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Abstract

Hamiltonian systems are a class of dynamical systems which can be characterised
by preservation of a symplectic form. This allows to write down the equations of
motion in terms of a single function, the Hamiltonian function. They were conceived
in the 19th century to study physical systems varying from optics to frictionless
mechanics in a unified way. This description turned out to be particularly efficient
for symmetry reduction and perturbation analysis.

1 Introduction

The best-known Hamiltonian system is the harmonic oscillator. The second order differ-
ential equation

ẍ + $2x = 0

models the motion of a point mass attached to a massless spring (Hooke’s law) and has
the general solution

x(t) = x0 cos $t +
y0

$
sin $t

with initial conditions (x(0), ẋ(0)) = (x0, y0). Choosing co-ordinates

q =
√

$x and p =
y√
$

(1)

yields the first order system

d

dt

(

q
p

)

=

(

0 $
−$ 0

) (

q
p

)

,

the solutions of which move along the circles p2 + q2 = const. This last observation lies at
the basis of the Hamiltonian formalism, defining

H(q, p) = $
p2 + q2

2
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to be the Hamiltonian function of the system. The Hamiltonian vector field is then defined
to be perpendicular to the gradient ∇H, ensuring that H is a conserved quantity. Passing
back through (1) yields the energy

H(x, y) =
ẋ2

2
+ $2 x2

2

of the spring system (the point mass being scaled to m = 1).
The conserved quantity H makes two-dimensional systems, said to have one degree

of freedom, easy to study and many efforts are made to reduce more complex systems to
this setting, often using symmetries. In such a case the system is integrable and can in
principle be explicitly solved. Where the symmetries are only approximately preserving
the system, a more geometric understanding allows to analyse how the perturbation from
the integrable approximation to the original system alters the dynamics.

2 The Phase Space

The simplest type of example of a Hamiltonian system is that of a 1–dimensional particle
with kinetic energy

T =
1

2
mv2 =

p2

2m
(2)

and potential energy V = V (q). The canonical equations derived from the Hamiltonian
function H = T + V are

q̇ =
∂H

∂p
=

p

m

ṗ = −∂H

∂q
= −V ′(q)

and are equivalent with Newton’s laws, where F = −V ′ is the force field with potential V .
An immediate consequence is

Ḣ =
∂H

∂q
q̇ +

∂H

∂p
ṗ = 0 ,

the conservation of energy.
The same conclusion holds in R2n, with canonical co-ordinates q1, . . . , qn, p1, . . . , pn,

where a Hamiltonian function H : R2n −→ R defines the canonical equations

q̇i =
∂H

∂pi
, i = 1, . . . , n (3a)

ṗi = −∂H

∂qi

, i = 1, . . . , n . (3b)

The Hamiltonian vector field XH defined by these equations satisfies

iXH
y ω := ω(XH , ) = dH (4)
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where
ω = dq1 ∧ dp1 + . . . + dqn ∧ dpn (5)

is the canonical symplectic form on R2n.
Hamiltonian mechanics becomes conceptually easier if one abstracts from well-chosen

canonical co-ordinates and considers the phase space to be a symplectic manifold (P, ω).
A Hamiltonian function H : P −→ R then defines by means of (4) the Hamiltonian vector
field XH on P in a co-ordinate free way. With Darboux’s Theorem [1, 2, 24, 28] one can
always return to canonical co-ordinates, locally around any given point of P.

The flow ϕ : R × P −→ P of a Hamiltonian vector field preserves the symplectic
structure, i.e. ϕ∗

t ω = ω [2, 24, 12, 28]. An immediate consequence is Liouville’s Theorem
that the phase space volume ωn = ω ∧ . . . ∧ ω is preserved as well. As a corollary one
obtains Poincaré’s Reccurrence Theorem.

Theorem (Poincaré). Let Ω ⊆ P be compact and invariant under ϕt. Then every
neighbourhood U of every point a ∈ Ω has a trajectory that returns to U .
The proof consists of “a walk in the park” – however small my shoes are, I am bound to
step on my own trail if I walk forever in a park of finite size.

Hamiltonian systems have special properties that are untypical for general dissipative
systems. An important aspect is that volume preservation excludes the existence of
attractors. In dissipative systems the restriction of the flow to an attractor often allows
to dramatically lower the dimension of the system; more generally one restricts with the
same aim to the non-wandering set. In the present conservative context, if e.g. the energy
level sets are compact then the non-wandering set consists of the whole phase space.

One speaks of a simple mechanical system [1, 2, 24] if the phase space P = T ∗M
is the cotangent bundle of a Riemannian manifold M , the configuration space, and the
Hamiltonian H = T + V is the sum of kinetic and potential energy. Furthermore, the
kinetic energy

T (αq) = 〈αq | αq〉q
is given by the Riemannian metric (evaluated at the base point q ∈ M of αq ∈ T ∗

q M) and
the potential energy

V (αq) = V (q)

depends only on the configuration q ∈ M . The cotangent bundle has a canonical 1–form ϑ
defined by

ϑ(vαq
) = αq(Tπ(vαq

)) for all vαq
∈ Tαq

T ∗M

where π : T ∗M −→ M is the bundle projection to the configuration space and Tπ :
TT ∗M −→ TM its derivative, see figure 1. From ϑ the symplectic form is obtained as
the exterior derivative ω = −dϑ.

Choosing any co-ordinates q1, . . . , qn on the configuration space M and completing
them with the conjugate momenta p1, . . . , pn one automatically has a canonical co-ordinate
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q

αq

vαq

Figure 1: Projection of a vector vαq
tangent to T ∗M to the tangent space of M at

q = π(αq). The resulting tangent vector can be fed into αq : TqM −→ R.

system on the phase space P = T ∗M in which the canonical 1–form reads

ϑ =
n

∑

i=1

pidqi

and the symplectic form is given by (5). This freedom of choosing any co-ordinate system
is lost on the whole phase space if one insists on the equations of motion to be in canonical
form (3).

A significant part of the classical literature [20, 35, 16, 2] is devoted to generating func-
tions, a means to generate transformations that turn canonical co-ordinates into canonical
co-ordinates, therefore called canonical transformations. A contemporary means to ob-
tain canonical transformations is to use the time–1–flow ϕ1 of a well-chosen Hamiltonian
function as these are better suited for implementation on a computer. Since ϕ−1

1 = ϕ−1

it is as simple (or complicated) to compute the inverse of such a transformation as it is
to compute the transformation itself.

In a (not necessarily canonical) co-ordinate system z1, . . . , z2n one can use the Poisson
bracket, defined by

{F, H} := ω(XF , XH) ,

to write down the equations of motion

żj = {zj, H} =

2n
∑

k=1

∂H

∂zk
{zj, zk}
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which have the canonical form precisely when it is possible to write (z1, . . . , zn) = (q1, . . . , qn)
and (zn+1, . . . , z2n) = (p1, . . . , pn) with Poisson bracket relations

{qi, qj} = 0 , {pi, pj} = 0 , {qi, pj} = δij .

While a symplectic manifold has necessarily even dimension, one can turn also manifolds
of odd dimension into a Poisson space. An important example is the Poisson structure

{F, H}(z) := 〈∇F (z) ×∇H(z) | z〉 (6)

on R3 (with its inner product 〈x | y〉 = x1y1 + x2y2 + x3y3) for which the equations of
motion read

ż = ∇H(z) × z . (7)

The function R(z) = 1
2
〈z | z〉 is a Casimir function of the Poisson structure as it is

invariant under every Hamiltonian flow on R3 since {R, H} = 0 for all (Hamiltonian)
functions H : R3 −→ R. This fibrates R3 into invariant spheres {R = 1

2
ρ2} of radius ρ,

with a singular sphere reduced to a point at the origin. The area element σ makes each
sphere S2

ρ a symplectic manifold, and the restriction of the Poisson bracket (6) to S2
ρ

satisfies

{F, H} =
1

ρ2
σ(XF , XH) .

A similar (though in general slightly more complicated) decomposition into symplectic
leaves exists for every Poisson manifold [2, 24, 30].

A first measure for the complexity of a Hamiltonian system is the number of degrees
of freedom. For a simple mechanical system this is the dimension of the configuration
space, and accordingly one defines this number as 1

2
dimP for a symplectic manifold P.

On a Poisson space this number is related to the rank of the Poisson bracket, given by
rank ({zj, zk})j,k=1,...,m in local co-ordinates z1, . . . , zm. This even number is upper semi-
continuous and coincides at each point with the dimension of the symplectic leaf passing
through that point. Hence, the number of degrees of freedom is defined as one half of the
maximal rank of the Poisson structure.

3 Systems in One Degree Of Freedom

For the simple mechanical systems consisting of a 1–dimensional particle with kinetic
energy (2) moving in a potential V = V (q) the trajectories coincide with the level curves
{H = h} of H = T + V . Finding the time parametrisations of the trajectories is thereby
reduced to the quadrature

∫

dq
√

2m(h − V (q))
,

and correspondingly one speaks of an integrable system. Where this time parametrisation
is not important one can always multiply the Hamiltonian by a strictly positive function,
in the present one-degree-of-freedom situation one has then the extra choice [8, 17] of
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performing any co-ordinate transformation and still writing the equations in canonical
form (with respect to the transformed Hamiltonian function).

The phase portraits in a Poisson space P with one degree of freedom can be obtained
by intersecting the level sets of the energy with the symplectic leaves. In particular,
a point where the rank of the Poisson structure drops from 2 to 0 is an equilibrium for
every Hamiltonian system on P. Equilibria on regular symplectic leaves are called regular
equilibria.

There are four types of linearizations of regular equilibria in one degree of freedom.
In canonical co-ordinates these are given by quadratic Hamiltonian functions H2.

Elliptic. H2(q, p) = $
2
(p2 + q2), the nearby motion is periodic with frequency close

to $. This is the harmonic oscillator.

Hyperbolic. H2(q, p) = a
2
(p2 − q2), the equilibrium is a saddle.

Parabolic. H2(q, p) = a
2
p2, the higher order terms of the Hamiltonian around the

equilibrium determine the character of the flow.

Vanishing. H2(q, p) ≡ 0, the linearization contains no information and the flow is
given by the higher order terms.

Generic Hamiltonian systems on a symplectic surface have only elliptic and hyperbolic
equilibria, see figure 2. Where the system depends on external parameters or is defined
on a family of symplectic leaves one may also encounter parabolic equilibria. The phe-
nomenon of vanishing linearization is of co-dimension three.

Figure 2: Typical recurrent flow in one degree of freedom
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As an example consider the phase space R3 with Poisson structure (6) and Hamiltonian
energy function

H(z) =

3
∑

i=1

ai

2
z2

i + bizi

depending on the external paremeters (a, b) ∈ R3×R3. On each sphere S2
ρ the points with

minimal and maximal energy are elliptic equilibria. All equilibria occur where S2
ρ touches

the quadric {H = h} of constant energy. Where this happens with coinciding curvature
along a line the equilibrium is parabolic. For a, b ∈ R3 in general position a centre-saddle
bifurcation occurs as ρ passes through such a value. If e.g. the three conditions a1 = a2,
b1 = b2 = 0 hold, then the curvatures at

z =





0
0

− bi

ai





coincide along all lines and the linearization at this equilibrium vanishes. The origin z = 0
is for all values of a, b ∈ R3 a (singular) equilibrium.

4 Systems in Two Degrees Of Freedom

While all recurrent motion is periodic in one degree of freedom, the flow can have a
stochastic (or chaotic) character already in two degrees of freedom. The level sets {H =
h} of the Hamiltonian are now 3–dimensional invariant hypersurfaces, and complicated
dynamics is known to be possible from dimension three on. Still, being Hamiltonian
imposes certain restrictions.

Leaving aside equilibria with vanishing eigenvalues, there are the following types of lin-
earizations of regular equilibria in two degrees of freedom, with quadratic Hamiltonian H2

in canonical co-ordinates.

Elliptic. The quadratic part

H2(q, p) = α
p2

1 + q2
1

2
+ $

p2
2 + q2

2

2
, with |α| ≤ |$|, (8)

is the superposition of two harmonic oscillators. For α/$ ∈ Q the motion is periodic,
but for irrational frequency ratio the trajectories spin densely around invariant tori.
In the case $ = −α of 1:−1 resonance one can add a nilpotent part

p2
1 + q2

1 + p2
2 + q2

2

4
− p1q2 + p2q1

2

whence the linear flow becomes unbounded.
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Hypo-elliptic. The linear vector field with quadratic Hamiltonian

H2(q, p) = a
p2

1 − q2
1

2
+ $

p2
2 + q2

2

2

has one pair of eigenvalues on the real axis and one pair of eigenvalues on the
imaginary axis. One also speaks of a saddle-centre equilibrium.

Hyperbolic. The linearization has no eigenvalues on the imaginary axis. In case
the spectrum consists of two pairs of real eigenvalues the standard form of the
Hamiltonian is

H2(q, p) = a
p2

1 − q2
1

2
+ b

p2
2 − q2

2

2

and one speaks of a saddle-saddle equilibrium (or real saddle). In the alternative
case of a complex quartet ±α ± i$ one has

H2(q, p) = α(p1q1 + p2q2) + $(p1q2 − p2q1)

and speaks of a focus-focus equilibrium (or complex saddle), since the flow on the
stable manifold spirals into the equilibrium and the flow on the unstable manifold
spirals away from the equilibrium.

The 1:−1 resonance is special in that it typically triggers off a Hamiltonian Hopf bifurca-
tion during which an elliptic equilibrium becomes hyperbolic, of focus-focus type. Other
bifurcations occur where eigenvalues vanish under variation of an external parameter
(possibly parametrising 4–dimensional symplectic leaves in a higher-dimensional Poisson
space).

In generic Hamiltonian systems all equilibria are isolated and the periodic orbits form
1–parameter families. In one degree of freedom these families extend between (elliptic)
equilibria and/or the (un)stable manifolds of (hyperbolic) equilibria, see figure 2. In two
degrees of freedom the 1–parameter families of periodic orbits are special solutions and
one may hope that they similarly organize the dynamics. The normal linear behaviour of
a periodic orbit with period τ is determined by its Floquet multipliers, the eigenvalues of
the linearization Dϕτ of the flow.

The simplest way to find periodic orbits in a Hamiltonian system, e.g. as a starting
point for continuation, is to look for the normal modes of an equilibrium.

Theorem (Liapunov). Let λ± = ±iα be a purely imaginary pair of eigenvalues of the
linearization A = DXH(z) at an equilibrium z ∈ P of a Hamiltonian system XH on a
symplectic manifold P for which no integer multiple kλ±, k ∈ N, is an(other) eigenvalue
of A. Then XH admits a 1–parameter familiy (γε)0<ε≤ε0

of periodic orbits that approach z

as ε → 0 with periods Tε
ε→0−→ 2π/α. The union

{z} ∪
⋃

0<ε≤ε0

γε
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forms a smooth 2–dimensional submanifold of P with boundary γε0
that is diffeomorphic

to the closed disk in R2.

For a proof see [1, 25, 28]; this result immediately generalizes to n degrees of freedom.

If the Hessean D2H(z) is positive (or negative) definite, the non-resonance condition
λ 6= kλ± for the remaining eigenvalues of A can be dropped, but the resulting families of
periodic orbits may no longer form manifolds through z and only form cones with z as
vertex instead. In two degrees of freedom the 1:−1 and 1:−2 resonances provide examples
where the normal mode is lacking, but for 1:−k resonant equilibria with k ≥ 3 it turns
out to be generic for the normal modes to exist.

The normal mode of a hypo-elliptic equilibrium in two degrees of freedom is a hyper-
bolic periodic orbit with a real pair a, 1

a
6= ±1 of Floquet multipliers. The periodic orbits

born at an elliptic equilibrium also inherit their normal behaviour from the “second” pair
of eigenvalues and have a pair e±i$ 6= ±1 of Floquet multipliers on the unit circle. Cou-
pling two generic systems with one degree of freedom with a sufficiently weak interaction
yields periodic orbits that are globally organized in this fashion, each periodic orbit being
the superposition of a centre or a saddle in one subsystem and a periodic orbit in the
other subsystem.

The periodic orbits that are neither elliptic nor hyperbolic are isolated within the
1–parameter families of periodic orbits. The arcs in between consist either completely
of elliptic or completely of hyperbolic periodic orbits and may be parametrised by the
values of the energy. The following types of bifurcations are triggered off by parabolic
periodic orbits, for which the normal linear behaviour is governed by a Floquet matrix
(1
0
1
1) or (−1

0
1

−1).

The periodic centre-saddle bifurcation. Under variation of the energy an elliptic
and a hyperbolic periodic orbit meet at a parabolic periodic orbit with all Floquet
multipliers equal to 1. No periodic orbit remains when further in(or de)creasing the
energy. In a suitable projection

(H, I) : P −→ R2 H−→ R

the family of periodic orbits forms a fold. See also figure 4 below.

The Hamiltonian period-doubling bifurcation. Under variation of the energy an
elliptic periodic orbit turns hyperbolic (or vice versa) when passing through a
parabolic periodic orbit with Floquet multipliers −1. Furthermore a family of peri-
odic orbits with twice the period emerges from the parabolic periodic orbit, inher-
iting the normal linear behaviour from the initial periodic orbit. See also figure 5
below.

For proofs of this and the following see [25, 22].

In generic systems with two degrees of freedom these are the only occuring bifurcations
of periodic orbits. In three and more degrees of freedom there is “more space” in the
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normal direction and also periodic Hamiltonian Hopf bifurcations may occur. A prominent
example is the gyroscopic stabilization of the rotating Lagrange top “standing up”, cf. [2,
24, 12].

Along arcs of elliptic periodic orbits the pair e±i$ of Floquet multipliers passes reg-
ularly through roots of unity. Generically this happens on a dense set of parametrising
energy values, but for fixed denominator ` in e±i$ = e±2πik/` the corresponding energy
values are again isolated. The cases ` = 1 and ` = 2 correspond to the above bifurcations
so the “first” case is ` = 3.

Two arcs of hyperbolic periodic orbits emerge at elliptic orbits with Floquet multipliers
e±2πik/3, both with three times the period. One extends for lower and the other for higher
energy values. The periodic orbit with Floquet multipliers e±2πik/3 momentarily loses its
(normal) stability due to these approaching unstable orbits.

In the case of Floquet multipliers e±2πik/` with ` ≥ 5 again two arcs of periodic orbits
with ` times the period emerge, but now one is elliptic and the other hyperbolic, and they
both extend to the same side of energy values (either lower or higher). Furthermore there
is no momentary loss of (normal) stability as these families detach. For ` = 4 both the
` = 3 and the ` ≥ 5 scenarios can occur.

1

2

5

9

4

7

3

5

5

8

2

3

Figure 3: Subharmonic branching along a normal mode of an elliptic equilibrium in a
response diagram with axes along normal frequency and amplitude. Where normal and
internal frequency of the periodic orbit emanating from the equilibrium have a ratio
$ = 2π k

`
with integers k, ` ∈ Z two periodic orbits with ` times the period branch

off, one elliptic and one hyperbolic (shown in grey). For ` = 3 the distance between
these widens as the two periodic orbits come into existence in a 3–periodic centre-saddle
bifurcation “before” the resonance after which the hyperbolic 3–periodic orbit passes
through the normal mode at the 2

3
–resonance (shown reflected as the vertical depicts the

amplitude). For ` = 2 the resonance leads to a gap within the elliptic normal mode, filled
by hyperbolic periodic orbits and with boundaries marked by two Hamiltonian period-
doubling bifurcations.

It is at isolated values of the energy that the two arcs of (` ≥ 5)–times periodic
orbits (or (` = 4)–times where appropriate) change from extending along lower energy
values to extending along higher energy values. For definiteness let us consider a sub-arc
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between such values where all these exist for higher energy values. Where this sub-arc
contains periodic orbits with Floquet multipliers e±2πik/3 (or e±2πik/4 where appropriate)
the family of 3–times periodic orbits that extends for lower energy values typically vanishes
in a nearby periodic centre–saddle bifurcation. The family of elliptic periodic orbits born
in this bifurcation then extends along higher energy values as well. A possible arc of
elliptic periodic orbits is sketched in figure 3. For more details on periodic solutions of
Hamiltonian systems see [33].

To visualize the flow on the 3–dimensional energy shells {H = h} one uses iso-energetic
Poincaré-sections, i.e. surfaces Σh ⊂ {H = h} that are everywhere transverse to the vector
field XH . For recurrent points z ∈ Σh the (first) return time

τ(z) := min { T > 0 | ϕT (z) ∈ Σh }
allows to define the iso-energetic Poincaré-mapping

Ph : Σh −→ Σh

z 7→ ϕτ(z)(z)
.

The phase space volume ω2 = ω ∧ ω coming from the symplectic structure induces an
area element σ on Σh that is preserved by Ph. On the other hand, every area-preserving
mapping can be realized as an iso-energetic Poincaré-mapping of a Hamiltonian system.

Figure 4: Centre-saddle bifurcation in an area-preserving mapping.

A periodic orbit γ of XH with energy h corresponds to a fixed point x ∈ Σh (or to
a periodic point of period k ∈ N if γ has k − 1 intersections with Σh before returning
to x). Two of the Floquet multipliers of γ are equal to 1, reflecting that periodic orbits
form 1–parameter families in Hamiltonian systems and that moving the initial condition
within γ yields that same periodic orbit with a translated time parametrisation. The
remaining two Floquet multipliers are the eigenvalues of the linearization DPh(z) of the
iso-energetic Poincaré-mapping at a fixed point z.

Because of area-preservation det DPh(z) = 1, so one eigenvalue of DPh(z) has to be
the inverse of the other eigenvalue. For an elliptic periodic orbit both eigenvalues lie on
the unit circle where the inverse equals the complex conjugate. For hyperbolic γ both
eigenvalues are real and one sometimes makes the distinction between the direct hyperbolic
case of positive eigenvalues and the inverse hyperbolic case of negative eigenvalues. See
figure 4 for the centre-saddle bifurcation triggered off by the double eigenvalue +1 and
figure 5 for the period-doubling bifurcation triggered off by the double eigenvalue −1.
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Figure 5: Period-doubling bifurcation in an area-preserving mapping.

5 Symmetry Reduction

When a dynamical system admits a symmetry group it is possible to simplify the dy-
namics. This reduction process is especially rewarding in Hamiltonian systems, where
Noether’s theorem yields for every continuous symmetry a conserved quantity. One even
has the choice between first fixing the values of the conserved quantities and then reducing
what is left of the symmetry, or first reducing the symmetry and then fixing the remaining
conserved quantities.

Let H ∈ C∞(P) be a Hamiltonian function on the symplectic manifold (P, ω) and G
a compact Lie group (i.e. the group operation is smooth) with Lie algebra g (the tangent
space TeG at the neutral element e ∈ G, provided with the Lie bracket that measures
the non-commutativity of the group operation). Results for more general groups do exist,
but some kind of compactness, e.g. that the group action be proper, is always needed.
Assume that the group action

G × P −→ P
(g, z) 7→ gz

(9)

preserves both the Hamiltonian function H and the symplectic form ω. Then G also
preserves the Hamiltonian vector field XH and the resulting flow commutes with the
group action (9), i.e. ϕt ◦ g = g ◦ ϕt for all (t, g) ∈ R × G. In fact, this allows to combine
the flow ϕ : R × P −→ P of XH and the action (9) to the action

(R × G) × P −→ P
((t, g), z) 7→ ϕt(gz)

(10)

of the Lie group R × G on P.
Reduction aims to find a phase space of smaller dimension on which the dynamics

can be studied. Identifying points z ∼ gz that are transformed into each other by group
elements leads to the quotient space P/G with canonical projection

P −→ P/G .

As H(z) = H(gz) for all g ∈ G the Hamiltonian induces a function on P/G, again denoted
by H. However, the symplectic structure on P does not induce a symplectic structure on
the quotient space. What can be transferred from P to P/G is the Poisson structure.
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The symplectic form is preserved by G, whence the mappings z 7→ gz are canonical
transformations, satisfying

{F ◦ g, H ◦ g} = {F, H} ◦ g for all F, H ∈ C∞(P).

Thus, the Poisson bracket of G–invariant functions is again G–invariant, defining a Poisson
bracket on P/G. The Casimir functions on this Poisson space correspond to those G–
invariant functions on P that are conserved quantities for every G–invariant Hamiltonian
function.

As an example consider the free rigid body with a fixed point, subject only to its own
inertia. The configuration space is SO(3), all (rigid) rotations about the fixed point, with
a Riemannian metric provided by the mass distribution. On the phase space T ∗SO(3)
the Hamiltonian H = T is given by the resulting kinetic energy.

The mass distribution and hence the Hamiltonian are invariant under rotations, mak-
ing SO(3) a symmetry group. Using the left trivialization

λ : T ∗SO(3) −→ SO(3) × T ∗
e SO(3)

αg 7→ (g, T ∗
e Lg(αg))

defined by means of the left translation

Lg : SO(3) −→ SO(3)
h 7→ gh

the group action reads

SO(3) × (SO(3) × R3) −→ SO(3) × R3

(g, (h, `)) 7→ (gh, `)

and reveals T ∗SO(3)/SO(3)
∼= R3. Here ` ∈ R3 ∼= so(3)∗ = T ∗

e SO(3) consists of the three

components of the angular momentum with respect to a set of axes fixed in the body,
whence one calls λ(αg) = (g, `) body co-ordinates. Choosing the body set of axes along
the principal axes of the rigid body the Hamiltonian takes the form

H(g, `) = H(`) =
`2
1

2I1
+

`2
2

2I2
+

`2
3

2I3

where I1, I2, I3 are the principal moments of inertia. The Poisson bracket relations inher-
ited from T ∗SO(3) are

{`1, `2} = −`3 , {`2, `3} = −`1 , {`3, `1} = −`2 (11)

whence the Poisson structure on R3 is almost (6) considered in Section 2, differing only by
a minus sign. The Casimir function R(`) = 1

2
(`2

1 +`2
2 +`2

3) measures (half of the square of)
the length of the angular momentum, fixing this conserved quantity yields the symplectic
leaves of the quotient space R3.
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The alternative approach to symmetric Hamiltonian systems first fixes the conserved
quantities. For ξ ∈ g the 1–prameter subgroup {exp(sξ) | s ∈ R} of G yields a conserved
quantity

Jξ : P −→ R (12)

by Noether’s theorem, cf. [2, 8, 25]. The Hamiltonian vector field X
Jξ has the flow

(s, z) 7→ exp(sξ) · z provided by the 1–parameter subgroup.
Here and from now on the assumption is made that the (mild) conditions for Noether’s

theorem are fulfilled, making (9) a Hamiltonian group action. What has to be avoided is
that the flow provided by the 1–parameter subgroup is only locally Hamiltonian, see [1,
30, 31] for more details.

In the example of the free rigid body a conserved quantity (12) is the component of
the angular momentum along an axis fixed in space. Collecting these conserved quantities
by means of

J : P −→ g
∗

z 7→ J(z) : g −→ R

ξ 7→ Jξ(z)
(13)

yields the momentum mapping. For the rigid body this amounts to fixing a set of axes
in space and assigning to αg ∈ T ∗

g SO(3) the three components µ ∈ R3 ∼= so(3)∗ of the
angular momentum with respect to these axes. Correspondingly, the right trivialization
reads

% : T ∗SO(3) −→ SO(3) × R3

αg 7→ (g, µ)

where µ = T ∗
e Rg(αg) is obtained differentiating the right translation Rg(h) = hg. In space

co-ordinates %(αg) = (g, µ) the group action takes the form

SO(3) × (SO(3) × R3) −→ SO(3) × R3

(g, (h, µ)) 7→ (hg, g(µ))

and one sees that the momentum mapping

SO(3) × R3 −→ R3 (14)

intertwines between the SO(3)–actions on the phase space and on R3.
To formulate the corresponding equivariance property of the momentum mapping in

the general case the co-adjoint action

G × g
∗ −→ g

∗

(g, µ) 7→ Ad∗
g−1(µ) = µ ◦ Ad−1

g

(15)

is needed, here Adg : g −→ g is the derivative Te(LgRg−1) of the inner automorphism h 7→
ghg−1 = LgRg−1h at the neutral element. The momentum mapping J of the Hamiltonian
group action (9) is now called equivariant if it intertwines between (9) and (15), i.e.

J(gz) = Ad∗
g−1J(z) for all (g, z) ∈ G × P.
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In this case the assignment ξ 7→ J ξ ∈ C∞(P) of conserved quantities to Lie algebra
elements ξ ∈ g turns out to be a Lie algebra homomorphism, cf. [1, 24, 31]. Providing
g
∗ with the Lie–Poisson bracket (defined in terms of the commutator on g) makes (13) a

canonical mapping, see [30, 31] for more details. The identification so(3)∗ ∼= R3 turns the
Lie–Poisson bracket into (6) and indeed {µ1, µ2} = µ3 etc. for the spatial representation
of the angular momentum. Working with right group actions (instead of acting from the
left) would yield a minus sign here and a plus sign in (11).

Let µ ∈ g
∗ be a regular value of the equivariant momentum mapping (13). Then

J−1(µ) is a submanifold of P and the (compact) isotropy subgroup

Gµ =
{

g ∈ G | Ad∗
g−1(µ) = µ

}

of the co-adjoint action leaves this manifold invariant as

J(gz) = Ad∗
g−1J(z) = µ for all (g, z) ∈ Gµ × J−1(µ)

whence the restriction
Gµ × J−1(µ) −→ J−1(µ)

(g, z) 7→ gz
(16)

defines a Lie group action on the manifold J−1(µ). Passing to the quotient J−1(µ)/Gµ
is

called symplectic point reduction.

Theorem (Marsden and Weinstein). Let µ be a regular value of J and assume that
the action (16) is free. Then the reduced phase space Pµ = J−1(µ)/Gµ

is a symplectic

manifold, with ωµ uniquely determined by ω|J−1(µ) = ωµ ◦ πµ where πµ is the quotient

projection. A G–invariant Hamiltonian function H ∈ C∞(P) induces Hµ ∈ C∞(Pµ) and
πµ intertwines between the flows of XH and XHµ

.

For a proof see [1, 2, 12, 31].

In the example of the free rigid body the momentum mapping SO(3) × R3 −→ R3 is
surjective and all values are regular, with inverse images SO(3) × {µ}. For µ 6= 0 the
isotropy subgroup Gµ

∼= S1 consists of all rotations in R3 about the axis along µ and the
reduced phase space

SO(3) × {µ}/Gµ
∼= SO(3)/S1

∼= S2

can be identified with the sphere of radius |µ| as

SO(3)× {µ} −→ S2
|µ|

(g, µ) 7→ g(µ)

performs the reduction. The symplectic form on S2
|µ| is a multiple

−1

|µ|2 · σ
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of the area element σ (the minus sign is the “same” as in (11)). The isotropy subgroup
of µ = 0 is the whole SO(3) and the quotient space consists of the origin ` = g(0) in R3.

As illustrated in this example, symplectic point reduction provides the symplectic
leaves of the Poisson space P/G obtained by directly reducing the action (9) on P. A link
between these two procedures of symmetry reduction is symplectic orbit reduction. By
equivariance of (13) the inverse image J−1(G(µ)) of the co-adjoint orbit

G(µ) =
{

Ad∗
g−1µ | g ∈ G

}

(17)

is invariant under the whole group G as

J(gz) = Ad∗
g−1J(z) ∈ G(µ) for all (g, z) ∈ G × J−1(G(µ)) .

Hence, the restriction of (9) to J−1(G(µ)) defines a group action and the quotient spaces
J−1(G(µ))/G form a partition of P/G (since

G =
⋃

µ∈g∗

G(µ)

and two orbits are either disjoint or equal). On the other hand, the two quotients
J−1(G(µ))/G and J−1(µ)/Gµ

are symplectomorphic, see [30, 31] for more details. In the

example of the free rigid body, the inverse image of the co-adjoint orbit G(µ) is the sphere
bundle in T ∗SO(3) of radius |µ| which is given by SO(3) × S2

|µ| both in body and space
co-ordinates.

The group action (9) is free if every z ∈ P is moved away from z by every group
element, i.e. all isotropy subgroups

Gz = { g ∈ G | gz = z }

of (9) (not of the co-adjoint action) are trivial. For free actions the Poisson space P/G is
a Poisson manifold. Non-trivial isotropy groups typically lead to singularities. This can
already be seen in the example of S1 acting on R4 = T ∗R2 = R2 × R2 by simultaneous
rotation in both planes, for the general theory see [12, 30] and references therein.

The group S1 = SO(2) of planar rotations is commutative, whence the isotropy
subgroups of the co-adjoint action coincide with the whole group and the generator
l = q1p2 − q2p1 of the action

(

q
p

)

7→









cos ρ − sin ρ 0 0
sin ρ cos ρ 0 0

0 0 cos ρ − sin ρ
0 0 sin ρ cos ρ









(

q
p

)

(18)

may be fixed both before and after passing to the quotient. The ring of S1–invariant
functions is generated by the polynomials

x =
q2
1 + q2

2

2
, y =

p2
1 + p2

2

2
, z = p1q1 + p2q2 and l
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which are restricted by the relations

x ≥ 0 , y ≥ 0 , and Rl(x, y, z) = 0

where

Rl(x, y, z) =
1

2
z2 − 2xy +

1

2
l2

defines the syzygy between these invariants. In particular, the S1–invariant Hamiltonian
function H may be written as a function H = Hl(x, y, z).

This allows to refrain from local co-ordinates and use (x, y, z) as (global) variables on
the reduced phase spaces

Pl =
{

(x, y, z) ∈ R3 | x ≥ 0 , y ≥ 0 , Rl(x, y, z) = 0
}

(19)

which foliate the Poisson space

R4/S1 =
⋃

l∈R

Pl × {l} ⊆ R4

with Poisson brackets given in table 1. Fixing the Casimir function l, the resulting Poisson
structure on R3 can also be written as

{F, H} = 〈∇F ×∇H | ∇Rl〉 (20)

(generalizing (6)), revealing Rl to be the second Casimir function.

Table 1: Poisson structure on R4.

{↓,→} x y z l

x 0 z 2x 0

y −z 0 −2y 0

z −2x 2y 0 0

l 0 0 0 0

The fixed point (q, p) = 0 of (18) has the whole group S1 as isotropy group, all other
isotropy groups of (18) are trivial. Thus, for l 6= 0 the positive sheets Pl of the two-sheeted
hyperboloids R−1

l (0) yield symplectic leaves of the Poisson space R4/S1 . For l = 0 the
reduced phase space P0 is stratified into two symplectic strata of dimensions 2 and 0, the
positive part x+y > 0 of the double cone R−1

0 (0) and the vertex of this cone, respectively.
Hence, the vertex is automatically an equilibrium of the reduced Hamiltonian system.

Where an action (9) of a discrete group G preserves Hamiltonian H and symplectic
form ω there is no resulting conserved quantity, but one still can pass to the quotient P/G.
For instance, on R2 the Hamiltonians

H(q, p) =
p2

2
± q4

24
+

λq2

2
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admit the symmetry group G = {±id} that also preserves the symplectic form dq ∧ dp.
The reduced Poisson space is the cone (19) with l = 0.

A symmetry may preserve only the equations of motion, but neither the Hamiltonian
function nor the symplectic form. An example on R2 is given by

H(q, p) =
p3

6
+

pq3

6
+ λp + µpq

satisfying H(q,−p) = −H(q, p) and dq∧d(−p) = −dq∧dp. The quotient may be realized
as

R2/{p 7→ −p} =
{

(q, p) ∈ R2 | p ≥ 0
}

and inherits outside the boundary the symplectic structure dq∧dp. The q–axis is invariant
under the flow, with equation of motion q̇ = ∂H/∂p.

6 Integrable Systems

Let (P, ω) be a symplectic manifold of dimension dimP = 2n and H ∈ C∞(P) a Hamilto-
nian function. The Hamiltonian vector field XH is completely (or Liouville) integrable if
there are n functions F1, . . . , Fn ∈ C∞(P) with {Fi, H} = 0, i = 1, . . . , n and {Fi, Fj} = 0,
i, j = 1, . . . , n (the Fi are integrals in involution) that are functionally independent outside
a set of measure zero [1] or on an open and dense set [12], i.e. the closed set

{

z ∈ P | det
(

XF1
(z), . . . , XFn

(z)
)

= 0
}

(21)

is small, e.g. of non-zero co-dimension. Examples abound, among them are all linear sys-
tems, all systems with one degree of freedom and uncoupled superpositions of completely
integrable systems. Since one may choose F1 := H a system in two degrees of freedom
is integrable as soon as it has a conserved quantity F2. Where there is an S1–symmetry,
as in the (planar) two body problem and the geodesic flow on a surface of revolution, the
momentum mapping J =: F2 provides this conserved quantity.

The simplifying assumptions usually made when modelling e.g. a mechanical system
often introduce extra symmetries. Consequently, some of the problems from classical
mechanics, like the Lagrange top, turned out to be integrable. The continuous efforts
of the 19th century lead to more integrable systems, like the geodesic flow on a triaxial
ellipsoid and the Kovalevskaya top. Eventually it became clear that integrable systems are
the exception and non-integrable systems are the rule, with as most prominent example
the three body problem. However, the discovery of the Toda lattice renewed interest and
the list of known integrable systems is still growing.

Theorem (Liouville). Let the components of F : P −→ Rn be n integrals in involution
of the Hamiltonian H = F1. For a regular value c ∈ im F ⊆ Rn a compact connected
component Rc of F−1(c) is an XH–invariant manifold that is diffeomorphic to the n–
torus Tn = Rn/Zn . The subset Rc ⊆ P has an open neighbourhood U on which XH admits
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action angle variables (x, y) ∈ Tn × Y, Y ⊆ Rn open, i.e. the diffeomorphism

U −→ Tn × Y

z 7→ (x(z), y(z))

turns the symplectic structure ω into
∑

dxi ∧ dyi and y : U −→ Y factors through

F : U −→ Rn.

For a proof see [1, 2, 12, 28].

The last statement makes F independent of the angle variable x. In particular, H = H(y)
for the Hamiltonian function (though not H = H(y1) as in Hamilton–Jacobi theory) and
the equations of motion read

ẋ = $(y) := DH(y)

ẏ = 0

whence the flow ϕt(x, y) = (x + t ·$(y), y) is easily computed. Thus, constructing action
angle variables of an integrable system is equivalent to explicitly solving the equations of
motion. The term “completely integrable” indicates that this can be achieved by solving
algebraic equations and indefinite integrals.

The invariant torus Rc is Lagrangean, i.e. an isotropic submanifold (the symplectic
structure vanishes on Rc) and maximal with that property. The dimension of Lagrangean
submanifolds is always equal to the number of degrees of freedom. The flow on Rc is
conditionally periodic, in the angle variable x it is parallel with frequency vector $(0),
assuming that y = 0 ∈ Y is the action value of Rc.

Denote by C ⊆ imF ⊆ Rn the regular values of F , the complement of the image of (21)
under F in imF . Assume from now on that all level sets F−1(c), c ∈ C are compact, e.g.
because F : P −→ Rn is proper or all energy level sets are compact. Putting R := F−1(C)
yields an n–torus bundle with fibres Rc, and assuming that all F−1(c) are connected, the
restriction

F : R −→ C (22)

can be used as projection mapping of this bundle. In case P = T ∗M is the cotangent
bundle of a configuration space M the Tn–bundle is trivial if and only if there are global
action angle variables. The first obstruction for a torus bundle to be trivial is monodromy.

For instance, if the inverse image S = P\R of the singular values of F contains an (n−2)–
parameter family of invariant (n−2)–tori with normal linear behaviour of focus-focus type,
then the bundle (22) has non-trivial monodromy.

Associated to (22) is the homology bundle H1(R/C, Z) of R over C with fibre H1(Rc, Z) ∼=
Zn, supplying the lattice that has to be divided out of H1(Rc, R) ∼= Rn to obtain the par-
ticular torus Rc at c ∈ C. For each path γ : [0, 1] −→ C the lift to H1(R, Z) yields a
bijective orientation-preserving Z–linear mapping between the lattices at γ(0) and γ(1).
For a closed loop the two lattices coincide and the mapping is represented by a matrix
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M(γ) ∈ SLn(Z) with integer coefficients and determinant 1. This discrete object remains
invariant under homotopies, and the resulting homomorphism

M : π1(C) −→ SLn(Z)

from the first homotopy group of C into SLn(Z) is the monodromy of the n–torus bun-
dle R. In case M ≡ id one can uniquely move a chosen basis Y1(c), . . . , Yn(c) of H1(Rc, Z)
at some chosen point c ∈ C to all other fibres of the bundle H1(R, Z), using paths with
γ(0) = c. This yields Hamiltonian vector fields

Xy1 = Y1 ◦ F , . . . , Xyn = Yn ◦ F

on R for which the Hamiltonian functions y1, . . . , yn ∈ C∞(R) are global action variables.
The remaining task is to also find global angle variables.

The global actions yi define Hamiltonian vector fields with periodic flows. This yields
a free Hamiltonian group action

Tn ×R −→ R

and makes (22) a principal torus bundle.
Now principal torus bundles are classified by their Chern class in H2(C, Zn), a discrete

invariant measuring the obstruction to the existence of a global section

σ : C −→ R

(i.e. a mapping satisfying F ◦ σ = id). Such a global section yields in every fibre Rc the
desired “origin” x = 0 of the angle variables and then one can let the group Tn act. For
the resulting globally defined x, y to be action angle variables the equation

dx ∧ dy =

n
∑

i=1

dxi ∧ dyi = ω

has to be fulfilled, if necessary adapting the section σ accordingly. The cohomology class
[σ∗ω] ∈ H2(C, R) is a continuous invariant that vanishes if and only if this can be achieved.
In the particular case that ω is exact, being defined by means of a canonical 1–form, one
has [σ∗ω] = σ∗[ω] = 0. See [14] for more details.

A special but important situation occurs if the globally defined Hamiltonian vector
fields

XF2
, . . . , XFn

(23)

already have periodic flows themselves (and only F1 = H has to be replaced by a local
action y1 in the construction of action angle variables). This defines an action

Tn−1 × P −→ P (24)
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globally on the phase space (the restriction of which to the regular part R is free, giving
R the structure of a principal (n − 1)–torus bundle). Reducing this symmetry yields a
one-degree-of-freedom problem on (the symplectic leaves of) the base space in

σ : P −→ P/
Tn−1

with set Σ of singular values. Constructing action angle variables amounts to finding
the time parametrisations of the (relative) periodic trajectories together with the areas
encircled by these. Let Ξ ⊆ P/

Tn−1 denote the set of (relative) regular equilibria.

The singular part S = P\R is the union of the energy level sets containing points of
σ−1(Σ) – here the n − 1 vector fields (23) are linearly dependent – and those containing
points of σ−1(Ξ) – where XH (z) is a linear combination of the linear independent vector
fields (23). This makes P a ramified torus bundle, with regular fibres in R forming n–
parameter families of Lagrangean n–tori, the distribution of which is determined by the
collection S of singular fibres.

In case the action (24) is free, the set Σ is empty and σ makes the whole phase space P
a principal Tn−1–bundle. The isotropic (n − 1)–tori reconstructed from Ξ behave similar
to the periodic orbits in a two-degrees-of-freedom system described in Section 4. Thus,
the families of Lagrangean tori shrink down to elliptic (n − 1)–tori and are separated by
the (un)stable manifolds of ((n − 1)–parameter families of) hyperbolic (n − 1)–tori, and
the (n− 1)–tori may undergo bifurcations. However, these bifurcations are more involved
than those of periodic orbits for three reasons.

• Normal-internal resonances 〈k | $〉 = `α between the internal frequencies $1, . . . , $n−1

and the normal frequency α of elliptic (n − 1)–tori with k ∈ Zn−1 and ` = 1, 2 are
dense, triggering off quasi-periodic centre-saddle bifurcations and frequency-halving
bifurcations.

• The occurring bifurcations may be degenerate and typically have co-dimensions up
to n − 1. This is a genericity condition on H, within the “universe” of integrable
Hamiltonian systems on P.

• It is also generic for heteroclinic bifurcations re-connecting the (un)stable manifolds
of (n − 1)–tori to involve parabolic (n − 1)–tori.

In case the action (24) has non-trivial isotropy groups, the invariant tori reconstructed
from Σ of dimensions n − 2, n − 3, . . . , 2, 1, 0 (the latter two being periodic orbits and
equilibria) and their (un)stable manifolds form σ−1(Σ).

The description of P as a ramified n–torus bundle still applies when some (or all) of
the vector fields (23) do not have periodic flows and some (or all) of the action variables
y2, . . . , yn are only locally defined. The Lagrangean tori in R form n–parameter families
and the singular fibres in S determine how these families fit together. At the (n − 1)–
parameter families of elliptic (n − 1)–tori the Lagrangean tori shrink down in the same
way as periodic orbits shrink down to centres in one degree of freedom. Different families
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of Lagrangean tori are separated by (n− 1)–parameter families of hyperbolic (n− 1)–tori
and their (un)stable manifolds.

This picture is repeated in how the (n − 1)–tori shrink down to (n − 2)–parameter
families of (partially) elliptic (n−2)–tori and are separated by (n−2)–parameter families
of (partially) hyperbolic (n−2)–tori and (part of) their (un)stable manifolds. Furthermore
there are (n−2)–parameter families of hyperbolic (n−2)–tori of focus-focus type, together
with their (un)stable manifolds these form pinched n–tori. These three ways lead to
invariant tori of smaller and smaller dimension until ending up with 1–parameter families
of periodic orbits and isolated equilibria.

Within the family of all (n − 1)–tori one encounters quasi-periodic centre–saddle and
frequency halving bifurcations along (n − 2)–parameter subfamilies and more generally
bifurcations of co–dimension k ≤ n−1 along (n−k−1)–parameter subfamilies. Similarly,
invariant (n − 2)–tori undergoing a quasi-periodic Hamiltonian Hopf bifurcation form
(n−3)–parameter families and the m–parameter families of invariant m–tori have (m−k)–
parameter subfamilies where bifurcations of co-dimension k ≤ m occur. Such bifurcations
are not restricted to those of semi-local type, but may also involve coinciding stable and
unstable manifolds of different invariant tori. For instance, heteroclinic orbits between
hyperbolic (n − 1)–tori form (2n − 2)–dimensional submanifolds of the phase space.

Let F1, . . . , Fr ∈ C∞(P) be functionally independent integrals in involution. Fixing a
point z0 ∈ P, the orbit Tr(z0) of the Tr–action generated by

XF1
, . . . , XFr

(25)

is an r–torus to which the vector fields (25) are tangent. Hence, the symplectic structure ω
vanishes on the manifold Tr(z0) ⊆ P whence this torus is isotropic, implying r ≤ n. Con-
sequently, if a Hamiltonian system XH on P is superintegrable, having more functionally
independent integrals of motion than degrees of freedom, these cannot be all in involution.
One therefore also speaks of non-commutative integrability in this context.

The “extra” integral makes superintegrable systems even more exceptional than in-
tegrable systems, although it usually can be attributed to a non-commutative symmetry
group. An example is the Euler case of a free rigid body for which the four integrals are
the energy and the three components of the angular momentum mapping (14) induced
by the symmetry group SO(3). For the planar and spatial two body problem (the Kepler
system) the symmetry groups SO(3) and SO(4) lead to 3 and 5 independent integrals of
motion, respectively. The latter is exceptional even within the class of superintegrable sys-
tems; replacing the inverse square attraction by another central force (not the harmonic
oscillator with its 5 independent integrals of motion due to an SU(3)–symmetry) breaks
the symmetry down to SO(3) with still 4 independent integrals of motions.

Theorem (Nekhoroshev, Mishchenko and Fomenko). On the subset R ⊆ P let
F : R −→ R2n−r be a submersion with compact and connected fibres (hence, a fibration).
Assume that {Fi, Fj} = Pij ◦ F , i, j = 1, . . . , 2n − r and that the matrix P with en-
tries Pij : P −→ R has rank 2(n − r) at all points of F (P). Then every fibre of F is
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diffeomorphic to Tr and the fibration F has local trivialisations which are symplectic.

This formulation is taken from [15], where the geometric contents of this theorem is
thoroughly described in terms of this fibration and an associated co-fibration with fibres
of dimension 2n − r.

Thus, every fibre of F has a neighbourhood U with co–ordinates

(x, y, q, p) : U −→ Tr × Rr × Rn−r × Rn−r

such that the level sets of F coincide with the level sets of (y, q, p) and

σ|U =

r
∑

i=1

dxi ∧ dyi +

n−r
∑

j=1

dqj ∧ dpj .

These co–ordinates are Nekhoroshev’s generalized action–angle variables. Where super-
integrability is due to a non-commutative symmetry group G, the 2(n − r) parameters
“live” in the co-adjoint orbits (17).

7 Perturbation Analysis

An important property of integrable Hamiltonian systems is their behaviour under small
perturbations. For a satisfactory description of e.g. mechanical systems the simplifying
assumptions used to derive the model should not completely change the dynamics, some
kind of “robustness” is desirable. An instance where the underlying approximation by a
“simpler” system is part of the mathematical treatment is normal form theory.

Using a series expansion of the Hamiltonian function, the aim of normalization is to
find co-ordinates in which the terms of the expansion look particularly simple (whence
the Hamiltonian vector field takes a particularly simple form as well). This is an algo-
rithmic procedure that inductively pushes a torus symmetry through the series. While
the resulting series are typically divergent, a well-chosen truncation yields a normalized
approximation for which good estimates are available. Already existing symmetries are
preserved and the choices to be made when normalizing a given Hamiltonian are largely
dictated ensuring that the combination of acquired and inherited symmetries render the
system integrable. This does not always work, the integrability of normal forms is au-
tomatic only in two degrees of freedom, cf. [32]. For more details on normal forms in
perturbation theory see [6].

Normalization often results in a torus action (24) on the phase space P, for which the
components F2, . . . , Fn of the momentum mapping

J : P −→ Rn−1

define Hamiltonian vector fields (23) with periodic flows. This allows for the detailed de-
scription given in the previous section, and the question is what remains of this description
when the symmetry (24) is broken.
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The most prominent part of the ramified torus bundle defined by an integrable Hamil-
tonian system are the families of Lagrangean tori. Persistence of invariant tori can only
be expected if these have a dynamical meaning. For instance, an invariant 1–torus that
consists of a union of equilibria instead of being a periodic orbit is highly unlikely to
remain present in a perturbed system. Similarly, an invariant torus with conditionally
periodic motion has dynamical meaning if it is the closure of a dense orbit. This excludes
resonances

〈k | $〉 = 0 , k ∈ Zm\{0}

between the frequencies $1, . . . , $n of the parallel flow on the invariant torus T. The
parallel nature of the flow implies that for a non-resonant frequency vector $ the time
average

∫ +∞

−∞

f(x(t))dt =

∫

T

f(x)dx

of some function f : T −→ R along the quasi-periodic motion x(t) = x + t$ is equal to
the space average over the torus.

This space average is approximated “quickly” – taking the time average over finite
intervals of time – if $ is Diophantine, satisfying the strong non-resonance condition

| 〈k | $〉 | ≥ γ

|k|τ for all k ∈ Zm\{0} (26)

with constants γ > 0 and τ > n − 1. The set Rn
τ,γ of (τ, γ)–Diophantine $ ∈ Rn has the

local structure
R × Cantor dust ; (27)

for $ ∈ Rn
τ,γ also s$ ∈ Rn

τ,γ for all s ≥ 1, and the intersection Sn−1 ∩ Rn
τ,γ is perfect and

totally disconnected. While (Lebesgue)-almost all frequency vectors are non-resonant, the
complement of Diophantine frequency vectors is an open and dense set. Still, the relative
measure of Rn

τ,γ goes to 1 as γ → 0. The celebrated kam theorem yields persistence of
Lagrangean tori with Diophantine frequency vector.

Theorem (Kolmogorov, Arnol’d and Moser). Let Y ⊆ Rn be an open neighbourhood
of the origin and consider the phase space P = Tn ×Y with symplectic structure dx∧ dy.
Let the Hamiltonian

Hε(x, y) = H0(y) + εH1(x, y; ε)

be real analytic and non-degenerate, satisfying

det D2H0(y) 6= 0 for all y ∈ Y. (28)

Then there exists ε0 > 0 such that for all |ε| < ε0 there is a canonical transformation φε

near the identity and a measure-theoretically large set Y′
ε ⊆ Y with the property that for

p ∈ Y′
ε the transformed Hamiltonian Hε ◦ φε does not depend on q ∈ Tn.

For a proof see [3, 27, 10].
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The Kolmogorov non-degeneracy condition (28) expresses that the frequency mapping

$ : Y −→ Rn

y 7→ DH0(y)
(29)

is locally a diffeomorphism. This allows to pull back the whole geometry defined by (26)
into phase space to obtain

Yε = $−1(Rn
τ,γ)

(and from this the subset Y′
ε ⊆ Yε by omitting points γ–close to the boundary ∂Y). The

constant γ is chosen as a function of ε – of order O(
√

ε) – to find an optimal balance
between the (relative) measure of Y′

ε and the deviation of φε from the identity.
The subset Tn × Y′

ε ⊆ P consists (in the transformed variables) of quasi-periodic tori

since ṗ vanishes for p ∈ Y′
ε. The theorem makes no statement for p ∈ Y\Y′

ε. For n ≥ 3
this leaves the possibility of Arnol’d diffusion, trajectories that venture off to distant parts
of the phase space; for more details see [37].

While the kam theorem concerns the fate of “most” trajectories and for all times, the
complementary Nekhoroshev theory concerns all trajectories and states that they stay
close to the unperturbed tori for times of the order

exp

[

(ε0

ε

)
1

2n

]

.

Here analyticity of the Hamiltonian is a necessary ingredient, for finitely differentiable
Hamiltonians one only obtains polynomial times. In the above formulation of the kam the-
orem the assumption of analyticity of the Hamiltonian can be weakend without essential
changes for the result, during the proof one merely has to intersperse an analytic ap-
proximation at each iteration step. The diffusion is even superexponentially slow for
trajectories starting close to surviving tori, see [34] for more details on this phenomenon
of exponential condensation, and see [29] for more details on Nekhoroshev theory.

Where the energy level sets are transversal to the continuous direction in Y′
ε one has

persistence of most Lagrangean tori on each energy shell, parametrised by Cantor dust.
The same result is obtained under the condition of iso-energetic non-degeneracy

det

(

D2H0(y) ∇H0(y)
DH0(y) 0

)

6= 0 , (30)

which is independent of Kolmogorov’s condition. It is generic for an integrable system
to satisfy both conditions almost everywhere. However, in applications it is a non-trivial
task to actually check this and to determine the hypersurfaces in action space where these
determinants vanish.

In two degrees of freedom the energy shells {H = h} are 3–dimensional invariant
manifolds for regular values h of the Hamiltonian and are separated by each Lagrangean
torus. Thus, for initial conditions (q0, p0) in the co-ordinates provided by the kam theorem
with p0 /∈ Y′

ε the persistent tori parametrised by Y′
ε still have dynamical consequences
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as the trajectory is confined between two such tori, so |p(t) − p0| admits a bound of
order O(

√
ε). As a consequence, one obtains (dynamical) stability for all elliptic equilibria

in generic Hamiltonian systems with two degrees of freedom.
Indeed, if the Hessian of (8) is (positive or negative) definite, then the Hamiltonian

serves as a Liapunov function. In the indefinite case one also includes third and fourth
order terms in the analysis and passes to a Birkhoff normal form

αI1 + ϕI2 +
β

2
I2
1 + δI1I2 +

χ

2
I2
2 (31)

with I1 = 1
2
(p2

1 + q2
1) and I2 = 1

2
(p2

2 + q2
2). This can be achieved if there are no low order

resonances $ = −kα, k = 1, 2, 3 between the two (normal) frequencies of the equilibrium.
A second genericity condition on the Hamiltonian is that the linear part of (31) does not
divide the quadratic part (in the Ii), ensuring that (30) holds in a whole neighbourhood
of the elliptic equilibrium.

The Cantor set structure defined by the Diophantine conditions (26) can be used to
weaken the necessary non-degeneracy condition. Since the gaps are defined by linear
inequalities, the conditions on the first derivatives of the frequency mapping (29) can be
replaced by conditions on the curvature or even higher derivatives. Such Rüssmann-like
conditions still guarantee that the relative measure of surviving tori tends to 1 as the
perturbation strength tends to zero, but at a price. For instance, the highest derivative
L ∈ N needed in

< ∂|`|ω

∂y
| |`| ≤ L > = Rn (32)

enters the Diophantine conditions on the frequency vector by means of the inequality
τ > nL − 1 on the Diophantine constant τ . For more details see [11].

The kam theorem is a semi-local result, valid in the neighbourhood of an initial
torus that admits action angle variables. A global version is obtained in [7]. The global
conjugacy is glued together from convex combinations of local conjugacies using a partition
of unity, the key ingredient being a unicity result on the tori obtained in the kam theorem.

In the integrable approximation the distribution of the n–parameter families of La-
grangean tori is determined by the singular part S of the ramified torus bundle P. Since S
consists of families of lower dimensional tori together with their (un)stable manifolds, the
persistence of (isotropic) m–tori, m < n, becomes important. For m = 0 the persistence of
equilibria, together with their linear behaviour (a superposition of what is possible in one
and two degrees of freedom) follows from the implicit mapping theorem as it is generic
for the Hamiltonian function that no equilibrium has vanishing (and neither multiple)
eigenvalues. In the periodic case m = 1 the Diophantine condition (26) ensures $ 6= 0
and the 1–parameter families of periodic orbits persist as well, together with occurring
bifurcations. In 1–parameter families all bifurcations are generically of co-dimension 1 –
a genericity condition on the Hamiltonian. Bifurcations of higher co-dimension would not
be expected to persist.

For hyperbolic tori the criteria remain valid almost verbatim; the key step is to pass
to a centre manifold. A technical difficulty is that even for analytic Hamiltonians centre
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manifolds may only be of finite differentiability. While kam theorems remain true in this
context, the analytic context has its advantages – for instance (32) is satisfied for some
L ∈ N for an analytic frequency mapping $ if and only if im$ does not lie within a linear
hyperplane. An alternative is therefore to prove persistence of hyperbolic tori directly,
this also gives a more direct hold on their stable and unstable manifolds.

Elliptic (n − 1)–tori need one extra parameter to control the normal frequency as
well. Similar to the iso-energetic case one can use time re-parametrisation and obtain
Cantor families of persistent elliptic (n − 1)–tori parametrised by Cantor dust. Where
there are more than one normal frequency to control this can no longer be done in a
linear way; a problem solved by Rüssmann-like conditions on the higher derivatives of
the frequency vector, see [10] and references therein. In case the mapping of internal
frequencies satisfies Kolmogorov’s condition, the higher order derivatives are only needed
of normal frequencies. Now normal frequencies αj enter the Diophantine conditions

| 2π〈k | $〉 + 〈` | α〉 | ≥ γ

|k|τ (33)

only as combinations 〈` | α〉 with |`| ≤ 2. This allows to extend the result to finite-
dimensional elliptic tori in infinitely many degrees of freedom, cf. [19, 18, 4]. For hypo-
elliptic tori one may deal with the hyperbolic part by means of a centre manifold or
use a direct approach. Such m–tori have k additional pairs of purely imaginary Floquet
exponents and excitation of normal modes leads for l = 1, . . . , k to (m + l)–parameter
families of (n + l)–tori inheriting the “remaining” normal linear behaviour, see [34] and
references therein.

Where (lower-dimensional) m–tori undergo a semi-local bifurcation the m actions y
conjugate to the toral angles x first of all have to versally unfold the bifurcation scenario.
It is generic for the integrable Hamiltonian H that the m–parameter families of m–tori,
1 ≤ m ≤ n − 1, do not encounter bifurcations of co-dimension higher than m, so this is
possible. The curvature of the frequency mapping is then used to ensure Diophanticity of
most bifurcating tori, i.e. a Rüssmann-like condition with L = 2 is sufficient, cf. [17]. This
curvature requirement is not necessary for 2–tori; these may undergo the quasi-periodic
analogues of the co-dimension one bifurcations of periodic orbits as co-dimension two
bifurcations are isolated within these 2–parameter families and cannot be prevented to
disappear in resonance gaps.

Small perturbations of an integrable Hamiltonian thus lead to a Cantorification of the
ramified n–torus bundle as sketched in figure 6, the stratification of the action space into
various subfamilies parametrising the tori is replaced by a Cantor stratification. Of equal
importance are those changes that make sure that the non-integrable perturbed dynamics
is indeed qualitatively different from the integrable unperturbed dynamics. While the
former persistence results are obtained upon genericity conditions on the unperturbed
system, such changes require the perturbation to be generic.

Disintegrating Lagrangean tori lead to invariant m–tori, where n − m is the number
of independent resonances 〈k | $〉 = 0 of the (internal) frequencies. Most of these lower
dimensional tori will be elliptic or hyperbolic. The new hyperbolic tori lie at the basis of
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Figure 6: A typical decomposition of the action space of a nearly integrable system in
three degrees of freedom. The 2–dimensional Cantor dust parametrises elliptic 2–tori that
vanish in quasi-periodic centre-saddle bifurcations along the fold lines. Between these ex-
tend arcs of hyperbolic 2–tori, parametrised by a 2–dimensional set of the form (27). The
1–dimensional Cantor dust along the folds consists of Lebesgue density points of these 2–
dimensional parameter sets in the same way that these consist of Lebesgue density points
of 3–dimensional sets of the form (27) above and below the surface which parametrise
Lagrangean 3–tori.

a possible scenario for Arnol’d diffusion. One of the effects of a small generic perturbation
is that stable and unstable manifolds of hyperbolic periodic orbits no longer coincide, but
split and intersect transversely, cf. [1]. This caries over to hyperbolic tori. The splitting
of separatrices also leads to transverse intersections of stable and unstable manifolds of
neighbouring hyperbolic tori in the same energy shell. These hyperbolic tori form a
Cantor family, and one of the main problems is to make sure that the transition chain of
hyperbolic tori and their heteroclinic connections bridges the occuring gaps, cf. [13]. The
dynamics in the gaps of Cantor families of hyperbolic tori can already be studied in the
perturbation near resonant singular fibres of the ramified n–torus bundle. On the centre
manifold these become again (resonant) regular fibres, but the full perturbed motion is
superposed by the hyperbolic dynamics in the symplectic normal directions.

The nature of the gaps opened by violations of (33) in families of elliptic tori is
twofold. Internal resonances 〈k | $〉 = 0 lead to the destruction of the torus. Boundary
points of the gaps resulting from normal-internal resonances are related to quasi-periodic
bifurcations. The resonance α = 2π〈k | $〉 triggers off a (quasi-periodic) centre-saddle
bifurcation and resonance gaps

| 2π〈k | $〉 + 2α | <
γ

|k|τ
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are completely filled by hyperbolic tori that terminate in frequency halving bifurcations.
The maximal tori of superintegrable systems are m–tori in n > m degrees of freedom

and their normal behaviour vanishes, both linearly and non-linearly. The strategy when
studying a perturbation of such a properly degenerate system is to find an intermedi-
ate system that is also integrable, but non-degenerately so. The perturbation H1 of a
superintegrable Hamiltonian H0 removes the degeneracy if the perturbed Hamiltonian
Hε = H0 + εH1 can be written in the form

H = H0 + εH̄1 + ε2H2

where H0 + εH̄1 is a non-degenerate integrable Hamiltonian. Since H̄1 is defined in terms
of H1 (e.g. as its average along the unperturbed flow defined by H0) every genericity
condition on the intermediate system puts genericity conditions on the perturbation H1.
This first step of a normal form procedure lies also at the basis of Nekhoroshev theory for
superintegrable systems, see [15] for more details.

8 Future Directions

Many Hamiltonian systems modelling real phenomena have symmetries, and the condi-
tions of the regular reduction theorem of Marsden and Weinstein are often not fulfilled.
The regularity assumptions could be successfully removed, cf. [12, 30, 26], and progress is
still made in weakening the compactness conditions. Since the flow ϕ : R×P −→ P itself
is also a group action some condition has to exclude too general situations. It is for this
reason that the symmetry (9) is studied in Section 5 and not the larger symmetry (10).

In an integrable system, action angle variables define a Tn–action in the neighbour-
hood of a given Lagrangean torus. Globally one only has the Rn–action defined by the
commuting flows of the integrals F1, . . . , Fn. The flow of XH = XF1

is the actual object
of study, and in general the flows of the vector fields (23) may be as complicated.

On the topological level, the Tn–bundle R has a monodromy mapping M and only
if M is trivial can one uniquely characterise R by its Chern class, such bundles are
isomorphic if and only if their Chern classes coincide. An extension of this characterization
to the case of non-trivial monodromy does not yet exist. Such a classification of all torus
bundles on a given base space C might need further invariants.

The global version of the kam theorem provides a Cantorification of the global bun-
dle R. This makes also non-local properties subject to the perturbation analysis, for
instance showing a discrete invariant like monodromy to persist. Globally on the phase
space, perturbation not only of the Hamiltonian H but also of the symplectic structure ω
becomes a well-defined problem. For instance, if ω = −dϑ is exact one may add a small
non-exact closed 2–form εσ whence ω + εσ is a non-exact symplectic form on the phase
space.

A Lagrangean torus with n − 1 independent resonances consists of periodic orbits.
When the torus breaks up under the perturbation, only finitely many of these are expected
to survive. At the same time the trivial normal behaviour of these periodic orbits changes,
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resulting in hyperbolic and elliptic periodic orbits. The latter can serve as starting points
for the construction of solenoids, cf. [5, 23]. This construction should carry over to elliptic
tori, where the “encircling” tori emerge from normal-internal resonances and might also
result in solenoids that are limits of tori with varying dimension.

The results in [17] address persistence of Diophantine tori involved in a bifurcation
and the corresponding gaps trigger off new phenomena, cf. [21]. Internally resonant
tori involved in a quasi-periodic bifurcation may result in large dynamical instabilities,
especially where multiple parabolic resonances are encountered. The effect is further
amplified for tangent (or flat) parabolic resonances, which fail to satisfy the iso-energetic
non-degeneracy condition.

The high co-dimensions of bifurcations that may be encountered within families of
isotropic tori makes it necessary to study Hamiltonian bifurcations that have been left
aside since they generically do not occur for periodic orbits. The coupling of the three
types of co-dimension one bifurcations is unavoidable where the resonance gaps defined
by (33) with ` 6= 0 intersect. Already for an equilibrium with linearization
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the nearby dynamics is extremely complicated, with all possible resonances of equilibria
in two degrees of freedom occurring in a versal unfolding.

A perturbed superintegrable system can lead to the combination of two bifurcations
in both the fast and the slow dynamics. With two different time scales e.g. the dynamics
triggered off by two simultaneous violations of (33) appears to be of (1 + 1)-degree-of-
freedom rather than having truly 2 degrees of freedom. This might render this problem
more accessible.

For more details on Hamiltonian perturbation theory see [9] and references therein. An
important subject are variational methods, which can be used to obtain periodic solutions
(but also more complicated dynamics); see [33] on this subject and also [36] for a striking
application to celestial mechanics.
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Birkhäuser (1997)

[13] A. Delshams, R. de la Llave and T. Mart́ınez-Seara: A Geometric Mechanism for Diffusion
in Hamiltonian Systems Overcoming the Large Gap Problem: Heuristics and Rigorous
Verification on a Model; Mem. AMS 179 #844, p. 1–141 (2006)

[14] J.J. Duistermaat: On global action-angle coordinates; Comm. Pure Appl. Math. 33, p.
687–706 (1980)
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[31] T.S. Raţiu, R. Tudoran, L. Sbano, E. Sousa Dias and G. Terra: A Crash Course in
Geometric Mechanics; in [26], p. 23–156 (2005)

[32] J.A. Sanders, F. Verhulst and J. Murdock: Averaging Methods in Nonlinear Dynamical

Systems, 2nd ed.; Springer (2007)

[33] L. Sbano: Periodic solutions of Hamiltonian systems; in Encyclopedia of Complexity and

Systems Science, Springer (2008)

[34] M.B. Sevryuk: The classical KAM theory at the dawn of the twenty-first century; Moscow

Math. J. 3(3), p. 1113–1144 (2003)

[35] C.L. Siegel and J.K. Moser: Lectures on Celestial Mechanics; Springer (1971)

[36] S. Terracini: N–Body Problem and Choreographies; in Encyclopedia of Complexity and

Systems Science, Springer (2008)

[37] X.J. Xia: Arnold Diffusion; in Encyclopedia of Complexity and Systems Science, Springer
(2008)

32


