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Abstract

We consider the perturbed quasi-periodic dynamics of a family of reversible systems
with normally 1:1 resonant invariant tori. We focus on the generic quasi-periodic
reversible Hopf bifurcation and address the persistence problem for integrable quasi-
periodic tori near the bifurcation point. Using kam theory, we describe how the re-
sulting invariant tori of maximal and lower dimensions are parametrised by Cantor
sets.

1 Introduction

We consider reversible systems near a quasi-periodic invariant n-torus that is in a normal
1:1 resonance. Aim is to describe the dynamics of a generic unfolding model. It turns
out that a quasi-periodic reversible Hopf bifurcation is involved. In a companion paper
Broer et al. [2006], Ciocci [2003] persistence of (Diophantine) n-tori is established and their
normal linear behaviour is analysed; in the present paper we focus on nonlinear aspects. Our
approach merges reversible kam theory with a theory of reversible normal forms. It is to be
noted that a very similar scenario holds for the Hamiltonian case, cf. Broer et al. [2004b],
Broer et al. [2004c], Hoo [2005], where a generic unfolding of the 1:−1 resonance1 involves
a quasi-periodic Hamiltonian Hopf bifurcation; we largely follow the same strategy in the
present reversible case. As we shall see below, the analogy of the reversible and Hamiltonian
case also stretches out far into the mathematical contents.

1Note that in the reversible case there is no difference between the 1:1 and 1:−1 resonance.
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Remark. Systems as discussed in this paper turn out to be relevant for hydrodynamic
stability problems, cf. Iooss et al. [1989], Iooss & Los [1990]. Indeed, by a center manifold
argument, see Mielke [1986], in Iooss et al. [1989] the following is proven. When the Navier
Stokes equations in a cylindrical domain are written as an evolution equation in an (un-
bounded) space variable, all (steady) solutions that stay small in amplitude are determined
by the solutions of a 4-dimensional reversible system with a 1:1 resonance in the linear part,
see Iooss et al. [1989], p. 242.

A (small) quasi-periodic forcing then puts us into the context of the quasi-periodic re-
versible Hopf bifurcation. We expect that systems displaying a reversible Hopf bifurcation
of equilibria (or periodic orbits) often have additional pairs of purely imaginary eigenvalues,
whence excitation of the corresponding normal modes provides a possible mechanism within
the system itself.

2 Background

Throughout we work with the phase space M = T
n × R

4 = {x, z}, where T
n = R

n/ (2πZ
n)

is the n-dimensional torus with coordinates x = (x1, . . . , xn)(mod 2π) and where R
4 has

coordinates z = (z1, . . . , z4).
Given is an involution G : M −→ M , of the form G(x, z) = (−x, Rz), where R ∈ Gl (4, R)

is a linear involution, i.e., with R2 = Id. This means that R has only ±1 as eigenvalues.
We assume that the eigenvalue 1 occurs with multiplicity 2, which means that the fixed
point space of R has dimension 2 and, therefore, G has a 2-dimensional submanifold of fixed
points.

We consider vector fields X on M of class Cω (i.e., real analytic), that are reversible with
respect to G, i.e., such that

G∗(X) = −X. (2.1)

Writing

X(x, z) =

n∑

j=1

fj(x, z)
∂

∂xj
+

4∑

`=1

h`(x, z)
∂

∂z`
, (2.2)

or, in shorthand notation X = f∂/∂x + h∂/∂z, then (2.1) rewrites to

f(−x, Rz) ≡ f(x, z) (2.3)

h(−x, Rz) ≡ −Rh(x, z).

Note that this reversibility means that G takes integral curves of X to integral curves of
X, reversing the time-direction. The vector field X is integrable if it is invariant under the
natural T

n-action

(x0, (x, z)) ∈ T
n ×

(
T

n × R
4
)
7→ (x + x0, z) ∈ T

n × R
4,

which implies that the functions f and h do not depend on the x-variables.
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Our interest is with invariant n-tori of the form T
n × {z0} of the integrable vector field X.

Note that these tori are orbits of the natural n-torus action. These correspond to zeroes z0 of
the function h. We discuss persistence of such an n-torus under (not necessarily integrable)
small perturbation, for simplicity putting z0 = 0.

It turns out that we shall need the system to depend on parameters. Therefore we
consider real analytic families X = X(x, z, ν), where ν runs over a q-dimensional parameter
domain with q ≥ n + 2. In particular the coefficient functions of an integrable vector field
become f = f(z, ν) and h = h(z, ν).

Remark. A general treatment of local bifurcations in reversible systems is given in e.g.
Lamb [1994]. Specifically, when the eigenvalues (Floquet multipliers) are in 1:1 resonance,
a reversible Hopf bifurcation occurs which has characteristics very close to the Hamiltonian
Hopf bifurcation, cf. van der Meer et al. [1994], Bridges [1998].

In this setting the main issue of kam theory is the persistence of X-invariant n-tori under
a non-integrable perturbation. Starting point of our considerations is the normal linear
(leading) part

XN(x, z, ν) = ω(ν)
∂

∂x
+ Ω(ν)

∂

∂z
(2.4)

of the family X at the torus z = 0. Compare with Broer et al. [1990], Broer & Huitema
[1995]. Here ω(ν) = f(0, ν) and Ω(ν) = dzh(0, ν). From (2.1) we infer Ω ◦ R = −R ◦ Ω,
i.e., the matrix Ω is infinitesimally reversible. The space of all such matrices is denoted by
gl−R(4, R).

Remark. Hyperbolicity and ellipticity occur for open subsets of gl−R(4, R), where Ω is semi-
simple. Most of the research thus far is devoted to kam theory in this context, compare with
Moser [1973], Sevryuk [1986], Huitema [1988], Broer et al. [1990], Broer & Huitema [1995],
Wei Baoshe [2001], for more references see Broer et al. [1996].

We assume Diophantine conditions on the internal and normal frequencies (related to the
imaginary part of pairs or quadruples of complex eigenvalues), again see Moser [1973], Broer
et al. [1990], Broer & Huitema [1995] and the other above references. Note that we need
at least that the internal frequency vector ω = ω(ν) for certain positive constants γ and τ
satifies

|〈ω, k〉| ≥ γ|k|−τ , (2.5)

for all k ∈ Z
n \ {0}. We recall the general fact, cf. Broer et al. [1996], that for τ > n− 1 the

subset of all such Diophantine ω in R
n is nowhere dense, but has positive Lebesgue measure,

the complement of which gets small measure as γ ↓ 0.
The family X of vector fields is assumed to satisfy the Broer-Huitema-Takens (bht) non-

degeneracy condition at the invariant n-torus z = 0, ν = ν0. This nondegeneracy condition
from Huitema [1988], Broer et al. [1990] is expressed in terms of the product map

ν ∈ R
q 7→ (ω(ν), Ω(ν)) ∈ R

n × gl−R(4, R)

derived from the normal linearization (2.4) of X.
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The first factor is used to pull back the Cantor-like structure defined by Diophantine con-
ditions from frequency space to parameter space; this can be fully achieved if ν 7→ ω(ν) is
submersive (i.e., has a surjective derivative at ν = ν0). Similarly, we want to use the second
factor to pull back a versal unfolding as obtained from the theory of unfolding of matrices
(e.g. Arnold [1971], Gibson [1979]). In the present reversible context this amounts to com-
puting the codimension c of the orbit of Ω(ν0) under the adjoint action Ad(A)(Ω) = AΩA−1

of the group GLR(4, R) of R-equivariant matrices on gl−R(4, R) and to then consider a map
p : gl−R(4, R) −→ R

c where R
c parametrises a section transverse to that Ad(GLR(4, R))-

orbit.
These two requirements are simultaneously achieved if ν 7→ (ω(ν), p(Ω(ν))) is submersive.

In addition to this, bht-nondegeneracy requires det Ω(ν0) to be non-zero. This approach
surely needs a lot of parameters, but this number can be relaxed in various ways, compare
with Broer et al. [1990], part I, Ch. 7 or with Broer et al. [1996].

The results in Huitema [1988], Broer & Huitema [1995] address the case that Ω has only
simple eigenvalues; then c = N1 + N2 + N3 where 2N1 is the number of real eigenvalues
(which form pairs α,−α in the present reversible context), N2 is the number of pairs of
purely imaginary eigenvalues and 4N1 is the number of remaining eigenvalues ±α ± iβ. For
N2 = 0 the Diophantine conditions (2.5) suffice, but in the case N2 6= 0 of additional normal
frequencies these have to satisfy Diophantine conditions as in (5.1) below. Here the mapping
p can be chosen to map into the spectrum, as an unfolding is versal if all eigenvalues move.
The lower dimensional kam theory in Huitema [1988], Broer & Huitema [1995] roughly
states that near a nondegenerate n-torus many n-tori persist under small perturbation. For
non-simple eigenvalues Ω(ν0) is not in one of the elliptic or hyperbolic codimension 0 strata
inside gl−R(4, R) and the numbers N1, N2, N3 may change under parameter variation whence
we speak of a bifurcation.

3 The Perturbation Problem

Presently our interest is with the 1:1 resonance where Ω(ν0) has a double pair of eigenvalues
on the imaginary axis, with algebraic multiplicity 2. We restrict to the generic subcase of
geometric multiplicity 1, where Ω(ν0) has a non-zero nilpotent part. For Ω(ν0) ∈ gl−R(4, R)
bht-nondegeneracy amounts to (trans)-versality of the unfolding Ω(ν) to the orbit of Ω(ν0)
under the natural action of the R-equivariant linear group GlR(4, R), compare with Arnold
[1971], Broer & Huitema [1995], Ciocci [2003], Broer et al. [2006]. For the eigenvalue config-
urations of Ω(ν) see Fig. 1.

Let us now describe the set up in more detail. Starting point is an integrable family X =
Xν(x, z) as described in the introduction, defined on the phase space T

n ×R
4 = {x, z}. The

normal linear part has the form (2.4). Dividing out the T
n-symmetry leads to the reduced

family

Xred(z, ν) = (Ω(ν) + h.o.t.)
∂

∂z

of R-reversible vector fields on R
4 = {z}. Recall that Ω0 := Ω(0) is in 1:1 resonance. We first

specify the reversor R and the matrix Ω0, and then choose an appropriate versal unfolding
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ν 7→ Ω(ν) in gl−R(4, R), compare with Broer et al. [2006], Ciocci [2003], Vanderbauwhede
[1990].

Proposition 1. Assume that Ω0 ∈ gl−R(4, R) has eigenvalues ±i with algebraic multiplicity
2, and that R ∈ GL(4, R) is a linear involution such that dim(Fix(R)) = 2. Then, there
exists a basis of R

4 with respect to which R has the form

R =

(
R0 O
O −R0

)
, with R0 :=

(
1 0
0 −1

)
(3.1)

and in the case when Ω0 is not semisimple

Ω0 = S0 + N0 :=

(
J O
O J

)
+

(
O −I
O O

)
, (3.2)

where

J :=

(
0 1
−1 0

)
.

Proof. See e.g. Ciocci [2003].

We refer to S0 as to the semisimple part of Ω0, and to N0 as its nilpotent part, cf. Hirsch &
Smale [1974]. The universal unfolding of Ω0 is constructed as the linear centralizer unfolding
Ω(ν) = Ω0 + A(µ) with appropriately chosen

A(µ) ∈ C−(Ω0) := ker(ad(S0)) ∩ ker(ad(N0
T )) ∩ gl−R(4, R).

For more details see Ciocci [2003], Broer et al. [2006], where this result is more generally
derived for Ω0 ∈ gl−R(2p, R), also compare with van der Meer et al. [1994]. In the case of
Ω0 given by (3.2), a direct computation reveals

Ω(µ) =

(
J −I
0 J

)
+

(
µ1J O
µ2I µ1J

)
, (3.3)

with (µ1, µ2) ∈ R
2 varying over a neighbourhood of 0. Observe that Ω(µ) − Ω0 depends

linearly on µ ∈ R
2. From now on we assume Ω(µ) of the form (3.3). In the reduced setting

one can reparametrise ν to coincide with µ, but in the nearly integrable setting we shall need
to cover the frequencies ω as well, writing ν = (ω, µ).

In the sequel the eigenvalues of Ω(µ) play an important role. From (3.3) we determine the
four eigenvalues as

±i(1 + µ1) ± √−µ2 . (3.4)

As µ2 crosses zero from negative to positive, a hyperbolic quadruple of eigenvalues turns into
two pairs of purely imaginary eigenvalues, thus stabilizing the origin of R

4 as an equilibrium
of Xred, compare with Fig. 1. Observe that equilibria of Xred correspond to relative equilibria
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Figure 1: Position of the eigenvalues in a generic 1:1 resonance. A dot denotes a single eigenvalue,
a circle-dot a double eigenvalue.

of the full system. We denote by ωN(µ) the normal frequency vector consisting of the positive
imaginary parts of the eigenvalues of Ω(µ), i.e.,

ωN(µ) =

{
(1 + µ1, 1 + µ1)

(1 + µ1 +
√

µ2, 1 + µ1 −
√

µ2)
for

µ2 ≤ 0
µ2 > 0

. (3.5)

A reversible normal form analysis as given in Appendices A.2 and A.3 reveals that the
normalized vector field on T

n × R
4 reads

X(x, z, ν) = X̃ + h.o.t. (3.6)

where the integrable part X̃ is given by

X̃ = f(z, ν)
∂

∂x
+ X̃red (3.7)

with ω(ν) = f(0, ν) and f(Rz, ν) = f(z, ν) by the reversibility. Also, a general third order

part of the family X̃red reads

ż1 = (1 + µ1)z2 − z3 + (α + γ)z2M + δz2S

ż2 = −(1 + µ1)z1 − z4 − (α + γ)z1M − δz1S (3.8)

ż3 = (1 + µ1)z4 + µ2z1 + βz1M + (α + γ)z4M + γz1S + δz4S

ż4 = −(1 + µ1)z3 + µ2z2 + βz2M − (α + γ)z3M + γz2S − δz3S .

Here µ = (µ1, µ2) is an unfolding parameter as before, while α, β, γ and δ are real constants.
Moreover,

M :=
1

2
(z2

1 + z2
2), (3.9a)

N :=
1

2
(z2

3 + z2
4), (3.9b)

S := z1z4 − z2z3. (3.9c)
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Compare with Bridges [1998], Iooss et al. [1989].

The system X̃red yields equilibria as well as periodic, quasi-periodic, homoclinic and hete-
roclinic orbits, see e.g. Iooss et al. [1989]. We are interested in the fate of the periodic and

quasi-periodic orbits. Relevant is that the family X̃red undergoes a generic reversible Hopf
bifurcation as µ2 passes through 0.

PSfrag replacements

crease
1:1 resonant equilibrium

µ2

thread

Figure 2: Sketch of the local stratification near the 1:1 resonance. Supercritical case (β > 0):
the µ2 axis corresponds to the family of equilibria containing the resonant point. The surface
parametrising the (elliptic) periodic orbits consists of one sheet, forming a crease at µ2 > 0 where
the equilibrium is elliptic, while the hyperbolic equilibria are parametrised by a thread that detaches
from the sheet during the reversible Hopf bifurcation. The open domain above the sheet (in
particular surrounding the thread) parametrises invariant 2-tori.

The bifurcation scenarios are easily read off from Fig. 2 and Fig. 3, compare also with Fig. 4.
In both the supercritical case β > 0 and the subcritical case β < 0 the local stratification
near the resonance is given by parts of the swallowtail catastrophe set, cf. van der Meer
[1985].

It is straightforward to reconstruct the dynamics of X̃ on T
n×R

4 from the dynamics of X̃red

on R
4, see Sec. 4.2 below. Essentially, equilibria become invariant n-tori, periodic orbits turn

into invariant (n+1)-tori and invariant 2-tori of X̃red give rise to invariant (n+2)-tori of X̃.

kam theory comes into play when addressing the question what remains of the above bifur-
cation scenario in the nearly integrable case; that is, what can be said about the full system
X as in (3.6). It turns out that a lot of invariant tori persist for nearly integrable pertur-
bations. To establish this we first need linear stability of the n-torus family, which implies
persistence for a suitable set of parameters. Secondly, applying quasi-periodic normal form
theory, we can turn to the invariant (n + 1)-tori, and then to the (n + 2)-tori.

The frequency vectors of persistent tori typically satisfy Diophantine conditions, and we
use in turn the Diophantine frequency vectors to parametrise persistent tori. This leads to so-
called Cantor families of tori, to unions of invariant tori that locally are (Whitney)-smooth
images of the product of a torus with a Cantor set.
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PSfrag replacements

µ20

Figure 3: Sketch of the local stratification near the 1:1 resonance. Subcritical case (β < 0):
the µ2 axis corresponds to the family of equilibria containing the resonant point. The surface
parametrising the periodic orbits consists of two sheets. The lower sheet parametrises elliptic
periodic orbits and forms a crease at the µ2 > 0 half axis where the equilibrium is elliptic. The upper
sheet parametrises hyperbolic periodic orbits and meets the lower sheet in a cusp like fashion. Here
a periodic centre-saddle bifurcation takes place and correspondingly the two cusp lines parametrise
parabolic periodic orbits. The open domain between the two sheets parametrises invariant 2-tori.
Outside that cone, in particular for µ2 < 0, there are no 2-tori invariant under (3.8).

4 The Integrable Case

The phase space of the integrable family X̃ is, near the normally 1:1 resonant n-torus T n
0 =

T
n × {0}, foliated by invariant tori of dimensions n, n + 1, n + 2. The internal frequency

vector of T0 ⊂ T
n ×R

4 is denoted by ω, and the normal frequencies are given by the positive
imaginary parts of the eigenvalues of Ω(µ) as in (3.5).

It turns out that the setting has many Hamiltonian characteristics, cf. van der Meer et al.
[1994], Lamb et al. [2001], Broer et al. [2004c], Hoo [2005]. We here give precise statements
and for the proof refer to Appendix B.

Proposition 2. By means of an R-equivariant change of variables the normal form (3.7)
of the vector field X on T

n × R
4 can be put into the form

X̃ = f
∂

∂x
+ XH + αY , (4.1)

where XH is the Hamiltonian vector field with respect to the symplectic structure dz4 ∧dz2 +
dz3 ∧ dz1 with Hamiltonian

H(S, N, M) = ωNS + N + λM +
β

2
M2 + γSM +

δ

2
S2 + h.o.t. (4.2)

The vector field Y is parallel to XS and vanishes at {M = 0}.

Proof. See Appendix B.1.

We now sum up the main results giving the bifurcation scenario at the (non-semisimple)

1:1 resonance for the 4-dimensional reversible system X̃red and then give the corresponding
results for the full integrable system X̃.
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µ2 > 0 µ2 > 0µ2 < 0

Figure 4: Amplitude diagrams. (i) Supercritical case. Comparing with Fig.2, the two lines ema-
nating from the origin correspond to the sheet forming the crease and the curve detached from the
origin is the part of the swallow tail passing below the thread. (ii) Subcritical case. Comparing with
Fig. 3 we have that the two lines emanating from the origin correspond to the sheet forming the
crease, the arc between the diamonds represents the upper sheet of hyperbolic periodic solutions
and the two diamonds stand for the curves of cusps where the two sheets meet, here the invariant
periodic orbits are parabolic.

4.1 Reduced integrable dynamics

The following theorems summarize the results for the dynamics of X̃red, for the proofs see
Sec. 6.1. A sketch of the situation is given in Fig. 2 and Fig. 3. Note that these dynamics,
with the quasi-periodic part reduced, match up with the results of Vanderbauwhede [1990],
Knobloch & Vanderbauwhede [1995], Knobloch & Vanderbauwhede [1996] for their simplest
case k = 2 after reduction of the periodic dynamics.

Theorem 3 (Supercritical reversible Hopf bifurcation). Given is the phase space R
4

with the involution R ∈ GL(4, R) as in (3.1). Let X̃red be a family of R-reversible vector
fields with a 1:1 resonance as before and with truncated normal form as in (3.8). Suppose
β > 0.

(i) The point z = 0 is an equilibrium for all values of the parameter µ. It is hyperbolic for
µ2 < 0 and elliptic for µ2 > 0. See Fig.1.

(ii) In suitable coordinates, the periodic solutions of the system are given by the roots of
the cubic equation

σ2 − 4βM3 − 4µ2M
2 − 4γσM2 = 0, (4.3)

where σ 6= 0 is a fixed value of S (3.9c) and M is as in (3.9a). These are all elliptic.
Also, for fixed µ2 > 0, they shrink down to the elliptic equilibrium.

(iii) The open part of parameter space above the surface defined by (4.3) (not on the ‘thread’,
z = 0) is filled with invariant 2-tori which are normally trivial.

Remark. X̃red as in (3.8) has the invariant functions H, S : R
4 −→ R

2 given by (3.9c)
and (4.2). They define a ramified 2-torus bundle, whose singular fibers are described by (i)
and (ii) of the theorem above. In particular, the regular part described by (iii) is not simply
connected. We discuss below that this leads to monodromy.
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Theorem 4 (Subcritical reversible Hopf bifurcation). Let X̃red be as in Theorem 3,
except that β < 0. Then,

(i) the point z = 0 is an equilibrium for all values of the parameter µ. It is hyperbolic for
µ2 < 0 and elliptic for µ2 > 0.

(ii) There are no periodic orbits for µ2 ≤ 0. If µ2 > 0, the periodic solutions of the system
are given in suitable coordinates by the roots of the cubic equation (4.3). The orbits
are either elliptic or hyperbolic depending on which sheet we are of the surface, and
they are parabolic on the cusp line 16µ3

2 = 27β2σ2, see Fig. 3. All these orbits shrink
down to the elliptic equilibrium as µ2 ↘ 0.

(iii) The open part of parameter space bounded by the surface defined by (4.3) for µ2 > 0 is
filled with invariant 2-tori which are normally trivial.

Remark. The bifurcation scenario of the reversible Hopf bifurcation is completely governed
by the unfolding parameter µ2. The unfolding parameter µ1 detunes the normal frequency ωN

and becomes important only for the persistence of the full dynamics addressed in Sec. 5.

4.2 Integrable dynamics

We return to the setting of Sec. 3 and consider the real analytic family of integrable reversible
vector fields X̃(x, z; ν) given by (3.7) on the phase space T

n × R
4, with parameter ν =

(ω, µ) ∈ R
n × R

2 varying over a small neighbourhood of ν0 = (ω0, 0). This family has an
invariant family of n-tori T n =

⋃
ν T n

ν , with T n
ν = T

n × {z = 0} × {ν}. By assumption the

invariant n-torus T0 = T n
ν0

is normally 1:1 resonant and the vector field X̃ν is assumed to be

nondegenerate at T0. Roughly speaking the dynamics of X̃ν in phase space looks like that of
X̃red times T

n, that is, near the normally resonant T0 we have a ramified (n+2)-torus bundle,
the singular fibres of which are invariant n-tori and (n + 1)-tori, together with their stable
and unstable manifolds. The corresponding stratification in the product of phase space and
parameter space is described by parts of the swallow tail surface as sketched in Fig. 2 and
Fig. 3.

Corollary 5 (Invariant n-tori). Let X̃(x, z; ν) be a real analytic family of integrable re-
versible vector fields as in (3.7) on the phase space T

n × R
4, with parameter ν = (ω, µ) ∈

R
n×R

2. The parallel n-torus T n
ν is invariant under X̃ν for all ν and it is normally hyperbolic

for µ2 < 0, normally elliptic for µ2 > 0 and normally 1:1 resonant for µ2 = 0.

Proof. The integrable dynamics on T
n×R

4 decouples into the parallel flow on the first factor
and the flow of X̃red on the second factor.

Corollary 6 (Invariant (n + 1)-tori). The integrable family X̃(x, z; ν) above has a family
of invariant (n + 1)-tori, T n+1

ν,σ , determined by the cubic equation (4.3), where we use the
value σ of the XH -invariant function S as a distinguished parameter. There are two different
cases:
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(i) supercritical, β > 0: the invariant (n + 1)-tori exist for all µ2. For µ2 > 0 they shrink
down to T n

ν , while the family T n+1
ν,σ is detached from T n

ν for µ2 < 0. Moreover, all
(n + 1)-tori are all normally elliptic. See Fig. 2.

(ii) subcritical, β < 0: the invariant (n + 1)-tori exist only for µ2 > 0. They can be
classified into three groups according to their (normal) stability type: normally elliptic
T n+1;ell

ν,σ , they are on the lower sheet of the swallowtail surface (4.3); normally hyperbolic
T n+1;hyp

ν,σ , they are on the upper sheet of (4.3); normally parabolic T n+1;par
ν,σ on the border

line where the two previous sheets from a cusp and meet. See Fig. 3.

Proof. Superposition of the conditionally periodic dynamics on the first factor of T
n × R

4

with a periodic orbit on the second factor yields conditionally periodic dynamics with n +
1 frequencies.

Recall that the elliptic and hyperbolic tori become parabolic when they meet and then
vanish in a quasi-periodic centre-saddle bifurcation, see e.g. Hanßmann [1998] for details on
the similar scenario in the Hamiltonian case.

Corollary 7 (Invariant (n+2)-tori). Let X̃(x, z; ν) be as before. Then in an open part of
the product of phase space and parameter space there exists a family of invariant parallel (n+
2)-tori, T n+2

ν,σ,η, which are normally trivial. Here η is a distinguished parameter corresponding
to the value of the function H (4.2).

Proof. Superposition of the conditionally periodic dynamics on the first factor of T
n×R

4 with
conditionally periodic dynamics on the second factor yields conditionally periodic dynamics
with n + 2 frequencies.

Note that as in the corresponding Hamiltonian case, cf. e.g. Broer et al. [2004c], Efstathiou

[2005], Hoo [2005], the integrable bundle of X̃-invariant (n + 2)-tori is nontrivial in the
supercritical case β > 0. Indeed, a (small) circle around the thread collects non-trivial
monodromy. By the methods of Broer et al. [2004a] this nontriviality also holds for Whitney
smooth interpolations of the nearly-integrable and Cantorised bundle.

5 kam Theory

As observed so far, the phase space of X̃ near the normally 1:1 resonant n-torus T0 is foliated
by tori of dimensions n, n + 1 and n + 2. In parameter space this foliation is described by
parts of surface of the swallow tail catastrophe. The persistence of these invariant tori under
small (non-integrable) perturbations can partly be obtained by ‘standard’ kam theory and
is partly addressed in Broer et al. [2006]. With the assumption of nondegeneracy (see Sec. 2)

for the vector fields X̃, by the versality of Ω, the Inverse Function Theorem and a suitable
reparametrisation, cf. Broer et al. [2006], the (non-integrable) family X has the form

Xµ,ω = X̃ + h.o.t. = ω
∂

∂x
+ Ω(µ)z

∂

∂z
+ Ψ,

with µ = (µ1(ν), µ2(ν)) ∈ R
2 such that (µ1(ν0), µ2(ν0)) = (0, 0) and Ω(µ) as in (3.3) and Ψ

containing the nonlinear terms.
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5.1 Persistence of n-tori

As already observed the family X̃ has an invariant n-torus family: the union of n-tori
T n = ∪νT

n
ν parametrised by ν = (ω, µ), with T n

ν = T
n × {z = 0} × {ν}. The standard kam

theory (e.g. Broer & Huitema [1995], Broer et al. [1996]) yields persistence for subfamilies of
the family T n

ν containing elliptic and hyperbolic tori. By Broer et al. [2006] we can handle
the problem of multiple Floquet exponents and obtain the persistence of the family of n-tori
containing the resonant 1:1 torus.

Loosely speaking, it turns out that in a nondegenerate family, many of the tori T n
ν , for

ν near ν0, survive non-integrable perturbation, again given suitable Diophantine conditions,
which now differ in the various regions of the parameter space. This is a direct consequence
of Broer et al. [2006] (see also Ciocci [2005], Ciocci [2003]).

In the sequel we will denote by Γτ,γ(U) the set of Diophantine parameters given by

Γτ,γ(U) = {(ω, µ) ∈ U | |〈ω, k〉+ 〈ωN(µ), `〉| ≥ γ|k|−τ , (5.1)

for all k ∈ Z
n \ {0} and all ` ∈ Z

2 with |`1| + |`2| ≤ 2}.

The set Γτ,γ(U
′) is the subset where the set U ′ ⊂ U is given by

U ′ := {ν ∈ U : dist
(
(ω(ν), ωN(ν)), ∂F(U)

)
> γ}.

Here F : R
q → R

n ×R
2, ν 7→ (ω(ν), ωN(ν)) is the frequency map with the normal frequency

vector ωN(ν) given by (3.5).

Geometry of Diophantine conditions. As said before ν = (ω, µ) ∈ R
n × R

2, where
we take an open subset U containing the resonant point µ2 = 0. Generally speaking, for
τ > n−1 and γ > 0 we consider the set Γτ,γ(U) as in (5.1) with the normal frequency ωN(µ)
as in (3.5). Note that for ` = 0, we just retrieve (2.5). Since ωN(µ) differs for µ2 < 0 and
µ2 > 0, we split U = U− ∪ U0 ∪ U+ according to the sign of µ2. The Diophantine conditions
so give rise to

Γτ,γ(U) = Γτ,γ(U−) ∪ Γτ,γ(U0) ∪ Γτ,γ(U+).

From (3.5) we see that Γτ,γ(U+) is determined by the conditions

|〈ω, k〉+ l1(1 + µ1) ± l2
√

µ2| ≥ γ|k|−τ ,

for all k ∈ Z
n \{0} and l ∈ R

2 with (l1, l2) = (0, 0), (1, 1), (2, 2), (2, 0), (0, 2). It follows that
Γτ,γ(U+) is diffeomorphic to the union of half closed parabolæ,

{(rω, rµ1, r
2µ2) ∈ R

n × R
2 | r ≥ 1}.

Similarly it follows from (3.5) that Γτ,γ(U−) is the union of half planes of the form

{(rω, rµ1, sµ2) ∈ R
n × R

2 | r, s ≥ 1}.

See Fig. 5.
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Figure 5: (i),(ii): Sketch of ‘Cantor’ sets in the (ω, µ1, µ2)-space obtained by intersecting Γτ,γ(U+)
and Γτ,γ(U−) with ω0R for a fixed Diophantine ω0. (iii): Similar sketch for Γτ,γ(U) by matching
the contributions for U+ and U−.

Theorem 8 (Persistence of n-tori, Broer et al. [2006]). Let X̃ν be a family of real
analytic reversible integrable vector fields on T

n×R
4 as described in the introduction. Suppose

that the family is nondegenerate at the invariant torus T0 = T
n × {z = 0} × {ν0} and that

this torus is in generic normal 1:1 resonance. Let X be a family of real analytic reversible
vector fields close to X̃ in the compact open topology on complex analytic extensions. Then,
for γ > 0 sufficiently small and τ > n − 1, there exist a neighbourhood U of ν0 ∈ R

q and a
map Φ : M × U −→ M × R

q, defined near Tν0
, such that

(i) Φ is a C∞-near-identity diffeomorphism onto its image;

(ii) the image of V = T
n × {z = 0} × Γτ,γ(U

′) under Φ is a Cantor family of X-invariant

Diophantine tori and the restriction of Φ|V is a conjugacy between X̃ and X;

(iii) the restriction Φ|V is R-equivariant and preserves the reversible normal linear part

X̃N = ω(ν)∂x + Ω(ν)z∂z of the unperturbed vector field X̃.

Proof. See Broer et al. [2006] and also Theorem 11 Chapter 7 in Ciocci [2003].

5.2 Persistence of (n + 1)-tori

In an open region of parameter space, the surviving n-tori are elliptic and can branch off
invariant (n + 1)-tori. This phenomenon is named excitation of normal modes, compare
with, e.g., Sevryuk [1993], Jorba & Villanueva [1997], Sevryuk [1997]. Starting point is the

integrable normal form X̃, of which

X = X̃ + Θ, (5.2)

is a small perturbation. Our aim is to show persistence of the (n + 1)-tori, T n+1
ν,σ , which

are determined by the cubic equation (4.3) in M . Here, σ is the value of S treated as a
distinguished parameter, while ν is the external parameter, upon which also the coefficients
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in (4.3) depend. In the supercritical case β > 0 these tori are elliptic and in the subcritical
case we have both hyperbolic and elliptic (n + 1)-tori that may meet and vanish in a quasi-
periodic centre-saddle bifurcation during which the tori become parabolic. As µ2 → 0,
the perturbation by both the (integrable) higher order terms of X̃ and the non-integrable
remainder Θ is sufficiently small to yield persistence of the (n + 1)-tori by Broer & Huitema
[1995] satisfying appropriate Diophantine conditions on the internal frequencies and the
normal frequencies.

For normally hyperbolic tori the necessary Diophantine conditions are of the form (2.5) and
only involve the internal frequencies (ω1, . . . , ωn) = f(z, ν) with z determined from (4.3) and

ωn+1 = 1 + µ1 + δσ + (α + γ)M +
σ

2M
.

For normally elliptic tori the necessary Diophantine conditions also involve the normal fre-
quency ωN and read

∣∣〈ω, k〉 + kn+1ωn+1 + lωN
∣∣ ≥ γ(|k| + |kn+1|)−τ ,

for all (k, kn+1) ∈ Z
n × Z \ {(0, 0)} and l = 0,±1,±2. Introducing the (conjugated) coordi-

nates

Q = −1

2
ln M and P = z1z3 + z2z4, (5.3)

we have

ωN = e2 Qσ

√
σ2 + 2βe−6 Qσ (5.4)

with restriction
σ2

2e−6Qσ

> −β in the subcritical case β < 0.

Theorem 9 (Supercritical case). Let X̃ be the real analytic family of integrable reversible
vector fields of Theorem 8. Let X be any real analytic family of reversible vector fields suffi-
ciently close to X̃ in the compact open topology. Assume β > 0 and let V be a neighbourhood
of (ν0, σ = 0) ∈ R

q × R. Then, for γ > 0 sufficiently small and any (ν, σ) ∈ V , there exist a

neighbourhood Ṽ ⊆ V and a map Φ : M × Ṽ → M × R
q × R defined near T n+1

ν,σ such that

(i) Φ is a C∞-near-identity diffeomorphism onto its image;

(ii) the image of Diophantine tori T n+1;Dioph
ν,σ under Φ is a Cantor family of X-invariant

Diophantine tori and the restriction of Φ to this family is a conjugacy between X̃
and X;

(iii) the restriction Φ|T n+1;Dioph
ν,σ

is R-equivariant and preserves the reversible normal linear

part of the unperturbed vector field X̃.

Proof. The result is a direct consequence of Broer & Huitema [1995], see also Sec. 6.2.
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Theorem 10 (Subcritical case). Let X̃ be the real analytic family of integrable reversible
vector fields of Theorem 8. Let X be any real analytic family of reversible vector fields suffi-
ciently close to X̃ in the compact open topology. Assume β < 0 and let V be a neighbourhood
of (ν0, σ = 0) ∈ R

q × R. Then, for γ > 0 sufficiently small and any (ν, σ) ∈ V ,

(i) elliptic case: there exist a neighbourhood Ṽell ⊆ V and a map Φ : M×Ṽell → M×R
q×R

defined near T n+1;ell
ν,σ such that a result as in Theorem 9 holds.

(ii) hyperbolic case: there exist a neighbourhood Ṽhyp ⊆ V and a map Φ : M × Ṽhyp → M ×
R

q × R defined near T n+1;hyp
ν,σ such that a result as before holds, with the parametrising

Cantor set defined by Diophantine conditions involving only the internal frequencies.

Proof. The result follows from Broer & Huitema [1995]. See Sec. 6.2 for more details.

In the integral family X̃, subordinate to the swallowtail singularity one finds reversible
centre-saddle bifurcations. To our knowledge persistence of this bifurcation has not yet
been described completely for the quasi-periodic case. For the Hamiltonian analogue see
e.g. Hanßmann [1998], where it is conjectured that this theory carries over to the present
reversible setting.

5.3 Persistence of (n + 2)-tori

In Sec. 4.1 we claimed the existence of quasi-periodic solutions with two frequencies of the
reduced family X̃red. Their persistence in the case β > 0 has been proven in Iooss & Los
[1990]. Regarding the persistence of the corresponding (n + 2)-tori of Corollary 7 we can
state the following.

Theorem 11. Let X̃ be the real analytic family of integrable reversible vector fields of The-
orem 8. Let X be any real analytic family of reversible vector fields sufficiently close to X̃
in the compact open topology. Let W be a neighbourhood of (ν0, σ = 0, η = 0) ∈ R

q ×R×R.

Then, for γ > 0 sufficiently small and any (ν, σ, η) ∈ W , there exist a neighbourhood W̃ ⊆ W

and a map Φ : M × W̃ → M × R
q × R × R defined near T n+2

ν,σ,η such that

(i) Φ is a C∞-near-identity diffeomorphism onto its image;

(ii) the image of Diophantine tori T n+2;Dioph
ν,σ,η under Φ is a Cantor family of X-invariant

Diophantine tori and the restriction of Φ to this family is a conjugacy between X̃
and X;

(iii) the restriction Φ|T n+2;Dioph
ν,σ,η

is R-equivariant.

(iv) in the supercritical case β > 0 the non-trivial monodromy of the bundle of X̃-invariant
(n + 2)-tori extends to the nearly-integrable Cantor family T n+2;Dioph

ν,σ,η .

Proof. See Sec. 6.2.
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Theorems 8–11 lead to a ‘Cantorisation’ of the local stratifications sketched in Figs. 2 and 3.
The q-dimensional stratum parametrising invariant n-tori, sketched 1-dimensional in both
figures, turns into the Cantor set sketched in Fig. 5. The (q + 1)-dimensional stratum
parametrising normally hyperbolic (n+1)-tori, sketched as a 2-dimensional surface in Fig. 3,
gets replaced by a Cantor set with (q − n + 1)-dimensional ‘arcwise connected components’,
while the Cantor set replacing the strata parametrising normally elliptic (n + 1)-tori have
‘arcwise connected components’ of dimension q−n. Finally, the open strata sketched in Figs.
2 and 3 turn into (q + 2)-dimensional Cantor sets that have (q−n + 1)-dimensional ‘arcwise
connected components’. All these ‘arcwise connected components’ are leafs of foliations that
are Whitney-C∞ parametrised over Cantor dust.

6 Proofs

In this section we prove the various results of Sec. 4 and Sec. 5.

6.1 Dynamics of X̃red

We now analyse the 4-D real R-reversible vector field X̃red and so prove Theorem 3 and
Theorem 4. Recall that the system has a 1:1 resonance in the linear part; that is, two pairs
of purely imaginary eigenvalues of the linear part collide at ±i(1+µ1) on the imaginary axis
when µ2 = 0, see Fig. 1.

6.1.1 Symmetry reduction

The vector field (4.1) has a large symmetry group T
n+1 acquired by normalization and

furthermore inherited the reversing symmetry (x, z) 7→ (−x, R(z)) from the original system.
Reducing the free T

n-symmetry (x, z) 7→ (x + ξ, z) yields the vector field

XH + αY (6.1)

whose low order terms are given in (3.8). Note that this reduces the phase space M to the
Euclidean space R

4. The remaining S1-symmetry

(x, z) 7→
(
x, X t=ρ

S
(z)

)
(6.2)

is not free ; here X t=ρ

S
denotes the (2π-periodic) flow of the linear vector field XS at time ρ.

Indeed, the origin z = 0 is an equilibrium and correspondingly X t=ρ

S
(0) = 0 for all ρ ∈ S1 =

R/2πZ. Hence, the quotient P = R
4/S1 is not a smooth manifold but contains a singular

point (from which z = 0 is reconstructed, from regular points of P one reconstructs periodic
orbits of XS).

The reduction of the S1-symmetry (6.2) is best performed in terms of the invariants of
this group action.

16



Lemma 12. Let M, N, S, P be the generators of the ring of S1-invariant functions given
by (3.9) and (5.3). Then, the system (3.8) reduces to the vetor field

Ṁ = −P (6.3a)

Ṅ = P q(M, S) (6.3b)

Ṗ = 2M q(M, S) − 2N (6.3c)

Ṡ = 0 (6.3d)

with

q(M, S) = µ2 + βM + γS . (6.4)

The phase space is the 3-dimensional half-cone

P :=

{
(M, N, P, S) ∈ R

4 | 2MN =
P 2 + S2

2
, M ≥ 0 and N ≥ 0

}

Proof. See van der Meer [1985].

PSfrag replacements

σ = 0

σ 6= 0

M

N

P

Figure 6: Level sets of fσ for M,N ≥ 0.

Noting that the value σ of S is now a (distinguished) parameter for the vector field, we are
led to the family of reduced phase spaces

Pσ =
{
(M, N, P ) ∈ R

3 | fσ(M, N, P ) = 0, M ≥ 0 and N ≥ 0
}

where

fσ(M, N, P ) = 2MN − P 2 + σ2

2
. (6.5)

Fig. 6 depicts the reduced phase space for different values of σ. The reduced equations of
motions are given by (6.3a)–(6.3c).
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Proposition 13. The reduced system (6.3a)–(6.3c) is a Poisson system

Ṁ = {M, H} , Ṅ = {N, H} , Ṗ = {P, H} (6.6)

with Poisson bracket

{g, h} = 〈∇g ×∇h | ∇fσ〉

and Hamiltonian

H(N, M, P ) = N + µ2M + γSM +
β

2
M2 . (6.7)

Proof. See Bridges [1998] Sec. 2, Theorem 2.1. Compare also with van der Meer et al.
[1994].

6.1.2 The reduced dynamics

Here we briefly describe 1DOF dynamics defined by the truncated system (6.6), see also
van der Meer [1985], Hanßmann & van der Meer [2002]. Proposition 13 leads to a geometric
characterization of the orbits of (6.6): the phase curves are obtained intersecting the reduced
phase space Pσ with the level sets of H; see Fig. 7. Transverse intersections yield (relative)
periodic orbits, with period related to the area enclosed in Pσ by the orbit. The (relative)
equilibria correspond to critical points of H on Pσ, here the energy level set {H = h} is
tangent to the reduced phase space Pσ. Since {H = h} is a parabolic cylinder and Pσ is a
surface of revolution this can only happen on the contour {P = 0}∩Pσ. The singular point
0 of P0 is always an equilibrium. Explicit calculations which are given in Appendix B lead
to the folowing result.

PSfrag replacements

(i) (ii)

Figure 7: Intersections of Pσ with the level sets of H. (i)Subcritical case (β < 0), (ii)Supercritical
case (β > 0)

Proposition 14. For fixed σ 6= 0, the equilibria on Pσ are determined by the roots of the
cubic polynomial

F (M, σ) := σ2 − 4βM3 − 4µ2M
2 − 4γσM2 , (6.8)

the energy value corresponding to each solution M is

h(M) =
σ2

4M
+ µ2M +

β

2
M2 + γσM . (6.9)
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For fixed β 6= 0 and γ ∈ R the solution M of (6.8) is parametrised by (µ2, σ) giving part of
a swallowtail surface in (µ2, σ, h)-space. For σ = 0, the regular equilibria on P0 are

(M, N, P ) =

(
−µ2

β
, 0, 0

)
. (6.10)

Proof. See Appendix B.2.

The following proposition summarizes the results about the linear behaviour of the equilibria.

Proposition 15. As µ2 passes through zero, a Hamiltonian Hopf bifurcation takes place
and we have to distinguish two cases. In the supercritical case β > 0 the µ2-axis (σ, h) = 0
(which corresponds to the singular equilibria) is accompanied by a single sheet h = h(µ2, σ)
corresponding to elliptic regular equilibria that forms a crease at {(µ2, 0, 0) | µ2 > 0} where
the singular equilibria are elliptic and passes below the thread {(µ2, 0, 0) | µ2 < 0} where the
singular equilibria are hyperbolic. See also Fig. 7-a.

In the subcritical case β < 0 there are no regular equilibria for µ2 < 0. In the wedge

16 µ3
2 > 27 β2σ2

there are two sheets h1(µ2, σ) < h2(µ2, σ) corresponding to elliptic and hyperbolic regular
equilibria, respectively. The lower sheet h = h1(µ2, σ) forms a crease at {(µ2, 0, 0) | µ2 > 0}
and meets the (smooth) upper sheet h = h2(µ2, σ) in a cusp-like fashion – with coincinding
tangent planes – for (µ2, σ) in the border

16 µ3
2 = 27 β2σ2 (6.11)

of the wedge. See also Fig. 7-b.

Proof. See van der Meer [1985].

6.1.3 Effect of conservative higher order terms

We now consider a reduced normal form (6.1) that is not already truncated at third order.

Lemma 16. The dynamics of the normalized vector field XH in (6.1) is after reduction of
the T

n-symmetry (x, z) 7→ (x + ξ, z) qualitatively the same as that of system (6.6) provided
that β 6= 0. In particular, there is the same distinction between the supercritical case β > 0
and the subcritical case β < 0.

Proof. See van der Meer [1985], Corollaries 3.37–3.39.

In the following we shall skip the higher order terms and restrict to the Hamiltonian (6.7)
analysed in Sec. 6.1.2.
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6.1.4 Reconstruction of the Hamiltonian dynamics in 2DOF

It is straightforward to reconstruct the full dynamics of XH in two degrees of freedom. At
regular points of

P =
⋃

σ

Pσ

we have to superpose a periodic orbit and from the singular point we reconstruct the central
equilibria. In the supercritical case almost all orbits of the reduced system are periodic,
leading to invariant 2-tori in two degrees of freedom. In the subcritical case there are, for µ2 >
0, some invariant 2-tori as well, but the vast majority of orbits leaves a neighbourhood of
the origin. The flow is organized by the relative equilibria – from regular equilibria on P we
reconstruct periodic orbits.

Proposition 17. Let S, M, P be as before and define the angle θ conjugate to S and, locally
near periodic orbits, the variable Q = − 1

2
ln M conjugate to P by

z1 =

√
2 sin θ

exp Q

z2 =

√
2 cos θ

exp Q

z3 = − S√
2

exp Q cos θ +
P√
2

exp Q sin θ (6.12)

z4 =
S√
2

exp Q sin θ +
P√
2

exp Q cos θ .

Then, the vector field XH has the equations of motion

θ̇ = 1 + µ1 + δS + γ exp(−2Q) +
S

2
exp(2Q) (6.13a)

Ṡ = 0 (6.13b)

Q̇ =
P

2
exp(2Q) (6.13c)

Ṗ = −exp(2Q)

2

(
P 2 + F (exp(−2Q), S)

)
(6.13d)

with F defined in (6.8).

Proof. This is a straightforward computation.

In particular, the periodic orbits have the form

{
(θ, S, P, Q) ∈ S1 × R

3 | S = σ, Q = Qσ, P = 0
}

(6.14)

where Qσ is determined by the equation (4.3).
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6.1.5 Reconstruction of the 4-D reversible dynamics

The additional term αY in (6.1) is tangent to the fibres of the Hilbert map

ρ : R
4 → P, ρ(z) = (M, N, P, S). (6.15)

Hence the following holds.

Proposition 18. The dynamics of the vector field XH + αY as in (6.1) is determined by
the equations of motion (6.13b)–(6.13d) as for XH and

θ̇ = 1 + µ1 + δS + (α + γ) exp(−2Q) +
S

2
exp(2Q) . (6.16)

Proof. See Appendix B.3.

The periodic orbits (6.14) are left intact but their period is altered. In particular, the
Hamiltonian H is invariant under the whole vector field (6.1), which can also be inferred
from [XH , Y ] = 0.

Remark. This finishes the proof of Theorems 3 and 4.

6.1.6 Effect of non-Hamiltonian higher order terms

The tangency of the reversible αY (cf. (6.1)) to the fibres of (6.15) implies that Theorems 3
and 4 remain valid if the truncated vector field (3.8) is replaced by the reduced normal form

X̃red of any order.

Proposition 19. Higher order normalisation does not alter equations (6.13b)–(6.13d), but
causes a general additional term s(exp(−2Q), S) in (6.13a), instead of merely α exp(−2Q)
in (6.16).

Proof. See Appendix B.3.

Hence, higher order normalization does not lead to qualitative changes, provided that we
restrict to the supercritical case β > 0 or to the subcritical case β < 0. In this sense the
dynamical system defined by (3.8) is structurally stable. This robustness with respect to
normalized higher order terms is inherited by (3.6) and will be used in what follows to obtain
quasi-periodic stability in the sense of Broer et al. [1990].

6.2 Proofs of the kam theorems

As observed before the persistence of the n-tori and (n + 1)-tori is a direct consequence of
respectively Broer et al. [2006] and Broer & Huitema [1995], while that of the (n + 2)-tori
follows from classical kam theory, see e.g. Moser [1973], Huitema [1988].
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Proof of Theorems 9 and 10. On the phase space T
n × R

4 = {x, z} the transforma-
tion (6.12) yields local coordinates around the invariant (n + 1)-tori T n+1

ν,σ , which are given
by (S, Q, P ) = (σ, Qσ, 0) where σ 6= 0 and Qσ is a root of F (exp(−2Q), σ). Since the right
hand side of

ẋ = f(z(θ, σ, Qσ, 0), ν)

depends on the n + 1st angle θ one still has to pass to better adapted coordinates on T
n,

but for our purposes it is not necessary to actually perform that transformation.
The normal linear behaviour of T n+1

ν,σ is determined by (6.13c) and (6.13d), while (6.13b)
confirms that σ is an extra parameter (next to ν) that the family of (n+1)-tori depends upon.
Using F (exp(−2Q), σ) = 0 in the resulting expression for the normal frequency yields (5.4)
for the elliptic tori. Under the appropriate Diophantine conditions given in Sec. 5.2, the
result of Broer & Huitema [1995] applies once it is shown that the perturbation by both

the (integrable) higher order terms of X̃ and the non-integrable remainder Θ in (5.2) is

sufficiently small. Therefore we scale σ with µ
3/2

2 as the bifurcation parameter µ2 → 0.
To obtain the necessary estimates on the remainder term Θ in (5.2) we follow Broer et al.
[2004c] and normalize higher order terms only after passing to the new coordinates provided
by Theorem 8. �

Proof of Theorem 11. Persistence of the (n+2)-tori is obtained by classical kam theory,
see e.g. Moser [1973], Huitema [1988]. To this end one has to check the required nondegen-
eracy condition. Here, we use hyperbolicity of lower dimensional tori. In the subcritical
case β < 0 this is provided by normally hyperbolic (n + 1)-tori; as these are approached by
(n+2)-tori, the frequency that we do not directly control by means of the external parameter
ν converges to zero. In the supercritical case β > 0 all (n + 1)-tori are elliptic, but the hy-
perbolic n-tori form a codimension-four subset in the product of phase space and parameter
space that leads to non-trivial monodromy, cf. Efstathiou [2005], Broer et al. [2004c], Hoo
[2005]. Again this yields the necessary variation of the ‘uncontrolled’ frequencies. �

By the methods of Broer et al. [2004a] one can furthermore glue the resulting local kam-
conjugacies together to a globally Whitney-smooth conjugacy from the integrable to the
near-integrable Cantor family of tori.

7 Further Remarks

1- In a more general setting the phase space is M = T
n × R

m × R
2p = {x, y, z}, with

m ≥ 0 and p ≥ 2. The reversor G reads G(x, y, z) = (−x, y, Rz) with R as before. In
this more general situation we say that G is of type (n + p, m + p), noting that G then
has an (m + p)-dimensional submanifold of fixed points. The present considerations
are for the case where G is of type (n + 2, 2).

In case we have y-variables as well, the corresponding part g∂/∂y in the vector field
has to satisfy g(−x, y, Rz) ≡ −g(x, y, z) from which g(y, 0) = 0 for x-independent g
immediately follows. While linear terms in z as in Wei Baoshe [2001] may still occur,
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the scaling given in Broer & Huitema [1995], Ciocci [2003], Broer et al. [2006] makes
these of order ε. In this way the unperturbed normal linear part again gets the desired
form (2.4), where we have acquired m additional, distinguished parameters related
to the y-variables, that can help to effectuate the bht nondegeneracy condition. In
particular, if m ≥ n + 2 there is no need for external parameters ν at all.

2- It is instructive to compare the quasi-periodic reversible Hopf bifurcation with the
Hamiltonian case. The reduced integrable systems on R

4 define the same geometry,
although the dynamics in the reversible case is slightly different due to the additional
drift α exp(−2Q) in (6.16) along the S1-fibres. In particular, for the supercritical cases
β > 0 we have monodromy both in the Hamiltonian and the reversible setting.

For a Hamiltonian system the full phase space has to provide actions conjugate to the
toral angles on T

n, leading to T
n × R

n × R
4 which corresponds to a reversor of type

(n + 2, n + 2) in the reversible context. For Hamiltonian as for reversible systems it
would be interesting to consider p-fold resonances as in Knobloch & Vanderbauwhede
[1995], Knobloch & Vanderbauwhede [1996] under quasi-periodic forcing. Note that
Theorem 8 admits a straightforward generalization to the case p ≥ 3.
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À. Jorba & J. Villanueva [1997] “On the normal behaviour of partially elliptic lower-dimensional
tori of Hamiltonian systems,” Nonlinearity 10, 783–822.

24



J. Knobloch & A. Vanderbauwhede [1995] “Hopf bifurcation at a k-fold resonances in reversible
systems,” preprint N. M16/95 (Technische Universität Ilmenau).

J. Knobloch & A. Vanderbauwhede [1996] “Hopf bifurcation at k-fold resonances in conservative
systems,” Nonlinear Dynamical Systems and Chaos, Groningen 1995, H.W. Broer et al. (Eds)
Progress in Nonlinear Differential Equations and Their Applications 19 (Birkhäuser, Basel), pp.
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A Reversible Normal Form Theory

First we develop normal forms of integrable reversible vector fields, later on discussing the
near-integrable case. We largely follow Broer [1993], Broer & Huitema [1995].
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A.1 Nonlinear considerations in the integrable case

We begin with integrable reversible systems, i.e., which are invariant under the natural
T

n-action.

1. Reduction of the T
n-symmetry leads from (2.2) to a reduced family

Xred(z, ν) = h(z, ν)
∂

∂z
, (A.1)

of vector fields on R
4, where the interest is with (relative) equilibria, which now are

involved in a standard reversible Hopf bifurcation, cf. Bridges [1998], van der Meer et
al. [1994], see also Sec. 6.1.

2. This study admits also a standard normal form approach, which fits in the general Lie-
algebra approach. Indeed, by R-equivariant transformations the R-reversible character
is preserved, cf. Broer & Huitema [1995]. Now by such equivariant transformations,
infinitesimally generated by equivariant vector fields, the Taylor series of the reduced
family Xred can be simplified in the following sense.

For simplicity we assume that the reversible Hopf bifurcation takes place at ν = 0, we
consider the linear part

Ω0 = S0 + N0,

canonically split in semisimple and nilpotent part. Accordingly we consider the linear
vector field

Ared = Ω0

∂

∂z
= AS + AN ,

which again is the canonical splitting. Normalisation formally takes place on the
gradation

∞∏

j=1

Hj
red,−R

of the space of formal series, where Hj
red,−R contains all polynomial vector fields on R

4,
the coefficient functions of which are homogeneous polynomials in (z, ν) of degree j.
The elements of Hj

red,−R are all R-reversible, compare with (2.3). We recall that here
we have to consider the adjoint operators

adjAred : Hj
red,+R → Hj

red,−R,

defined by Lie-brackets. Here, by induction with respect to the degree j ∈ N, all
terms in the corresponding image im adjAred ⊆ Hj

red,−R, can be taken out, thereby

only leaving terms in a suitable complementary space Cj ⊆ ker adjAS ⊆ Hj
red,−R.

The fact that Cj ⊆ ker adjAS implies S1-symmetry of the normal form. For the precise
choice of the Cj, j ∈ N, such that

imadjAred ⊕ Cj = Hj
red,−R

as a direct sum splitting, there exist several procedures. In the present paper we follow
the sl(2, R)-approach described in Cushman & Sanders [1986].
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A.2 Application to the 1:1 resonance

We now turn to the case of our particular interest, namely the reversible 1:1-resonance of
Sec. 4.1.

The reversor on R
4 = {z1, z2, z3, z4} is given by

R : (z1, z2, z3, z4) 7→ (z1,−z2,−z3, z4),

compare with Proposition 1.

The linear part on the reduced phase space R
4 reads AS + AN , where

AS = z2

∂

∂z1

− z1

∂

∂z2

+ z4

∂

∂z3

− z3

∂

∂z4

,

which generates a diagonal action of S1 = SO(2) on R
4. Observe that the R-equivariant

functions with the SO(2)-symmetry even have an O(2)-symmetry.

The invariant functions with respect to the O(2)-action form a ring generated by the
Hilbert basis (3.9). This allows to write down the reversible normal form with respect to AS

as a sum

r · AN + q · AM + p · AS

where

AM = z1

∂

∂z3

+ z2

∂

∂z4

and where the coefficient functions r, q and p are invariant, i.e., depend on z only as functions
of the basic polynomials M, S and N .

Normalizing with respect to the nilpotent part

AN = −z3

∂

∂z1

− z4

∂

∂z2

of the linear part AS + AN follows Cushman & Sanders [1986]. Here we may achieve r ≡ 1
and make p and q independent of N whence the normal form in the z-direction reads

ωN AS + AN + q(M, S) AM + p(M, S) AS , (A.2)

with ωN + p(0, 0) = 1 + µ1 and q(0, 0) = µ2.

A.3 Quasi-periodic normal forms

We conclude with nonlinear considerations in the non-integrable case, adapting the above
normalisation procedure as follows, cf. Braaksma & Broer [1987], Broer et al. [1990], Broer
[1993], Broer & Vegter [1992].
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1. We now consider formal vector fields

Y = F (x, z, ν)
∂

∂x
+ H(x, z, ν)

∂

∂z
,

where F and H are formal series in (z, ν) with coefficients that are real analytic func-
tions (i.e. convergent) in x. This space can be graded to

∞∏

j=1

Hj
−R

as before, where we need that

Y ∈ Hj
−R ⇔ deg F = j − 1, deg H = j,

and the projections of a reversible vector field to each Hj
−R again are reversible in the

sense of (2.3). The degree again refers to the variables (z, ν). Note that the sets Hj
−R

so become infinite dimensional vector spaces.

2. We replace the above linear part Ared ∈ H1
red,−R by A ∈ H1

−R, defined as

A = ω
∂

∂x
+ Ared = ω

∂

∂x
+ Ω

∂

∂z
.

3. The rest of the normalisation procedure largely works as before. Indeed, we split into
canonical form

A = ω
∂

∂x
+ Ared = ω

∂

∂x
+ AS + AN ,

where now

ω
∂

∂x
+ AS

is the semi-simple part.

4. As before all terms in the image im adj ⊆ Hj
−R can be taken away by equivariant

transformation, infinitesimally generated by equivariant vector fields Y ∈ Hj
R.

The construction of the complementary spaces Cj, j ∈ N, can be done exactly as in
the integrable case. This is essentially a finite dimensional problem.

B Hamiltonian Aspects

Here we focus on the Hamiltonian aspects of our problem (see also e.g. van der Meer et al.
[1994], Lamb et al. [2001], Broer et al. [2004c], Hoo [2005]) and prove various statements
about the integrable normal form.
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B.1 Proof of Proposition 2

The vector field (A.2) can be expressed as the sum of a vector field pointing in the AS–
direction and a Hamiltonian vector field with respect to the symplectic structure dz4 ∧
dz2 + dz3 ∧ dz1 (which is again invariant under the action of our symmetry group). In
this case the linear vector fields AS, AN , AM are the Hamiltonian vector fields to quadratic
Hamiltonian functions S, N, M :

AS = XS , AN = XN , AM = XM .

In particular, we may write the normalized vector field as

ω
∂

∂x
+ XH + αY (B.1)

with a Hamiltonian function

H(S, N, M) = ωNS + N + λM +
β

2
M2 + γSM +

δ

2
S2 + h.o.t.

and a vector field Y that is parallel to XS and vanishes at {M = 0}. Where the non–
degeneracy condition β 6= 0 is satisfied we may discard the higher order terms and similarly
restrict to Y = MXS . Since we have dependence on external parameters µ all ‘greek’
coefficients are functions of µ with in particular ωN(µ) = 1 + µ1 and λ(µ) = µ2 while the
non–degeneracy condition reads β(0) 6= 0 (whence we restrict to a small neighbourhood of
µ = 0 where β(µ) 6= 0 for all µ).

Remark.

1. In Bridges [1998], van der Meer et al. [1994] it is proven that a 4-D reversible vector
field at a 1:1 resonance can be seen as a non-Hamiltonian perturbation, of at least
order two, of a Hamiltonian vector field. The non–Hamiltonian trajectories coincide
with the orbits of the vector field associated to the S1-action of the semisimple S0

and do therefore vanish on the reduced phase space. The phase space of (3.8) can be
fibered into invariant surfaces given by S = const and H = const. In contrast with a
‘purely’ Hamiltonian case, the flow on such fibres is not Hamiltonian since there is a
shift along the trajectories of S0.

2. We may in fact work with Y = SXM or use any linear combination of these two for Y
(except for the Hamiltonian linear combination SXM + MXS = XMS of course), but
the previous remark clearly shows that the above choice is the best.

3. In Lamb et al. [2001] it is shown that a 4–D reversible vector field X̃ in truncated
normal form, with 1:1 resonance, is orbitally equivalent to an integrable Hamiltonian
vector field X̂. That is, there exists a non-zero function ϕ and a change of coordinates
bringing ϕ · X̃ to X̂. In our context, this means that α = 0 can always be achieved if
non-trivial time-scalings are allowed.
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B.2 The reduced dynamics

Here we give the details which prove Proposition 14.

The 1DOF dynamics defined by (6.6) have been described in van der Meer [1985], Hanßmann
& van der Meer [2002], so we can be brief here. Indeed, the phase curves can be obtained
intersecting the reduced phase space Pσ with the level sets of (6.7)

{(M, N, P ) ∈ Pσ | H(M, N, P ) = h} = Pσ ∩ {H = h} ⊆ R
3 .

Remark. The ultimate reason for all equilibria of (6.6) on Pσ satisfying {P = 0} is that
the reduced system is reversible with respect to

R : (M, N, P ) 7→ (M, N,−P ) .

Note that we refrain from reducing the corresponding symmetry group Z2. Indeed, on

Pσ/Z2
=

{
(M, N) ∈ R

2 | M ≥ 0 , N ≥ 0 , 2MN ≥ 1

2
σ2

}
(B.2)

it is not possible to define reduced dynamics. Thus, a periodic orbit on Pσ is mapped to the
part of the parabola

N = h − µ2M − β

2
M2 − γσM (B.3)

that lies within the region (B.2) of R
2. The two endpoints correspond to the turning points

where Ṁ = Ṅ = 0 (since P = 0) and Ṗ > 0 or Ṗ < 0, respectively. For examples where the
passage to the ‘fully reduced phase space’ (B.2) is in fact helpful as it lowers the degrees of
certain polynomials generalizing (B.3) see Rink [2002], Efstathiou et al. [2004].

To compute the equilibria on Pσ, σ 6= 0 fixed, we determine the points where the parabola
(B.3) touches the hyperbola

N =
σ2

4M
. (B.4)

Since the value h of the energy can always be adjusted appropriately this amounts to equating
the derivatives of (B.3) and (B.4) and leads to the cubic equation

F (σ, M) = 0 , (B.5)

with F (σ, M) defined in (6.8).
For a solution M of (B.5) the appropriate energy value is (6.9). When σ = 0 we similarly

obtain the regular equilibria (6.10) on P0. Fixing β 6= 0 and γ ∈ R the solution M of (B.5)
is parametrised by (µ2, σ) and we obtain part of a swallowtail surface in (µ2, σ, h)–space, see
van der Meer [1985], Hanßmann & van der Meer [2002] for more details. The linear behaviour
of the regular equilibria is determined by comparing the curvatures of the parabola (B.3)
and the hyperbola (B.4). Indeed, where

σ2

8M3
> −β
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the surface of revolution Pσ lies completely above the parabolic cylinder {H = h} and the
equilibrium Pσ ∩ {H = h} is elliptic. In the supercritical case we have −β < 0 and this
holds true for all regular equilibria. In the subcritical case only the equilibria corresponding
to the lower sheet h = h1(µ2, σ) are elliptic. An equilibrium (M, N, 0) accounted for on the
upper sheet h = h2(µ2, σ) satisfies

σ2

8M3
< −β

whence Pσ and {H = h} intersect along separatrices and the equilibrium is hyperbolic. When
crossing the line (6.11) a (subordinate) centre–saddle bifurcation takes place as an elliptic
equilibrium accounted for on the lower sheet meets a hyperbolic equilibrium accounted for on
the upper sheet and both vanish. In particular, the equilibria corresponding to h1(µ2, σ) =
h2(µ2, σ), with (µ2, σ) satisfying (6.11), are parabolic as (B.3) and (B.4) have third order
contact. There is always quadratic contact in the P–direction.

B.3 Effect of conservative higher order terms

We prove Propositions 18 and 19.

We now consider a normal form that is not already truncated at third order. Reducing
the free T

n–symmetry (x, z) 7→ (x + ξ, z) yields again a 4–dimensional vector field of the
form (6.1), but now with a more general Hamiltonian

H(z) = S(z) + N(z) + r
(
M(z), S(z)

)
(B.6)

where the function r : R
2 −→ R

2 satisfies

∂r

∂M
(0, 0) = µ2 ,

∂r

∂S
(0, 0) = µ1 , r(0, 0) = 0 ,

∂2r

∂M2
(0, 0) = β ,

∂2r

∂M∂S
(0, 0) = γ ,

∂2r

∂S2
(0, 0) = δ .

The vector field Y is parallel to XS and vanishes at {M = 0}, more precisely we have

αY = s(M, S)XS (B.7)

with

s(0, S) = 0 ∀S and
∂s

∂M
(0, 0) = α .

The functions r and s are related to p and q in (A.2) by

p(M, S) =
∂r

∂S
(M, S) + s(M, S)

q(M, S) =
∂r

∂M
(M, S) .
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Since Y remains tangent to the fibres of the Hilbert map (6.15) the reduced 1DOF system
has equations of motion (6.6) with Hamiltonian

H = N + r̂(M, σ) = N +

∫ M

0

qσ(m) dm

where qσ(M) = q(M, σ) and r̂(M, σ) = r(M, σ) − r(0, σ), which amounts to skipping the
constant terms σ + r(0, σ).

To adapt the formulas we obtained in Sec. 6.1.2 to the present dynamics we have to
replace the parabola (B.3) by

N = h − r̂(M, σ)

whence (6.8) turns into

F̂ (M, σ) = σ2 − 4M2 ∂r̂

∂M
(M, σ) .

We see that there are no qualitative differences under the condition β 6= 0 ; both in the
supercritical case β > 0 and in the subcritical case β < 0 the description in Sec. 6.1.2
remains valid and only the exact location of the (relative) equilibria is slightly shifted.
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