πa*, Πb*, 
P2*, and P4* in Eq. [3–8] are switched on using a linear ramp
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so that they reach the value Πτ aft er a time τ. Th e values are τ = 
10 s and t∞ = 200 d.

Th e values of the physical parameters used in the following compu-
tations (computational resources required to solve these problems 
are insignifi cant) were obtained from capillary pressure observa-
tions as described in Hilfer (2006b, 2006c). Th ey are φ = 0.34, 

Fig. 2. Stationary nonmonotone saturation profi les close to complete 
hydrostatic equilibrium; S2 (lower curves) represent nonpercolating 
water, S = S1 + S2 (middle curves) is the water saturation, and 1 − S4
(upper curves) represent nonpercolating oil. Th e smooth initial con-
ditions for the dashed and solid profi les are shown in the lower and 
upper insets, respectively.

Fig. 1. Stationary nonmonotone saturation profi les close to complete 
hydrostatic equilibrium; S2 (lower curves) represent nonpercolating 
water, S = S1 + S2 (middle curves) is the water saturation, and 1 − S4
(upper curves) represent nonpercolating oil. Th e discontinuous initial 
conditions for the dashed and solid profi les are shown in the lower and 
upper insets, respectively.

Table 1. Th e parameters of the initial conditions used for the calcula-
tion of saturation profi les in Fig. 1 and 2. Th e initial saturation profi les 
are shown as insets in Fig. 1 and 2.

Parameter

Fig. 1 Fig. 2

Dashed line Solid line Dashed line Solid line

Sb 0.02 0.151 0.151 0.151

S2b 0.01 0.149 0.149 0.149

S4b 0.01 0.01 0.01 0.01

Sp 0.98 0.809 0.809 0.809

S2p 0.01 0.01 0.01 0.01

S4p 0.01 0.189 0.189 0.189

xc, m 1.25 1.25 1.25 1.25

b, m −1.5 −1.5 −1.5 −1.5

κ , m−1 104 104 1 4
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ρW = 1000 kg m−3, ρO = 800 kg m−3, SOim = 0.19, SWdr = 0.15, η2 
= 4, η4 = 3, α = 0.52, β = 0.9, γ = 1.5, δ = 3.5, Πa* = 1620 Pa, Πb* 
= 25 Pa, P2* = 2500 Pa, P4* = 400 Pa, and R11 = R33 = 2.31 × 108 
kg m−3 s−1.

 Results and Discussion
Solving the two initial and boundary value problems with these 
parameters produces the stationary saturation profi les shown in 
Fig. 1 and Fig. 2 aft er t∞ = 200 d (note that the numerical results 
for this problem reported in Doster [2011, Ch. 15.7, Fig. 15.16, 
15.17, and 15.18, p. 238ff ] are not correct). In all cases, drainage 
occurs in the left  (= upper) part, while simultaneously imbibition 
occurs in the right (= lower) part of the column. For discontinuous 
initial conditions (Fig. 1), the saturation profi les are strongly non-
monotone if the nonpercolating phases are immobile as assumed 
here. It may, however, be diffi  cult to prepare these initial conditions 
experimentally and to ensure that the nonpercolating phases have 
vanishing velocities. Th e nonmonotonicity is more pronounced in 
the primary case because the hysteresis loop is wider in this case. 
For smoother initial conditions (Fig. 2), the nonmonotonicity is 
reduced and can be completely absent. Th is behavior seems to have 
been observed in experiments (see Briggs and Katz, 1966, Fig. 2) on 
liquid and gas saturations measured in unconsolidated glass bead 
packs. It is not clear, however, that the experimental conditions 
agree with the theoretical assumptions because the experiment 
used compressible fl uids and unconsolidated bead packs instead 
of incompressible fl uids and a rigid porous medium. For details of 
the experiment, see Briggs and Katz (1966). Nevertheless, their Fig. 
2 shows a small nonmonotonicity of the stationary profi le similar 
to that shown in Fig. 2 of this paper.

We note also that experiments performed by Templeton et al. 
(1961), and more recently by Karpyn et al. (2006), started from 
an initial water saturation profi le that was essentially constant 
throughout the column. Th e observed fi nal profi les seem to con-
fi rm qualitatively our computational results for the present theory, 
reported already in Hilfer (2006c), Hilfer and Doster (2010), and 
Doster et al. (2010). In fact, Fig. 5 in Templeton et al. (1961) resem-
bles Fig. 6 in Hilfer (2006c), and Fig. 6 in Templeton et al. (1961) 
resembles Fig. 2 in Hilfer and Doster (20102). Qualitative agree-
ment means here that the initial, intermediate, and fi nal profi les 
have the same overall shape. Although the qualitative agreement 
is encouraging, it is not conclusive because it is not clear to what 
extent the experimental conditions agree with the theoretical 
approximations. Recent attempts to model these observations 
based on the traditional theory require history matching, a com-
plicated hysteresis model, and advance knowledge of multiple 
capillary pressure and relative permeability (boundary and scan-
ning) curves (see Li et al., 2006; Schaerer et al., 2006). Contrary 
to this, our theory seems to be able to reproduce all experimen-
tally observed profi les from a single parameter set. In addition, our 

theory predicts the spatiotemporal distribution of disconnected 
fl uids from one and the same parameter set.

 Summary
Th is paper contributes to the current debate about alternatives for 
the incomplete seventy year old traditional theory for two-phase 
immiscible displacement in porous media. Th e ongoing debate 
has recently emphasized nonmonotone traveling wave profi les 
for saturation as an important experimental phenomenon that 
improved mathematical models should reproduce. Th is paper pre-
dicts a possible experimental eff ect that seems yet to be observed 
in full clarity, namely the existence of nonmonotone saturation 
profi les for homogeneous media in hydrostatic equilibrium when 
the nonpercolating fl uid phases are essentially immobile. In this 
way, the present paper contributes to the important question of 
how to distinguish competing mathematical models by experiment. 
We encourage new experiments to investigate the predicted eff ect.
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