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A rigid body with three equal moments of inertia is moving in a nonlinear
force field with potential z3. Next to the S1–symmetry about the vertical axis
and a further S1–symmetry introduced by normalization, there is a discrete
symmetry due to a special choice of the mass distribution. The continuous
symmetries allow to reduce to a one-degree-of-freedom problem, which exhibits
bifurcations related to the elliptic umbilic catastrophe. This bifurcation carries
over from the integrable approximation to the original system and further to
perturbations that break the S1–symmetry of the potential.

1. Introduction

The rotational motion of a rigid body with three equal principal moments

of inertia, fixed at one point and not subject to external torques or forces,

is a three-degrees-of-freedom system where all motions are periodic. Such

maximally superintegrable systems are easily analysed. Indeed, as every

axis through the fixed point is a principal axis of inertia, any motion will

consist in a rotation about such an axis, which is parallel to the (fixed)

angular momentum. Similarly, all bounded motions of the spatial Kepler

system are periodic. In fact, while the latter can be turned into the geodesic

flow on S3, the flow of the isotropic Euler top is the geodesic flow on SO(3)

with respect to the bi-invariant metric.

Placing the fast top in the vertical force field ~G = −3z2~ez amounts to

perturbing by the weak potential ε · z3 with ε inversely proportional to the

square of the velocity, cf. [3]. The more integrals an integrable Hamiltonian

system possesses, the more difficult it becomes to study perturbations of

that system. In the present problem, since the component µ3 of the angular

momentum along the vertical axis ~ez remains an integral of motion, one can

reduce to two degrees of freedom.

The unperturbed reduced system in two degrees of freedom is still super-

integrable (this would not be true if the principal moments of inertia were
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not all equal). The periodic orbits define an S1–symmetry, and normaliza-

tion pushes this S1–symmetry through the Taylor series of the perturbation.

The normal form of order one can be computed by simply averaging along

the periodic orbits. In this way the total angular momentum |µ| becomes a

further integral of motion.

By construction the normal form can be reduced to one degree of free-

dom. Here it is important to consider external parameters like ε or the

various moments of the mass distribution as fixed constants, while the val-

ues of the internal or distinguished parameters µ3 and |µ| are given by the

initial conditions and thus allowed to vary. Since ~G is a positional force,

the latter enter only as the quotient µ3

|µ| .

2. The mass distribution

Let us recapitulate the main facts about the Euler top with three equal

principal moments of inertia. The reader may find a comprehensive intro-

duction in [1,2,6].

We choose a set of axes ~ex, ~ey, ~ez fixed in space, with ~ez pointing in the

(vertical) direction of the force, and a body set of axes ~e1, ~e2, ~e3. The con-

figuration space is the group SO(3) of orientation preserving three-by-three

matrices which specify how to transform ~ex, ~ey, ~ez into ~e1, ~e2, ~e3. The phase

space is the cotangent bundle T ∗SO(3), the space of positions and (angu-

lar) momenta. An element α ∈ T ∗SO(3) yields the components µ1, µ2, µ3

of the angular momentum with respect to the spatial frame ~ex, ~ey, ~ez and

the components `1, `2, `3 with respect to the body set of axes. As the three

principal moments of inertia are equal, I1 = I2 = I3 = 1, the kinetic energy

is given by

T =
|µ|2
2

=
µ2

1 + µ2
2 + µ2

3

2
=

`21 + `22 + `23
2

.

In the same way that a constant force only acts on the centre of mass (the

first moments of the mass distribution), a linear force would only act on

the second moments of the mass distribution, i.e. not at all since these are

equal. Similarly, the force field ~G = −3εz2~ez only “sees” the third moments

Mijk =

∫

ζiζjζk dm

of the mass distribution dm. The freedom of orientation of the “principal

axes of inertia” ~e1, ~e2, ~e3 may be used to reduce the number of external

parameters Mijk from ten to seven, but here we restrict even further to the

special case M111 = M222 = M333 = 1 and Mijk = 0 else. As shown in [9]
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it is possible to construct corresponding (non-homogeneous) rigid bodies.

The centre of mass, principal moments of inertia or higher moments of the

mass distribution do not enter the potential energy

V = −
∫ ∫ ζ

0

(~G | dζ ′) dm =

3
∑

i=1

ε(~ez | ~ei) . (1)

The Hamiltonian function H = T + V not only admits the continuous

symmetry of rotations about the vertical axis ~ez, but is furthermore invari-

ant under the discrete symmetry group of all permutations of {~e1, ~e2, ~e3},
isomorphic to the dihedral group D3.

The S1–symmetry of rotations about ~ez is the same S1–symmetry that

already appears in the heavy rigid body; its reduction is well-known and

goes back to Poisson. In the body representation

T ∗SO(3) −→ SO(3) × R
3

α 7→ (g, `)

the S1–symmetry amounts to

S1 × (SO(3) × R
3) −→ SO(3) × R

3

(ρ, (g, `)) 7→ (expρ ◦g, `)
where expρ ∈ SO(3) stands for the rotation by the angle ρ about the third

axis. Dividing S1 out of SO(3) yields a sphere and the isomorphism

SO(3)
/
S1

−→ S2

g (mod S1) 7→ g−1

0

@

0
0
1

1

A =: γ

clarifies the geometrical meaning of this sphere. It is the space of possible

positions of the vertical axis ~ez measured in the body set of axes ~e1, ~e2, ~e3.

In particular the radius of this sphere is 1. The vector γ is called the Poisson

vector. The Hamiltonian function H = T + V reads

H(γ, `) =
1

2
(`21 + `22 + `23) + ε(γ3

1 + γ3
2 + γ3

3)

after this reduction to two degrees of freedom.

3. The normal form

The normalization procedure consists in finding a change of co-ordinates

that transforms H into its average

H̄(γ, `) =
1

τ(γ, `)

∫ τ(γ,`)

0

H(ϕt(γ, `)) dt (2)
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along the flow ϕt of the unperturbed system XT (which is periodic with

period τ(γ, `) depending on the initial condition) plus higher order terms.

Repeating this process yields higher order normal forms, but for our pur-

poses the normal form of order one turns out to be sufficient. As shown

in [9] the truncated normal form (2) is given by

H̄(γ, `) =
1

2
|µ|2 +

ε

2

µ3

|µ|

3
∑

i=1

(5
µ2

3

|µ|2 − 3)
`3i
|µ|3 + 3(1 − µ2

3

|µ|2 )
`i

|µ| . (3)

By construction H̄ is invariant with respect to the S1–action defined by

the flow ϕt of XT ; the Hamiltonian function no longer depends on γ.

The kinetic energy in H̄ = T + V̄ becomes a “constant” without dynamic

meaning and may be omitted after the reduction to one degree of freedom.

As ~G is a positional force, the angular momenta |µ|, µ3 and `i enter only

as quotients µ3

|µ| and `i

|µ| . In particular (3) defines a family of one-degree-of-

freedom systems depending on the parameter ν := µ3

|µ| ∈ [−1, 1]. We also

write ξi := `i

|µ| and are left with the Hamiltonian function

Hν :=
εν

2

3
∑

i=1

(5ν2 − 3)ξ3i + 3(1 − ν2)ξi (4)

on the sphere with radius 1. The Poisson bracket is given by {ξi, ξj} =

−εijk ξk , where the alternating Levi-Civita symbol εijk denotes the sign of

the permutation (1i
2
j
3
k) and vanishes if two of the i, j, k are equal.

From the perturbed rigid body Hν inherits a D3–invariance. However,

the Poisson bracket is not D3–invariant; for σ ∈ D3 we have

{σ(ξi), σ(ξj )} = {ξσ(i), ξσ(j)} = −εσ(i)σ(j)σ(k) ξσ(k)

= − sgnσ εijk σ(ξk) = sgnσ · σ({ξi, ξj}) .

While even permutations, i.e. rotations about the axis along
0

@

1

1

1

1

A with an an-

gle 2πk
3 , k ∈ Z3, are therefore symmetries of the Hamiltonian system XHν

,

the transpositions only lead to time-reversing symmetries.

Remark 3.1. The Hamiltonian system defined by (4) has another revers-

ing symmetry, the reflection

ψ : ξ 7→ −ξ (5)

about the origin. While the Poisson bracket is invariant under ψ, the Hamil-

tonian (4) satisfies Hν ◦ψ = −Hν . In particular, the composition ψ ◦τ with

a transposition τ ∈ D3 is a (non-reversing) symmetry of the Hamiltonian

system that multiplies both Hν and the Poisson bracket by −1.
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The symmetry (5) is induced by the time-reversing reflection about the

origin

(~e1, ~e2, ~e3) 7→ (−~e1,−~e2,−~e3)
of the perturbing potential (1). Similarly, the reflection ~ez 7→ −~ez induces

the time-reversing symmetry ν 7→ −ν of the family XHν
. At ν = 0 this

latter symmetry enforces all points to be equilibria.

For ν = ±
√

3
5 the equilibria fulfill ξ1 = ξ2 = ξ3, i.e. ξ = ±1√

3

0

@

1

1

1

1

A. These

two equilibria are fully D3–symmetric, and they exist for all values of ν.

Further occurring equilibria break the Z3–symmetry and taking further-

more the reversing symmetry (5) into account these equilibria form sextu-

ples. All equilibria in the family (XHν
)ν∈[−1,1] retain a remaining reversing

symmetry defined by one of the three transpositions.

Proposition 3.2. For ν 6= 0 the equilibria of XHν
all lie in the union

{

ξ ∈ S2 | ξ1 = ξ2 or ξ1 = ξ3 or ξ2 = ξ3
}

of three great circles.

Proof. When ν 6= ±
√

3
5 the last factors in

ξ̇1 = {ξ1,Hν} = 3
2εν(ξ2 − ξ3)

(

(5ν2 − 3)ξ2ξ3 + ν2 − 1
)

ξ̇2 = {ξ2,Hν} = 3
2εν(ξ3 − ξ1)

(

(5ν2 − 3)ξ1ξ3 + ν2 − 1
)

ξ̇3 = {ξ3,Hν} = 3
2εν(ξ1 − ξ2)

(

(5ν2 − 3)ξ1ξ2 + ν2 − 1
)

can only vanish simultaneously if ξ2ξ3 = ξ1ξ3 = ξ1ξ2.

The detailed analysis in [9] reveals that the family of Hamiltonian systems

(Hν)ν∈[−1,1] undergoes seven bifurcations. Next to the degenerate vector

field for ν = 0 there are centre-saddle bifurcations at the four parameter

values

±νb = ±

√

3 +
√

8

5 +
√

8
and ± νc = ±

√

3 −
√

8

5 −
√

8
.

Furthermore the two centres ±1√
3

0

@

1

1

1

1

A each undergo two Z3–equivariant bifur-

cations at ±νa = ± 1
2

√
3 where the Hamiltonian displays a monkey saddle,

the singularity D−
4 . The family (4) is structurally stable with respect to

small perturbations that respect all discrete symmetries.

The close numerical values νa ≈ 0.866 and νb ≈ 0.8629 suggest to treat

the two bifurcations as one sequence, see figures 1 and 2. This is reminiscent

of a periodic orbit passing through a 1:3 resonance, cf. [7,8,10]. Following
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Fig. 1. Phase portraits [12] for parameter values ν = 0.8629 and ν = 0.864.

the semi-gobal approach of [4] we choose a local chart performing a planar

projection along
0

@

1

1

1

1

A. The resulting co-ordinates (q, p) are not canonical but

satisfy {q, p} = −
√

1 − p2 − q2. Omitting the constant term and dividing

by 3
√

3(2ν3 − ν)ε the 4–jet reads

j4(Hν)(p, q) = −1

2

(

p2 + q2

2

)2

+ A

(

p2q

2
− q3

3

)

+ λ(ν)
p2 + q2

2

with coefficient A = −1
3
√

2
5ν2−3
2ν2−1 (A ≤ −4

3+3
√

8
for ν ≥ νb) and reparametri-

sation λ(ν) = 1
3

4ν2−3
2ν2−1 satisfying λ(νa) = 0 and λ′(νa) = 8 > 0. The anal-

ysis of j4(Hν) in [4,8] predicts a triplet of centre-saddle bifurcations at

λ = − 1
8A

2 which is smaller than the correct value λ(νb) = − 3−
√

8
3+3

√
8
. As the

centre-saddle bifurcation takes place at 1
2

0

@

1

1
√

2

1

A (and its symmetric coun-

terparts) the higher order terms Hν − j4(Hν) cannot be made arbitrarily

small.

4. Perturbation analysis

Reconstructing the flow to two degrees of freedom amounts to attaching a

1–torus (i.e. an S1) to every point on the sphere {µ3}×S2
|µ|. In this way the

periodic orbits of XHν
give rise to invariant 2–tori, and the equilibria lead

to periodic orbits ofX
H̄

. The normal behaviour of the latter is induced from

the linearization of the corresponding equilibrium. Thus, most periodic or-

bits are elliptic or hyperbolic, those at the (periodic) centre-saddle bifurca-

tions are parabolic, and the (normal) linearization of the ones undergoing

the Z3–symmetric bifurcations at µ3

|µ| = ±
√

3
2 vanishes. When µ3 = ±|µ|
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Fig. 2. Phase portraits [12] for parameter values ν = 0.866 and ν = 0.868.

the S1 we “attach” has shrunk to a point, so the flow on {±|µ|}×S2
|µ| car-

ries over directly, leading to several equilibria and further families of elliptic

periodic orbits.

The occurring equilibria, hyperbolic and elliptic periodic orbits persist

the passage from the normal form approximationX
H̄

back to XH by means

of the implicit mapping theorem. As shown in [8,11] the periodic centre-

saddle bifurcations and the Z3–equivariant bifurcations persist as well. To

ensure the persistence of a large Cantor set of 2–tori on each energy shell

we need that the determinant

det

(

D2H̄ε DH̄ε

DH̄ε 0

)

= −|µ|2 ∂
2H̄ε

∂I2
+ O(ε2) (6)

is bounded away from zero, cf. [2]. Here H̄ε = T+V̄ is an analytic function in

the actions (|µ|, I) and extracting some neighbourhood of the isolated zeros

of ∂2H̄
∂I2 we get the necessary bound on the determinant (6). The persistent

invariant 2–tori divide the 3–dimensional energy shells, whence the elliptic

equilibria and periodic orbits are stable in the sense of Lyapunov.

Attaching an S1 to every point reconstructs the motion of the rigid

body in T ∗SO(3). Equilibria thereby turn into periodic orbits, while peri-

odic orbits become invariant 2–tori on T ∗SO(3), under preservation of the

normal behaviour. The Cantor family of quasi-periodic 2–tori yields invari-

ant 3–tori that may be resonant, but do not foliate into periodic orbits. All

elliptic periodic orbits and normally elliptic invariant 2–tori are stable in

the sense of Lyapunov. For µ3 = 0 the motion is the periodic motion of the

unperturbed system.
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It is instructive to consider a small perturbation Hδ = T + V + P with

‖P‖ < δ ≤ ε2 that breaks the S1–symmetry of the potential but leaves the

discrete symmetries intact. This perturbation analysis has to take place in

3 degrees of freedom. A lower bound ε2κ on the leading term |µ|2
∣

∣

∣

∂2H̄ε

∂I2

∂2H̄ε

∂µ2

3

∣

∣

∣

of the determinant corresponding to (6) yields again a Cantor family of

maximal tori, but in three degrees of freedom these 3–dimensional tori do

not divide the 5–dimensional energy shells. Hence, elliptic equilibria that

are not extrema of H̄ may become unstable. The families of persistent

2–tori become Cantorised as well, see [5] for the hyperbolic and elliptic 2–

tori and [8] for quasi-periodic 2–tori involved in a bifurcation. Note that

the persistence proof in [8] is compatible with the approach at the end of

Section 3 to consider the 4–jet of the 3–determined singularity D−
4 and

treat the bifurcations at νa and νb simultaneously.

Breaking the Z3–symmetry makes the monkey saddle a phenomenon of

co-dimension 2, and of co-dimension 3 if the D3–symmetry is broken. Such

symmetry breaking may come from a more general mass distribution, and

as shown in [9] the necessary unfolding parameters may be provided by the

differences M333 −M222 −M111 and M333 −M222 of the “diagonal” third

moments of the mass distribution.
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4. H.W. Broer, H. Hanßmann, À. Jorba, J. Villanueva and F.O.O. Wagener,

Nonlinearity 16, 1751–1791 (2003)
5. H.W. Broer, G.B. Huitema and M.B. Sevryuk, Quasi-Periodic Motions in

Families of Dynamical Systems: Order amidst Chaos (Springer, 1996)
6. R.H. Cushman and L.M. Bates, Global Aspects of Classical Integrable Sys-

tems (Birkhäuser, 1997)
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