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Abstract

Two pulse solutions play a central role in the phenomena of self-replicating pulses in 1-D
reaction-diffusion systems. In this work, we focus on the 1-D Gray-Scott model as a prototype.
We carry out an existence and stability study for solutions consisting of two pulses moving
apart from each other with slowly varying velocities. In the various parameter regimes, critical
maximum wave speeds are identified, and ODE’s are derived for the wave speed and for the
separation distance between the pulses. The bifurcations in which these solutions are created
and annihilated, and in which they gain stability, are determined. Good agreement is found
between these theoretical predictions and the results from numerical simulations. The initial
separation distance between the pulses need only be such that the fast (activator) components
are exponentially small. In particular, there is no requirement in the analysis on the inhibitor
component, which is in fact far away from its homogeneous value, and slowly varying between
the pulses, as is critical for the dynamics. Hence, the results presented here apply to the
strong pulse interaction problem. Finally, we show how these results may be used to answer
central questions about pulse splitting, including how they provide a possible mechanism. The
main methods used are analytical and geometric singular perturbation theory for the existence
demonstration, and the nonlocal eigenvalue problem (NLEP) method developed in our earlier
work for the stability analysis.



1 Introduction

Self-replicating spots and pulses have been observed in excitable reaction-diffusion systems [22, 17,
24, 23, 16, 9, 2, 3, 4, 25, 21, 19, 8]. Spots and pulses are regions in which the concentrations of
some of the species exhibit large amplitude perturbations from a surrounding homogeneous state.
Depending on system parameters, these regions can enlarge and then subsequently split, so that the
spots and pulses replicate themselves in a complex, and as yet incompletely understood, manner.

Two-pulse patterns play a fundamental role in the numerical simulations of pulse-splitting in
one-dimensional problems [24, 23, 2, 21]. In order to understand this phenomenon, it is necessary
to study the evolution of solutions consisting of pairs of pulses in which the pulses move apart from
each other, see Figure 1. The two-pulse solutions studied in this paper move apart with a slowly
decreasing velocity. Outside the parameter domain in which the splitting process takes place, the
pulses settle down, eventually, in a stationary periodic two-pulse pattern (on a bounded domain).
See Figure 2a. In the critical regime where splitting is first observed, the two pulses (or spikes) are
observed to move apart from each other with a slowly-decreasing velocity and then to undergo the
splitting process when they are nearly stationary. See Figure 2b. Further from critical, the pulses
are observed to propagate with constant speed.

In this paper, we carry out an existence and stability analysis for two-pulse patterns in the
irreversible one-dimensional Gray-Scott model, [11] (see also the references in [11, 22, 23, 2] for the
derivations and early studies of this model):
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For all positive values of the parameters A, B, and D, the background homogeneous state (U =
1,V = 0) is stable. The two-pulse solutions considered in this paper are asymptotic to this basic
state as £ — Foo. The pulses correspond to excursions of the V-components away from the V =0
background state on narrow intervals; the U-component varies significantly outside these regions
and is in general not close to U = 1 in between the V-pulses. In particular, we focus on solutions of
(1.1) consisting of a pair of pulses, symmetrically disposed about z = 0, whose velocities ¢(¢) and
—c(t), and as a consequence also their amplitudes, are allowed to vary slowly in time, see Figure 1.

The first main results presented here concern existence of two-pulse solutions when:
A/B?<«1 and B®D/A<O(1). (1.2)

Existence is established using methods from analytical and geometric singular perturbation theory.
These methods also yield the bifurcations in which these solutions are created. The pulses in
these solutions move with slowly-varying wave speeds c¢(t) that are determined self-consistently by
certain ordinary differential equations arising in the analysis. These equations directly give the
time courses of ¢(t), as well as the separation distances I'(t) between the two pulses. We focus
especially on determining the allowable intervals of ¢(t) values, and on identifying the algebraic
rates of decay of these ¢(t). In addition, we show that there is a natural geometric interpretation
of the critical (maximum) allowable speeds ¢(t), and we determine whether or not the minimum
values of ¢(t), namely those values corresponding to fixed points of the equations and hence to
traveling or stationary waves, are locally attracting or repelling.



Second, we study the linear stability of the slowly-modulating two-pulse solutions using the
NLEP (nonlocal eigenvalue problem) method developed in [3]. The two-pulse solutions undergo
subcritical Hopf bifurcations at a certain critical parameter combination, Cgopr at A = O(B 2\/5)
See Figure 3. For parameter combinations above Cyopr in Figure 3 the solutions are (formally)
linearly stable with respect to perturbations that evolve on time scales that are shorter than that of
¢ = ¢(t). Their instability for parameters just above Caopr is manifested by large-scale oscillations
in the pulse amplitudes.

An overview of the existence and stability results obtained in this paper is given in Figure 3 in
the case when D is small. The various curves marking the bifurcations and stability boundaries
are shown in the two parameter space with A = D® and B = DP. Of course, we emphasize that
Figure 3 represents one regime in which to display the results obtained here, and that they are
valid for all parameter combinations that satisfy the principal conditions (1.2), and into the regime
A/B? = O(1) (see, however, Remark 1.1). For example, the curve Csprir, which corresponds to
the scaling A/B? = O(1) in which the splitting occurs, is given by 8 = a/2.

Third, we continue the study, that was begun in [3], of the regime A/B? = O(1) in which the
self-replication is observed. This regime is represented by the line CsprrT in Figure 3. In the special
scaling used in [3], it was found that there are critical values of the ratio A/B?, called Esplit 1D
this paper, at which the stationary one-pulse solutions (Figure 4) ‘disappear’. This ‘disappearance
bifurcation’ was identified as a saddle node bifurcation of homoclinic orbits in the numerical simula-
tions of [21]. The existence of this disappearance or saddle node bifurcation value for A/ B? = Esplit
was proven by a topological shooting method in Section 6 of [3] for a certain special scaling of A,
B and D. In particular, we considered fixed values of A and D and showed that, for each A in the
regime considered, there exists a value of B, labeled Bp, at which these solutions disappear. The
analysis carries over almost verbatim for the general problem studied here.

The slowly-modulating two-pulse solutions constructed in this paper can be used to describe
the evolution and interactions of a pair of pulses created by the splitting of the initial stationary
one-pulse pattern. Thus, these solutions can be interpreted as governing the transition between a
one-pulse solution that has just split into two and a time asymptotic state in the splitting regime,
which is a stable stationary periodic multi-pulse pattern. See Figure 2b and [24, 23, 2, 25, 3, 21, 19].

By extrapolating the insights obtained by the asymptotical analysis into the region 4/B? = O(1)
we argue (in the final section of this paper) that there is, for the modulating two-pulse solutions,
an ‘effective’ scaled value, ¢ = (t) of the ratio A/B? that varies slowly in time. When the pulses
are close together, i.e. just after the splitting of the stationary one-pulse pattern (Figure la)
this effective value is less than the unscaled ratio A/B? of the one-pulse. Therefore, the two-
pulse pattern can exist when the one-pulse has already ‘disappeared’: the splitting process has
effectively reduced A/ B? below esplit- However, £(t) increases slowly towards the unscaled ratio
A/B? associated to the one-pulse pattern; and hence, at a certain time, £(¢) will pass through Esplit
and the two slowly traveling pulses will both split, see Figure 2b. These arguments also predict
that the structure of the traveling pulse solutions between successive splittings must be structurally
different when A/ B? is not close to Esplit- This is confirmed by numerical simulations, see Section

8 and [21].

This study of slowly-modulating pulses may be classified as a treatment of a strong pulse
interaction problem. Weak pulse interactions take place under the assumption that in between



the two pulses both the U and the V components are close to the background, homogeneous,
stable, state (see for instance [8]). A crucial aspect of the analysis in this paper is that the ‘slow’
U component undergoes O(1) changes away from U = 1, see Figure 1. The case of weak pulse
interactions can be obtained from the analysis here by taking the limit £ — oo, so that the pulse
are so far apart that U =~ 1 in between, see Section 8 and [8].

We study the existence problem by an analytical and a geometric singular perturbation method.
In the analytical approach we consider the equations for U and V as (almost) uncoupled problems
by assuming that V has a delta-function character in the U-equation and that U is constant
in the V-equation (to leading order). The geometric method employed here, which is based on
the Fenichel geometric singular perturbation theory [10], is an extension of the method used in
[2] to study singular pulse patterns in the Gray-Scott model. There, an invariant slow manifold
was identified in the phase space of the system of ordinary differential equations for stationary
solutions, and a decomposition of the dynamics was achieved by considering separately the slow
dynamics on the invariant manifold and the fast dynamics in the transverse directions. The same
type of decomposition of the relevant phase spaces is achieved here. In fact, it is precisely by
classifying the dynamics on the slow manifold that one is naturally led to the identification of
the various parameter regimes in which the existence of the slowly-modulating two pulse solutions
can be established. However, the critical scalings of all relevant quantities are first derived by the
analytical singular perturbation method. The relation between these two methods is also discussed.

This paper is organized as follows. Sections 2 and 3 contain the formal perturbation method for
stationary and slowly-modulating pulse solutions. Then, in Section 4, the central geometric features
of the problem are used to identify the parameter regions in which the distinctly different modulated
two pulse solutions will be constructed. Sections 5 and 6 contain the geometric constructions of
these solutions. Next, in Section 7, we present the formal linear stability analysis of the different
solutions obtained in Sections 3, 5 and 6. The final section (Section 8) provides insight into the
central role of the slowly-varying inhibitor concentration U(z,t). It also provides a quantitative
comparison between the analytical results and those obtained from numerical simulations, and it
concludes with a brief discussion of the ways in which the two methods employed here, namely the
analytical and geometric singular perturbation theory, complement each other.

Remark 1.1. The conditions (1.2) are the most important conditions on the parameters A, B
and D of (1.1). There is one additional condition, D < 1 that will appear in the validity analysis
of subsection 5.6 and the stability analysis of Section 7. The case D > O(1) turns out to be of
little interest since here the pulse solutions cannot be stable, see Remark 7.2. Note, however, that
there certainly are stable ‘localized’ patterns for D = O(1) in a parameter regime that differs from
the regime studied here, AD = O(B?) ((1.2) implies that AD < B?), see [12, 13] for the case
AD=DB% D =1.

Remark 1.2. The speeds of moving pulses were also obtained, via numerical simulations, in the
papers [24, 25| in which the discovery of self-replicating pulses was reported. There the speeds
are given numerically as functions of the differences between the fluxes into the left and right sides
of the pulses. They found that certain branches of solutions abruptly appear and/or disappear as
the flux difference changes, and that there are transitions from wave speed curves for two-pulse
solutions to those for higher-pulse solutions. There are some qualitative similarities between the
picture obtained in [24] and that determined analytically here, especially with the presence of the
(initial) maximum values of ¢(t). See also [23].



2 Stationary single pulse solutions

In this section, we present an asymptotic analysis of the stationary single-pulse solutions of the
PDE (1.1), see Figure 4. The existence of these solutions was proven in [2] for a special choice of
parameters using methods from geometric singular perturbation theory. Our purposes here are to
briefly revisit the existence result from a different perspective, to derive the broader scalings for
which pulse solutions exist, and to preview the method that will be used in Section 3 on the full
problem. The extension of the existence results was briefly announced in Remark 1.1 of [3] (see
also [19] for a construction of the stationary spikes).

Stationary solutions of (1.1) are functions (u(z),v(z)) for z € IR satisfying the coupled ODE’s
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@—mﬁ—i—A(l—u) =0, DW+UU2—B’U:O. (2.1)

A, B and D are independent parameters. Eventually, it will be useful to make special choices about
the relative orders of magnitude, but we postpone this as long as possible.

Let up = [u]y—¢ be the value of u at the center of the pulse (see Figure 1). The v-problem for
the pulse is made more transparent by introducing new variables
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where the quantity ug is unknown at this stage. The main goal is to determine the values of ug for
which stationary single pulse solutions exist.

The basis of the analytic approximation method to be developed in this section is that there is
a disparity between the rates of change of u and v. We will see that ¢ varies on an O(1) interval
in the £ variable, while significant variation in u only occurs over much longer intervals.

The first step in the analytical method is to derive an approximation for u(z) along a single
pulse solution. Treating v(z) in (2.1) as if it was a known function, and putting the term containing
v on the right hand side, one gets by a standard procedure:

u(z) =1-— ﬁ {/_moo eﬂ(ml_z)u(a:')v2(9:')dx' + /:o e_‘/z(m'_m)u(a:')v2(m')d9:'} . (2.4)

Formula (2.4) constitutes an integral equation for u(z) that may be solved for a given v(z). We
note that a pulse-like function v?(x) should be expected to have a substantial magnitude inside the
pulse interval, which is an order /D /B neighborhood of the origin (by virtue of (2.2) and (2.3)),
and it should be expected to be virtually zero for = outside this same neighborhood. Also, inside
this neighborhood, the functions u(z') and etVA7" are assumed to be slowly varying (see the end
of this section for a consistency condition), and it suffices to keep the first (constant) term in their

Taylor expansions about z’'(= £) = 0 in order to obtain the leading order terms for the integrals in
(2.4). Hence, to leading order, the u component of a pulse solution is given by:

u(z) =1-— 2?/02 {e—\/Zm /_moo v?(z)dx’ + eVAz /:O 02(m')dm'} . (2.5)




Higher order terms in an asymptotic expansion for u(z) can be constructed by iteration and by
using the Taylor expansions of u(z') and the exponential functions in the integrals. The result will
be in terms of more and more complicated integrals over v?(z).

This first approximation (2.5) can be simplified one step further by evaluating the integrals.
Since v(z) is insignificant outside of a vanishingly small interval about z = 0, the integrals are
given to leading order asymptotically by the integrals over the entire real line. Hence, for z outside
the small interval in which v? is significant, one finds:

k k
u(z) ~1— ﬂe‘/zm, for z<0; u(z)~1-— ﬂe_‘/zm, for >0, (2.6)
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where

k= / ¥ 2 (al)da. (2.7)
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Note that the v-component acts as a delta function in this approximation. Finally, by directly

evaluating (2.5) at z = 0, one obtains uy = 1 — 2’“:;%. Hence, for a given k, the solution is:

2/A
Uy = ——.
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That is, the values of the unknown constant ug which correspond to stationary single pulse solutions
can be determined as soon as one knows the associated values of the integral k.

(2.8)

In this second step of the analytical method, we derive an approximation for the v(z) component
of a single pulse solution that will in turn enable us to determine k. Write (2.3) as:
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The function u(z) varies little near ug within the region of the pulse £ = O(1), so that the right-hand
side of (2.9) acts as a perturbation. This suggests approximating 4(£) by the function

(&) = gsech2 (g) , (2.10)

which is the solution of (32130/352) + 98 — 99 = 0, with 9y — 0 as £ - +oo.

The results from steps one and two above may now be combined to yield approximate solutions
for stationary single pulse solutions. Substituting (2.10) into (2.7) and recalling the change of
variables in (2.2), one finds after a straightforward calculation:

B3%\/D
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Hence, by plugging (2.11) into (2.8), the central unknown wug is given by:
B32V/D
up(1 — up) = 3 B°°VD (2.12)
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Therefore, the main goal has now been accomplished, since the solutions of (2.12) give precisely
the allowable values of ug for stationary one pulse solutions.



Upon examining (2.12) for ug, one immediately sees that there are two cases to consider:

Case I: B%2,/D/A« 1, Case II: B%%/D/A=0(1)and B¥?/D/A < 1/12. (2.13)

In Case I, we may Taylor expand both roots of the quadratic (2.12). One solution is:

uy ~ 3B1/BD/A. (2.14)

Clearly, in this case, ug is asymptotically small, and it is precisely in this case that the existence
of one pulse stationary solutions was proven for a special scaling of A, B and D in Theorem 4.1 of
[2], see Remark 2.2 below. Moreover, in [3] these solutions were shown to be stable, gaining their
stability through a Hopf bifurcation, in a large region of the parameter space.

Remark 2.1. The other root corresponds to an unstable solution of the PDE (1.1). This solution is
a ‘weak’ pulse with maximum value for v(z) of O(B). We expect that this ‘weak’ pulse is unstable,
since with ug ~ 1 — 3By/BD/A, it is a small perturbation of the globally stable homogeneous
steady state (U =1,V =0).

In Case II, both roots of (2.12) are O(1). The existence of the two associated stationary
single-pulse solutions was established in Theorem 4.3 of [2], and both have peaks of height O(B).
Moreover, it was shown (again in the special scaling, though the same analysis can be carried out

here) in Theorem 4.3 of [2] that they are born in a saddle-node bifurcation when B\/BD /A = 1/12.

Having shown how to construct the stationary solutions with u(z = 0) = ug in both cases I
and II, we conclude by showing that the perturbation analysis is self-consistent. An important
condition emerges that will be imposed globally, except where noted, in the rest of the paper. If
one scales the u variable by the size of ug (2.14): u = B3/2\/D/Aﬁ, and then one substitutes this
scaling and those (2.2) of £ and v into the quasi-stationary ODE for u, one gets:

2 A
o _ A a2 i(1 — B%24).
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Hence, in order that the & component evolves slowly, we must impose the following global condition:

A
5 <1 (2.15)

i.e., the 4 variable evolves slowly in the é variable relative to the O(1) rate of change of ©.

Remark 2.2. In order to compare our results with [2], we set (for this remark only) D = §2,
where 0 < § < 1, A = §%a and B = 62*/3p with @ = 1 (a € [0,3/2) in the analysis in [2],
a = 1 in most of the numerical simulations in [2]). With these special relations, one solution of
(2.12) is ug = (3B%/2/\/a)d[1 + O(B?/?)]. The corresponding ‘strong’ pulse is then approximated
by v(z) = (1/3)/a/Bé /30y(¢). For this solution, ug is small, and the maximum value of v(z)
is large. The results of the asymptotic analysis carried out here for this pulse-solution fully agree
with the results of Theorem 4.1 in [2], obtained by geometric methods and the Fenichel theory.

Remark 2.3. The heuristic approximations (2.5) and (2.10) can be made rigorous, under a number
of conditions on A, B and D, by converting the full problem (2.9) into an integral equation. Setting
U = U9 + 01, it follows that ¥; satisfies the ODE

82 . _
(a_@ + 260 () — 1) oy = W@ G502 — 62 = R, ). (2.16)

ug
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Letting G(¢, ) denote the Green’s function (computed explicitly from the solutions 4 (é) =
(ddp/d€)(€) and 1y (€) of the homogeneous equation) (2.16) is equivalent to:

o0

n@) = [ GEREG(E),5:(€))dE" (217)
Higher approximations for 'f)(é ) can be computed iteratively from this integral equation. Further-
more, viewing (2.4) and (2.17) as a pair of integral equations, one can envision the proof of validity
of the first approximations (2.5) and (2.10) by using the contraction mapping principle in a suitably
defined Banach space. Such techniques have been used successfully in other nonlinear problems
in [7] and [27]; see [27] for a general development of the method. In this manner, one recovers
analytically the same results obtained geometrically in Section 4 of [2].

3 Traveling double pulse solutions

In the numerical explorations of [2], it was found that, under various circumstances, one-pulse initial
data breaks up into two pulses, one traveling to the right and the other symmetrically to the left.
There, the speed of the pulses was found to be of the order asymptotically slow (see Remark 2.1 and
Figure 9 in [2]). In this section, we present a method for finding approximations for the traveling
double-pulses, especially those for which c is a slowly-varying function of ¢. In the first subsection,
we formulate the framework of a quasi-stationary approximation in a moving coordinate system.
Next, we construct the solution within that framework and determine the speeds of the pulses. We
find that the speed scales as Av/D/B3/2, which indeed agrees with the numerical simulations in [2]
(see Remark 3.2). Furthermore, it varies very slowly with time and tends to zero as t — oco.

Remark 3.1. The existence of the pairs of slowly modulated two-pulse solutions is consistent with
results from [2], where it was proven that traveling waves that are stationary in a frame moving
with constant non-zero speed cannot exist in the parameter regime given studied there (see Remark
2.2): if the two pulses would travel forever (without splitting) then they would each look like a
single traveling pulse. Thus, ¢(¢) must approach 0 as t — oo.

3.1 The quasi-stationary approximation

Because of the symmetry about z = 0, the analysis can be restricted to half of the picture (however,
see subsection 5.6). We chose the right-moving pulse on z > 0 (see Figure 1). At time ¢, the center
of the pulse is at

5 =T(t), where T(t)= /0  o(s)ds. (3.1)
We also introduce a coordinate attached to the pulse
E=z—T(1). (3.2)
By (1.1), the equation and boundary conditions for U(£(t),t) takes the form:

oU  8U _ 8°U
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with the boundary conditions

ou
U—1 as {—o0 and c')_f:() for &= -T(¢). (3.4)
The second condition in (3.4) arises due to the symmetry of the full problem for z € (—o0, c0):
here the right-moving pulse must ‘match’ with the left-moving pulse.

The quasi-stationary approximation consists of imposing the ‘Ansatz’ that (U(£(t),t), V(£(2),t))
only depends on t through &(¢), i.e. (U(&(t),t), V(E(t),t)) = (u(é(2)),v(E(t))) where (u,v) does not
depend explicitly on ¢. Thus, the derivative %—[tj disappears from (3.3): the equation for u is an
ODE in which ¢ can be interpreted as a parameter. This parameter appears in ¢ = ¢(t) and in the
position of the boundary condition (3.4). We will see that the construction of singular solutions
(in the spirit of the previous section) will imply a relation between c(t) and T'(t) = [ c(s)ds (for
all ¢ > 0). We refer the reader to subsection 5.6 for an analysis of the consistency and the validity
of the quasi-stationary approximation.

In the quasi-stationary approximation, the equation for v({) becomes:

ov 0% 2
_08_5 D8—f2 + uv® — Bu. (3.5)

As in Section 2, this equation becomes more transparent in the new variables (2.2). Recall:

é= \f & o€ = Zol&), (3.6)

where ug is again u at £ = 0, but now uy depends on the ‘parameter’ time. Hence,

—c 06 0% U\ .9
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We look for pulse-like solutions for the function ﬁ({C ,t), that is, solutions that tend rapidly to zero
when €| is large. Hence, the boundary condition for all ¢ is 9(€,t) — 0 as [{| — oc.

3.2 Approximate solutions for u(§)

Let

Py = % (—c:l: Ve + 4A) , (3.8)

and note for later reference that when ¢? <« A,
pt ~ £VA. (3.9)

The general solution of (3.3) in the quasi-stationary limit is now at hand by elementary procedures:

u(é) =1— et-¢ 2(2")da' + er+€ Ooe_““”’u ' )v?(z')dz’
©=1- { [ e o | (@')o? (@')d



o0 /
—M—+e(”—_“+)r(t)e“—f/ e M+ y(z)o? (") dz' b . (3.10)
p— —1(#)
Matters simplify considerably when one observes, as in Section 2, that the pulse-like function
v(z') is expected to be virtually zero outside an order \/D/B neighborhood of z' = 0. Again,

Taylor expanding u(z') and the exponential functions, one obtains:

u(€) ~ 1" e#—&/g 02 (2')da! + et+E /oo 02 (2 )da! — “_+e(#—f#+)1“e#—£/ v2(z')dz'
By —p-) -T ¢ 7. T
(3.11)

As noted in Remark 2.3, one can envision a procedure for the construction of higher approximations.
Fortunately, the results of Section 5 make this unnecessary.

For values of £ outside the small interval where v({) is nonzero, further simplification follows:

u(é) ~ 1 — (k&) {euf _ (“_4‘) ek —#+)T(t)eu§} for &3>0, (3.12)
Pt — P B

w(€) ~1— (’f% {e#+£ _ (”_+> e(u—u+)1“(t)e#—£} C for £<0, (3.13)
Pt — B B

where, as before,
o0
k= / v2(z')da'. (3.14)

Finally, by evaluating (3.11) at £ = 0, it also follows that to leading order:

g =1 — _ huo {1 _ (,u__|_> e(k— —M+)T(t)} ’ (3.15)
(By —p-) p—

which relates the unknown uy and the integral k, which is also unknown at this stage.

~

3.3 Approximate solutions for ()

Following the same procedure used in Section 2 for the stationary single-pulse solutions, we now
develop an approximation for the v component of a slowly-modulated, traveling single pulse. We
begin by rewriting the problem (3.7) in the quasi-stationary approximation:

8%% i b (uo - u) 9 c 00
— 4+ 0" =0 = 4 — —,
U vVBD ¢

PP with =0 as |f = . (3.16)

The full equation (3.16) is not invariant under the transformation f — —f ; and, therefore, the
existence of solutions that tend to zero for &€ - —oo and & — 400 is a nontrivial matter. To see
this more clearly, we compute an integral of (3.16), as follows. Multiplication by 00/9¢ yields:

A\ 2 N N A\ 2
10 (@> L Llud6h) 1967  —c (@) . (3.17)
206 \0¢) 3w 9é 2 9  VBD \ &
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Next, we integrate (3.17) and impose the boundary condition in (3.16) for € = 4o0:

2 2
1 (00 1 1 — % (07 s 1 [ 40 -
() 32 [ (D) dé+ —[ 32 (ﬂ) dé. (3.18)
2\o¢) 3w 2 VBDJé \& 3Je 9k \uo
Finally, by imposing the boundary condition in (3.16) for é — —oo, one obtains the following
nontrivial condition for the existence of a homoclinic orbit:

2
¢ [P0 gep k[T 0 (M) g
VBD oo (aé) vy [ 0 58 (i) =0 (3.19)

In the analysis here we treat the right hand side of (3.16) as a perturbation and approximate
the function ¢ by the unperturbed solution (2.10). The first term can be expected to be small,
because u(z) varies little in the pulse interval, which is of @(1) width in £&. The second term is
£ & 1. The pulse velocity c is, of course, unknown yet; naturally, in the final results,

small if
¢ will depend on A, B, and D. Our strategy will be to determine ¢ under the assumption that the
right hand side of (3.16) is a perturbation and then verify a posteriori (subsection 3.5) under what
conditions on the parameters the perturbation assumption is satisfied.

3.4 Computation and analysis of the pulse velocity

In order to carry out a leading order asymptotic analysis of the condition (3.19), %(¢£) may be

~

replaced by the presumed first approximation 9¢(£) given in (2.10). Also, for a single stationary
pulse solution centered at ¢ = 0, it may be readily shown, via a calculation in the original ¢ variable,
that the term involving the derivative of u has the following form:

2@ (@) rersm

where f(é) is an odd function of . In particular, for £ = O(y/D/B), the by-now standard approx-
imations imply that equation (3.10) yields to leading order:

ou —ug 3 5. /00 9. (s oo
Y= —— % ) d do’ — Bt #—)T/ 242\ 3.21
86 (6) (,U_|_ — ,U_) {/j /T(t) viaxr + M+ ¢ v ar M€ - v axr ( )

The higher order terms introduce a relative error of O(/AD/B). Then, [ v? ~ [° _v? and

ffr v? ~ ffoo v?, since the tails ffr 2 are exponentially small. Also, the function (¢) is sym-

v
metric about £ = 0, so that [°_ 1)22;7’ = [5° v3dz' to leading order. Hence, (3.21) reduces to:
Ou £) = L [f + e(u+#)1“(t)] + ug f(£) (3.22)
o¢ (ny —npo) 127 HF 0T
where f(¢) = %f_goo v2(z')dz! — % 500112(:10')da:' and where k is defined in (3.14). Clearly, f(£) is

antisymmetric about £ = 0. Finally, using (2.11) to evaluate k, recalling the definitions (3.8) of p4,
converting to &, and dividing both sides by ug, we get to leading order:

<3£> é‘) _ @ {e—\/c2—|—4AI‘(t) + ﬁ[l _e—\/62—|—4A1"(t)]} +f(é) (323)
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Hence, we arrive at (3.20): the first term on the right hand side of (3.23) is (8/0€)(u/ug) at € = 0,
and the second term is antisymmetric about ¢ = 0, as claimed above.

Since f is odd, the integral of ﬁsf in (3.19) vanishes to leading order, and the condition for the
existence of one pulse solutions simplifies to:

_Cm%2“13ﬂ R VPN
vBD oo<85> 3 laé <uo>Lzo/m”°(5)d5_°' (3:24)

Evaluating the integrals using (2.10), one obtains:

£

Next, the values of ug can be explicitly determined. Using (3.15) and (2.11), we find:
3/2
ug(1 — ug) = GM [1 _ (“_4') e—(u+—u)1“] _ (3.26)
B+ —p-) p—

Now, just as in the analysis of (2.12) in Section 2, there are two cases to consider:

CaseI: B3/2\/§ <1 and Casell: B3/2H§ = 0(1). (3.27)

Moreover, in both cases, one needs to consider two possibilities: ¢ < A and ¢? JA = O(1). We
will refer to these as subcases a and b, respectively. We analyze Case Ia in this subsection (and
geometrically in Section 5), and in Section 6, we will analyze Cases Ib and IIa geometrically (see
Remark 6.1 for an approach along the lines of this section).

In Case I, the quadratic (3.26) has two real solutions, and we are interested in the smaller one:
6B%2/D
(ug)_ ~ ——— {1 — (“—+) e_(”+_”—)r}. (3.28)
(Bt — p-) pi—

This solution clearly reduces to (2.14) obtained in Section 2 for the case of a stationary single pulse
(take t — oo where ¢ = 0). Moreover, it indicates that the method employed here, which is based
on the separation of scales, is consistent if we impose the global condition A < B? given in (2.15).
For completeness, we note that, just as we saw in Section 2, the second solution has a value of g
that is just below one. The corresponding solution is, therefore, only a small perturbation of the
globally stable homogeneous state (U = 1,V = 0), and hence it is expected to be unstable.

Specializing to Case Ia, we see by (3.8) that (3.23) and (3.28) simplify (to leading order) to:

li (i)] = @ﬂﬁm), and (ug)_ ~ 3\/§B3/2 {1+4e2/Ar0}, (3.29)
o0& \ug é= ug A
Hence, by using (3.29) in (3.25), we get to leading order:
24D e—2VAL(t)
~ 3B3/2 [1 4 eqﬂr(t)]”

(3.30)
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where we recall (3.1) that T'(t) is defined as T'(t) = [ ¢(s)ds. Since B¥/2\/DJA < 1 (Case I) and
A < B? (by (2.15)), we find c(t) < 1 for (3.30). Thus, this formula for c(t) corresponds to a slowly
propagating pulse solution whose wave speed decreases slowly in time.

Finally, recalling (3.1), we see that (3.30) can also be viewed as a differential equation:

E B EA\/E 6—2\/ZF
dt 3 B32 [1 4 e-2vATR

(3.31)

There are no critical points for finite I" in (3.31), and hence I" grows without bound.

The equation (3.31) can be solved in an implicit form, but not much insight is gained. Instead,
we finish with an ODE for ¢(t) that can be obtained by differentiating (3.30) by ¢ and by a little

algebra (in particular, view (3.30) as a quadratic in e~2VAT and solve it, taking the root with the
minus sign; then, plug this root into the right hand side of the formula for dc/dt), we find:

dc 6cB3/2
— = —2VAP 1 - ——. 3.32
dt ¢ AVD (3.32)

Hence, ¢(t) decreases algebraically until the wave is asymptotically stationary. In addition, there
is an upper bound for ¢(t), whose origin we will see from the geometric approach in Section 5.

Remark 3.2. In the numerical simulations for [2] D = §2, A = O(6?), B = 0(62%/3), and typically
« = 1. Hence, (3.30) satisfies: c(t) = O(AvV/D/B*?) = ©(8?), as observed in Figure 9 of [2].

3.5 Consistency of the approximations and a mechanism for the pulse-splitting
bifurcation

In this subsection, we analyze the conditions under which the right hand side of (3.16) is indeed
a perturbation. There are two terms to consider. By (3.30), it follows that ¢/v/BD = (A/B?)¢,
where ¢ = O(1), and hence the second term on the right hand side of (3.16) is a perturbation if the
global condition (2.15) holds.

To analyze the first term, we expand u(éC ) in a Taylor series:

uou;u:_l;(uﬁo)y i Lfg(i)] o (333

§=0 £=0

The coefficient of the first term in (3.33) is given by (3.29). Next, the coefficient of the second term
is readily computed to leading order from the quasi-static limit of the differential equation (3.3):

2 [ u A 1
la—@ <u_0>‘|é:0 = 4B2 [1 n 6_2\/21_‘]2' (3.34)

This leading order term comes directly from the uv? term in (3.3), and we note that the A term
in (3.3) is higher order, because \/AD/B < 1 in Case I by (2.15). Hence, condition (2.15) also
assures the smallness of the first term on the right hand side of (3.16).

13



To conclude this section, we venture an explanation for the numerically-observed phenomenon
that, in a suitably chosen regime of the parameter space, a traveling pulse, after some time, splits
into a right and left traveling pulse. Consider B as a bifurcation parameter by setting B? =
O(A'7") with v > 0. The right hand side of (3.16) ceases to be a perturbation as v — 0, and
our construction breaks down. So, let us suppose now that we take v positive but small, yet such
that all coefficients on the right hand side of (3.16) are still numerically sufficiently small for the
perturbation assumption to be valid. Then, as time goes on, the coefficient on the first term in the
Taylor expansion becomes even smaller because ¢ — 0 (3.30); however, the coefficient (3.34) of the
second term in the Taylor expansion grows as ¢ — oo, and in fact can grow up to four times its
initial value. Moreover, the leading order coefficients on all terms of fourth-, sixth-, ... order in the
Taylor expansion will also grow. Therefore, it can happen that, after some time, the perturbation
assumption is no longer valid. See also Section 8 for a more detailed discussion.

The time needed for the pulse to break up is smaller if v is smaller, and hence B is closer to v/A,
which is precisely the threshold case discovered in [3] and observed there to agree with the splitting
bifurcations in numerical simulations. The time-scale relevant to break up can be estimated by the
equation for I'(¢) (3.31): the time-dependent factor in (3.34) decreases from being near 1 to being
< 1 when VAT > 1 on a time scale 7 = (AV/AD/B+VB)t (see also section 5.6). However, T'(t)
only grows logarithmically slow on this time scale (by (3.31)). Therefore, the actual splitting will
occur after a very long, but O(1), time Tgy);; on this 7 time scale. For instance, with A, B and D as
in the simulations of Figure 2b we find that ¢ ~ 1757 so that Ty, ~ 407. This agrees qualitatively
with the dynamics of (3.31).

4 Geometry of governing equations

In this section, we identify the central geometric structures in the equations for modulating two-
pulse solutions. This geometric information is essential to proving the existence of these solutions
using the Fenichel singular perturbation theory, and it also provides a clear framework to determine
the dynamics in each of the parameter regimes, teasing apart the geometric features of Cases Ia-ITb.
Before describing this geometry, we briefly review essential facts about the modulating two-pulse
solutions constructed in Section 3, especially to collect the associated scalings.

In the quasi-stationary approximation, U(z,t) = u(£(t)) and V(z,t) = v(£(¢)), and the Gray-
Scott model (1.1) is:

uge + c(t)ug — uv® + A(1 —u) =0, Duge + ¢(t)ve +uv? — Bv = 0. (4.1)

where £ =z — fot c(s)ds (3.2). At each instant of time ¢, a modulating two-pulse solution consists of
a right moving pulse (¢(t)) and a left moving pulse (—c(t)), symmetric about z = 0 (Figure 1). The
right-moving pulse solution consists of three segments: a narrow interval in which the v component
exhibits a high peak (and v a minimum) centered at £ = 0, i.e., z = +f0t ¢(s)ds and intervals on
either side of the peak in which the v component is exponentially small (and u changes slowly).
The v peak corresponds to a fast excursion near the homoclinic orbit of the fast reduced system
associated to (4.1). The tails on either side of the pulse are matched to the slow solutions on the
left and right intervals. Finally, the left slow solution satisfies Neumann conditions at z = 0, and
the right slow solution satisfies u — 1 and v — 0 as £ — oc.
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4.1 Scalings
The analysis of Section 3, in particular (3.6), (3.29), and (3.30), suggests the scalings:

D. D . A . AVD .
EZ\/;& u(£)=B3/2\/;u(s), o) =4/ 5pP€): ) = ZEpe®),  (42)

The scaling of £ corresponds to a stretching of the narrow interval to which the pulse is confined
at any given moment in time. To leading order (4.1) becomes:

. A RN VAVD BvVBVD ,
g = —5 |00° — Dé(t)ag + 1— all,
& = B et 75 7
N A g .
Vg T ﬁc(t)vé +4? — o = 0. (4.3)

Again, one clearly sees the origin of the global condition (2.15), namely A < B2, which was made so
that @ evolves on a longer space scale than ©. We remark that the boundary scaling A/B? = O(1),
which is intimately connected to the observed pulse splitting, is analyzed in [3], where it is shown
that the solutions disappear for a critical value of B, called By there. Further results for this scaling
are given here in subsection 3.5 and in Section 8.

Next, during the course of the analysis in Sections 2 and 3, we determined (see (2.13), (3.27) )
that it was useful to distinguish between two cases:

CaseI: B%?\/D/A <1, and CaselIl: B*2,/D/A=0(1). (4.4)

In addition, within each of these two main cases, it was necessary to distinguish between subcases a
and b: ¢ < A and ¢2 = O(A), respectively, i.e. by (4.2) AD < B? and AD = O(B?3) respectively.
As we shall see in subsection 4.2, the geometry of the slow (outer) subsystem is fundamentally
different in each of the four cases Ia-IIb.

Finally, the global condition (2.15) and the scalings (4.2) suggest introducing;:

A
€= % and d =VBD. (4.5)
One directly observes that € < 1 due to (2.15), and § < 1 due to both (2.15) and (4.4). Also, the
two cases (2.13) may now be written as: CaseI: §/e < 1; and CaseII : 6/ = O(1), while the
distinction between the subcases a and b is made by eD/§ < 1 and eD/§ = O(1). The leading
order quasi-stationary system, to be studied throughout the rest of the paper, may therefore be

written, dropping hats and letting overdot denote d/ dé , as:

U = €p
p = ¢e|uww? —eDe(t)p —ed (1 — §u>]
€
v o= ¢
i = —uv®+v—=ec(t)q. (4.6)

Remark 4.1. €2 and 62 here are the parameters ) and «y identified in [12]. Note, however that the
§ in [12] differs from the & here. Also, in [12], Ay = 1 or close to 1, while here £2§? < 1.
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4.2 Dynamics on the slow manifold

In system (4.6) with any value of ¢, the plane M = {(u,p, v, q)|v,q = 0} is invariant under the flow
of (4.6), just as was the case in the ODE for stationary solutions as observed in [2]. The presence
of this manifold enables us to decompose the dynamics of the system naturally into a slow part (on
M) and a fast part (off of M). The dynamics on M is given by the reduced slow system, and this
system is linear:

)
U = ep, p=—e?Dc(t)p — 26 (1 - —u) . (4.7

5
The homogeneous steady state (U = 1,V = 0) corresponds to the saddle fixed point S = (u =
e/é,p = 0,v = 0,q = 0) on the manifold M. Therefore, there is one major difference between

Cases I and IT that manifests itself already, namely the u component of S satisfies u > 1 in Case

I, whereas u = O(1) in Case II. See Figure 5.

Exploring further, the eigenvalues of the reduced slow system at S are:

e2Dc €2D2c2
AL = — +deq /1 4+ ———. 4.8

Hence, the restricted stable and unstable manifolds of S are the lines

€ A €

WS (S) i = €5 : p:)‘%(u—g>, WY (S)| e = £V - p:?<u—5). (4.9)

As we show now on a case-by-case basis, these formulae reveal that in Case I, the lines £5 and ¢V
are asymptotically vertical, whereas they have a much smaller (albeit still O(1/¢)) slope in Case
II1. In addition, we will see that, in subcase a, the lines £° and £V are symmetric about the u axis,
while they are asymmetrically disposed about the u axis in subcase b. Overall, there will therefore
be four geometrically distinct combinations, see Figure 5.

In Case Ia, i.e., when §/e < 1 and eD/d < 1, we find:
At = teé + h.o.t, (4.10)
so that the restricted stable and unstable manifolds of S are the lines
W35S)m=0’: p=e—0du+hot., and WIS y=0: p=—c+du+hot. (411)

These lines are asymptotically vertical in the p — u plane in the region where u = O(1) when
§/e < 1, see Figure 5a. Moreover, £V and ¢° are symmetric with respect to the u axis.

In Case Ib, i.e., when §/e < 1 but now eD/§ = O(1), all of the terms in the expression (4.8)
for the eigenvalues are of leading order. Let v = eD/é so that v = O(1). Then, (4.8) yields:

- 1 1
AL =eddL =¢€6 l—i'yc +4/1+ 17262] . (4.12)

Thus, ¢° and ¢V are given exactly by:

p=—Xi(e—du), (4.13)
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and the first term is the leading order term when u = O(1) because of the assumption that §/e < 1.
We therefore note that £° and £V are vertical lines to leading order for u of O(1). However, they
are no longer symmetrically disposed about the u—axis due to the difference in the magnitudes of
Ai. This complicates the analysis considerably, as we show in subsection 6.1.

In Case IIa, the saddle fixed point is only located an O(1) distance from the origin along the u
axis, since §/e = O(1). Hence, the lines £° and £V have much smaller slope (‘only O(1/¢)’) than in
Case I. In addition, since eD/§ < 1 here, these lines are again symmetrically disposed about the
u axis. Set 0 = §/e, so that o is an O(1) parameter. They are given by

p=te(l—ou). (4.14)

Finally in going to Case IIb, we see that the lines become asymmetric about the u axis. In both
subcases ITa and IIb, there are saddle node bifurcations of the modulated pulse solutions.

Remark 4.2. We do not pay any attention to Case IIb in this paper. This is in essence a co-
dimension two case that can be studied by combining cases Ib and IIa, which are represented by
the curves Cgn and Crw, respectively, in Figure 3. Moreover, the combination of §/e = O(1) and
of eD/§ = O(1) implies that D = O(1). Hence, Csx N Crw = 0 in Figure 3 since there D < 1.
The case D = O(1) is of little interest in the light of the stability analysis of Section 7 (see Remark
7.2).

5 Geometric construction of slowly-modulated two pulse solutions

In this section, we construct slowly-modulated two pulse solutions in Case Ia. We will use an
extension of the geometric method presented in [2] to give an existence proof. The geometric
method will also be applied to cases Ib and IIa in Section 6. In subsections 5.1 and 5.2, we briefly
describe the geometry of the fast system when e = 0 and when 0 < ¢ < 1, respectively. We identify
the crucial ‘take off’ and ‘touch down’ curves in subsection 5.3, geometrically hook up the fast and
slow segments of the modulating two pulse solutions in subsection 5.4, and derive the ODE for
¢(t) in subsection 5.5. Finally, in subsection 5.6, we establish the validity of the quasi-stationary
approximation used throughout this work.

5.1 The fast subsystem when ¢ =0

The fast subsystem is obtained from (4.6) by noting that w and p remain constant when e = 0:
0 =g, §=—uv® +v. (5.1)

This reduced fast subsystem is Hamiltonian for each constant u, with K = ¢2/2 + uv®/3 — v2/2.
For each positive u, the phase portrait of (5.1) has a center equilibrium at (%,0) and a saddle
equilibrium at (0,0) that possesses an orbit homoclinic to it, given by:

vo(&;u) = %sech2 (g) and qo(&;u) = 1o, (5.2)

where vy here differs slightly from 7y used in Sections 2 and 3. See also Figure 3a in [2].
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Let M denote the two-dimensional plane My = {(u,p,v,q)| v,q = 0} obtained in the e = 0
limit. Tt coincides with M, and the subscript just reminds us that € = 0 in this subsection. That
the origin (v = 0,9 = 0) is a saddle point of the reduced fast system for each positive value of the
constant u© immediately implies that Mj is an invariant manifold and that it is normally hyperbolic.
Over each point (u,p,0,0) on My there are one-dimensional fast stable and unstable fibers; these
correspond precisely to the local stable and unstable manifolds of the saddle point (v = 0,¢ = 0) of
the fast subsystem. Hence, when u > 0, the manifold Mj has three-dimensional stable and unstable
manifolds, W*(M,) and WY (M), that are simply the unions of the above one-dimensional fibers
over the two-dimensional set of base points (u, p,0,0) on M;. Moreover, since these local manifolds
coincide in the fast subsystem to form the homoclinic orbit given by (5.2), it follows directly that
each point on My is connected to itself by a homoclinic orbit, and that the manifold M possesses
a three-dimensional homoclinic manifold W (M,).

5.2 Persistent fast connections

When 0 < € <« 1 in (4.6), Fenichel theory [10] implies that the stable and unstable manifolds of M
present in the e = 0 system persist as three-dimensional, C" smooth stable and unstable manifolds,
WUY(M) and WS(M). See also Theorem 3 of [14]. However, the branches of these manifolds
that coincided when ¢ = 0 generally no longer do so, and intersect each other in two-dimensional
surfaces. In these intersections lie the only one-pulse orbits biasymptotic to M.

In this subsection, we employ a Melnikov method to detect these intersections. System (4.6) is of
the type to which Robinson’s extension of the Melnikov method applies, see [26] as well as the other
references cited in [2]. Let (u(£),p(€),v(€),q(€)) represent a solution of (4.6) that passes through
the point (ug, pg,v(0),0) when & = 0. The splitting distance between the manifolds WY (M) and
W*9(M) can be measured in the hyperplane {¢ = 0}, which is the hyperplane transverse to W (M)
and is spanned by the three vectors (1,0,0,0), (0,1,0,0), and the unit normal # = (0,0,1,0) to
W (My). The distance is:

o0

AK (uo,poia,bie) = [ K((9)a(6);u(e),p(€)de, (5.3

—0o0

as ¢ — 07, and the integrand is given by a straightforward computation: K= %spv3 — e2¢(t)q?.

Solutions (u(£),p(€),v(£),q(£)) of (4.6) on the perturbed stable and unstable manifolds W3 (M)

and WY (M) can be expanded in powers of the small parameter :

u(€) = uo+eur(é) +e’uz(é) + hot p() = po+epi(é) +e%pa(€) + hot

v(€) = wvo(€;u0) +evi(€) +e®0a(é) + hot  q(€) = qo(&u) +equ(é) +e2qa(€) + h'(()'ta)
5.4

as ¢ — 0, where vg(§;ug) and qo(&;up) are the unperturbed homoclinic solutions (5.2). Solutions
on WY(M) are represented by expansions valid on the semi-infinite time interval (—oo,0], and
solutions on W* (M) are represented by expansions valid on the semi-infinite time interval [0, co).

We fix initial conditions on the curves W2(M) N {g = 0} and WY (M) N {g = 0} whose v
coordinates lie in a neighborhood of 3/(2u). We assume that «(0) = up and »;(0) = 0 for j > 1:
the initial conditions pg, p;(0) and v;(0) (j > 1) are then determined as functions of uy by the
condition that the orbit of (u(£),p(€),v(£),q(€)) lies in the transverse intersection of W9 (M) and
WU (M). We label such an orbit T'(¢; zg), where zq = (ug, p(0),v(0),0).
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One observes straightaway that py = 0, since the p coordinates of all points on ¢° and ¢V with
u coordinate of size O(1) are at most O(e) in magnitude, see (4.11), and hence the only way for
the initial conditions z( to lead to an orbit that is either forward or backward asymptotic to S is if
p(0) = O(e). Also, the first-order corrections of u and p are found by substituting (5.4) into (4.6):

w@©=0,  p(©)= [ ud(s)ds +p0) (5.5)

Hence, the integral in p1(£) is an odd function of £, because vy(£) is an even in {. Plugging these
expansions into K and (5.3) and using odd-even properties yields:

1

AK (o, p0)s0,b,e(0) = 2 [ 39100) [ (e —e(0) [~ B(e)de] + hor (59

Therefore, using (5.2), the zero set of AK is given to leading order by the line

p= lscu, (5.7)
2
where we recall u is assumed O(1). Hence, there exist initial conditions z¢ = (ug,p(0), v(0),0) such
that the orbits I'({; zy) through these points are biasymptotic to M if the u and p coordinates of
the initial conditions chosen above are related to leading order as in (5.7), with p = O(¢). Also, as
¢ — 0T, the zero line of AK approaches the vertical, see Remark 5.2.

In order to quantify the influence of the fast field on the u- and p-coordinates of a solution in

WY (M) NWS (M) during its excursion through the fast field, we define
Aplug,p(0);a,b,e(®) = [ pde and  Au(u,p(0)sa,b,e(t) = [ ide.

Before evaluating these expressions, we note that AK = O(&?) implies |v(0) — vg| = O(¢?). Hence,
v1(€) = 0, since v; is the solution of a second-order equation with initial conditions v; (0), 91 (0) = 0.
Straightforward computations now give:

oo oo 6
_ 2 _ 2 _
Ap=c¢ / (w(€)*(©) +hot) dé = ¢ /_ _upf(©)d thot=c " thot,  (58)

where we have also used (4.6), (5.5) and the fact that [°°_v3(£)d¢ = 6/u3.

Finally, to determine the change in w during the fast field, we again use the fact that we will
only study Au(ug,p(0)) for values of (ug,p(0)) in the neighborhood of the AK = 0 line (5.7). As
above, therefore, p(§) = O(e) on the time interval under consideration, which implies that the
change in v during the excursion in the fast field is of higher order:

Au ~ €2, (5.9)
5.3 Take off and touch down curves

There are two other curves on M that play a crucial role in the analysis. These are obtained as

follows. The first intersection of W<(M) and WY (M) in the hyperplane {q = 0} is given by (5.7)
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to leading order. This intersection is a one-dimensional curve in the two-dimensional manifold
W9 (M) N WY (M). Through any point zq on this curve W (M) N WY (M) N {¢g = 0} there is an
orbit I'(¢; z9) which approaches M for ‘large’ |{]. More precisely, the Fenichel theory [10] implies
that for any I'(¢; zo) there are two orbits T, = T} (& 2f) C M and I'y (& 25) C M, respectively
(where I'F(0;z{) = = € M), such that |[T'(¢;z0) — T}, (& 27)| is exponentially small for £ > 0
where ¢t > (9(%) and [|T'(§;20) — 'y (&5 75 )|| is exponentially small for —§ > % > 0. Thus,

d(T'(&z0), M) = O <ef§) for || > O <é) or larger

for some k£ > 0, and ]_—‘/i\/l (&; a:(j):) determine the behavior of I'(¢; zp) near M. These orbits on M are
the orbits of the base points of the fast stable and unstable fibers in whose intersection I lies.

Therefore, we define the curves T, C M (take off) and Ty C M (touch down) as
To = Ugo{zy =T, (0;25)}, and Ty = Ug{zf = I‘L(O; i)}, (5.10)

where the unions are over all g in WS(M) N WY (M) N {q = 0}. T,, respectively Ty, is the
collection of base points of all of the fibers in WY (M) (respectively WS(M)) that lie in the
transverse intersection of WY (M) and WS (M).

The locations of T, and T; can be obtained explicitly by determining the relations between
zo = (ug,p(0),v(0),0) and x(:)t = (uoi,p(:)l:,0,0). The accumulated changes in p of I'(¢) during the
backward and forward (half-circuit) excursions through the fast field are measured by fE oo PdE and
Jo° pd€, respectively. The changes in p of I't(t) during the same period of time can be neglected, to
leading order, since p = O(e®) on M by (4.6). Formulae (4.6) and (5.9) imply uy = ui to leading
order. Therefore, by the same calculations that led to (5.7) and (5.8), one finds to leading order:

1 6 1 6
To:p:—s[cu——], Td:pzis[cu—k—]- (5.11)
u u

5.4 The right-moving pulse with slowly-changing ¢(t): hooking up the slow and
fast segments

In this subsection, we construct instantaneous (fixed t) snapshots of the right-moving pulse solution
on z > 0. As stated above, at any instant of time ¢, this solution consists of three segments, and
we start with the slow segment to the right of the peak. These instantaneous t snapshots will then
be put together in the following subsection in a self-consistent fashion determined by how the wave
speed c(t) slowly changes in time. We remark that we reintroduce hats on the independent variable
¢ where appropriate in these last subsections.

For instantaneous wave speeds satisfying 0 < ¢(t) < 1/6, the curve Ty on M intersects the line
£% in two distinct points. The leading order analysis in (4.11) and (5.11) directly yields that the
upper and lower intersection points are (u,pr(u+)), respectively, where

e = % (1 +,/1— 6c(t)) , (5.12)

and pgr(uy) is given to leading order by the first term in (4.11)(a). See Figure 6. We note that
du_/de > 0 for all ¢ > 0. This leading order analysis also identifies the critical (maximum) wave
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speed as ¢(t) = 1/6. At this c(t) value, the two curves are tangent, and it represents to leading
order the initial value of the wave speed of the pulses with slowly-decreasing wave speed.

To leading order, the right slow segment we are interested in is given by the orbit along that
segment of £° from u = u_ to u = ¢/8. This right slow segment satisfies the asymptotic condition
U — 1 because the solution on £° approaches S, i.e., u — €/§ and p — 0. See Figure 6. The v and
q coordinates are exponentially small, and hence zero to leading order and to all orders.

At the intersection point (u_,pgr(u_)), the right slow segment is hooked up to the fast segment.
This fast segment is given to leading order by the homoclinic orbit (5.2) of the fast reduced system
(5.1) with e = 0, where the constant u, and hence also the u component of the initial condition,
are fixed at u_. See Figure 6. That these solution segments can be hooked up smoothly in this
fashion for the full system with 0 < € <« 1 is justified by the fact that, for ¢ < 1/6, the curves Ty
and £° intersect transversely on M at (u_,pgr(u_)), and hence the geometric singular perturbation
theory of Fenichel may be applied, see [10] and [14].

The backward asymptotic (¢ — —oo) limit set of the fast homoclinic pulse is the point (u_, pr,(u_))
on M. We use (4.11) and (5.11) to compute to leading order:

pr(u—) = pr(u-) — Ap(u_) =¢ <1 - ;) = —ey/1 —6¢(t). (5.13)

See Figure 6. The point (u_,pr(u_)) lies on the take off curve T,, and the result (5.13) expresses
the fact that the jump from 7, (namely (u_,pr(u_))) to Ty (namely (u_,pr(u—))) during the
fast segment is given to leading order by the accumulated change Ap(u_) in p, where of course
u stays constant to a sufficiently high order by (4.22). In addition, for 0 < ¢(t) < 1/6, the point
(u_,pr(u_)) lies to the right of the line £V, inside the triangle formed by these lines and the p—axis,
whereas it lies on £U for ¢ = 0, see [2].

The identification of (u_,pr(u_)) completes the specification of the fast segment, and it is
precisely at this point that we hook up the fast segment to the left slow segment. To leading order,
the left slow solution is the segment of a hyperbolic cosine orbit on M (inside the triangle) between
the points (umax,0) and (u_,pr(u_)). See Figure 6. The u component is given to leading order by:

u(é) = % + Ae% 4 Be %, (5.14)

where the unknown coefficients are determined by imposing the two given boundary conditions.
Without loss of generality, since the ODE system is autonomous in ¢ (and é ), we are free to choose
the parametrization such that (u(¢),p(¢))|¢e=0 = (u—,pr(u—)). Hence, we impose u({ = 0) = u_
and Z—Z(f = 0) = epr(u_), which yields the conditions:

£ 3
A+B=—<+0(1) and A= B=—%\/1=6e(t) + O(1).

Note that we used that u— = O(1) by (5.12) and that pz(u_) = O(e) by (5.13), while €/6 > 1.
Therefore, letting H = /1 — 6¢(t), we obtain:

) = 26—5 [2— (1+ H)e= + (H - 1)e =] + ho.t

p(é) = _% [(1+ H)es% + (H = 1)e™%] + ho.t. (5.15)

I

u(
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Thus, the left slow segment satisfies the left boundary condition du/dz = 0 at z = 0 for our right-
moving pulse solution at every instant of time ¢. In the full system, the hooking up of the left slow
segment and the fast segment is justified in the same way as that done for the right slow segment.

Finally, with this explicit solution in hand, we can also explicitly calculate the value of {c at
which the slow segment begins, i.e., at which u(£) = umax and p(§) = 0. We label this value
&max and observe that it is negative and that it is equal to I'(¢) from Section 3. See Figure 6. In

particular, by imposing p(€max) = 0 in (5.15)(b), one finds to leading order:

A 1 1-H
max — —1 — . 1
¢ 26 n(1+H) (5-16)
Combining (5.15) and (5.16) yields the expression for umax, since umax = O(e/8) we unscale (4.2):
(1) % V(1) = & (1 - Gé(t)) , (5.17)

thus, Unax(t) = U(0,1), the unscaled value of the solution U(z,t) of (1.1) at z = 0 (see Figure 1).
Below we will find that é(t) € (0,1/6), i.e. Upax(t) € (0,1). These last formulae (5.16) and (5.17)
complete our leading order description of the right moving pulse solution on the domain z > 0 at
each instant of time ¢, with ¢(t) as yet unknown. The solution on z < 0 at the same instant instant
of time t is determined by reflecting the solution on z > 0 across z = 0.

Remark 5.1. The above analysis specifies the leading order solution for the right-moving pulse.
When 0 < € < 1, this solution is in W (M) and lies exponentially close to the transverse intersec-
tion of the local manifolds WU (M) and W3 (M). Also, as £ decreases to &pax, the orbit comes

exponentially close to M with exponentially small (but nonzero) V' component.

5.5 The ODE for c(t) in Case Ia

In this subsection, we determine the explicit formula for the slow rate of change of ¢(¢). This will
complete our existence proof of the full right-moving pulse solution with slowly-decreasing wave
speed in Case Ia, i.e., in the regime where eD/é§ < 1. In this subsection, we will again put a hat
on the variable ¢ where appropriate.

Recall from (4.1) that the traveling wave variable was defined as ¢ = = — [ c(s)ds, where ¢
and c are unscaled. Plugging in the scalings for ¢ and ¢ given by (4.3) and (4.6), respectively, and
evaluating at = = 0 (i.e., at & = €max = — fy ¢(s)ds < 0), one finds:

. _ 252 t
Emax = ‘ED /Oé(s)ds. (5.18)

At each fixed instant of time ¢, this value of émax represents precisely the distance between the
origin (z = 0) and the center of the peak. Moreover, this value (5.18) must agree with (5.16),
the value calculated earlier during the geometric construction in the previous subsection. Hence,
equating (5.16) and (5.18) results in the following implicit formula for é(¢):

In (1 —ViZ 66(“) _ 220 [ eyds, (5.19)

14 /1 —6¢(t) D Jo
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where we recall that the parameter H introduced there is defined in terms of ¢. Finally, differenti-
ating both sides of (5.19) with respect to ¢ yields the desired ODE:

de  —2e353¢2

— = ——V1—6¢ 5.20
which is exactly the same as the ODE (3.32) found in Section 3 (use (4.2) and (4.5)). One observes
directly that ¢ = 1/6 is an unstable fixed point and that the existence of this critical maximum
value of ¢ has a clear geometric origin, namely it is the ¢ value at which T} is tangent to £5. Also,
since dé/dt scales as —¢? for small é, we know ¢ decays as 1/t.

Remark 5.2. The ¢ = 0 case is treated explicitly in [2], and one must take into account higher
order terms here when analyzing the transition from ¢ > 0 to ¢ = 0.

Remark 5.3. Using the same procedure employed above, we can also show that the above-type
two-pulse solutions with u near u,, the second solution in (5.12), in the fast field do not exist. In
particular, since pr(u,) = € to leading order, pr(uy) = pr(uy) — Ap(uy) = e[l — (6/u)] = eH,
where we recall H = /1 — 6¢. Hence, pr(u4) > 0 for all 0 < ¢ < 1/6, and one cannot hook up the
fast jump to a slow (cosh-type) solution that reaches p = 0 for some émax < 0.

5.6 The validity of the quasi-stationary approach

For slowly-modulated two-pulse solutions (U, V') of (1.1), the key ingredients in the quasi-stationary
approach used throughout this paper are: (i) the decomposition into a part traveling to the right
and a part traveling to the left; (ii) the introduction of a traveling coordinate ¢ in which the speed
c is allowed to vary slowly in time (3.32), (5.20); and (iii) the assumption that the explicit time
derivative terms U/t and 0V/8t are small and hence can be neglected to leading order. As a
result of these assumptions, the equations (1.1) reduced to a system of two second-order ordinary
differential equations for u(¢) and v(£), in which the wave speed c(t) appeared as a slowly-varying
parameter. Also, the decomposition imposed boundary conditions at z = 0, and in turn both the
analytical and the geometrical approaches used these boundary conditions to determine the ODE
for ¢(t). In this subsection, the validity of this approach is analyzed.

It is essential to begin by observing that a smooth solution of the full PDE (1.1) must satisfy

liszO 66—kkU(.’L', t) = ]imzw %U(l‘, t)

for all £ > 0,k > 0. 5.21
limgo 25V (2,8) = im0 2V (z,¢ } oraltt=NE = (5.21)

Moreover, the reversibility symmetry of (1.1) implies that all odd derivatives at z = 0 vanish (see
Figure 1: the two-pulse solution is even as function of z). We now show, however, that the third-
order derivative of U at z = 0, as well as all odd higher-order spatial derivatives there, are small,
but nonzero, for the leading order approximation obtained from the quasi-stationary analysis. In
addition, we show that the reintroduction of the explicit (and higher-order) time derivative terms
remedies this defect and results in a smooth and consistent solution of the full PDE (1.1).

To leading order, the quasi-stationary approach implies that one assumes (U(z,t),V (z,t)) =
(u(&(t),v(& (1)) for z > 0, and (U(z,t),V(z,t)) = (u(&(t),v(&(t))) for z < 0, where the
traveling coordinates &, ;(t) are given by &.(t) = z — I'(t) = = — [{ ¢(s)ds (for = > 0) and &(t) =
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z + I'(¢t) (for z <0). In this context, the boundary conditions (5.21) for u become

a2m a2m
—agzmu(&)b}r(t) —aélgmu(&)k,:r(t),
82n+1 a2n+1
————u(&) e = — —r) =0, 5.22
a&gnﬂu(f e, =—r) 8£l2n+1u(£l)|§l—r(t) (5.22)
for all m,n > 0 and ¢t > 0, where only the conditions involving m,n = 0 were used in the

construction of the two-pulse solutions. Also, the conditions on v(&,;) may be ignored here, since
v and its derivatives are exponentially small near z = 0.

Now, it is a straightforward computation to check that

Fau(-T() =  Fu®) = —A(l = Unax())
’ ! (5.23)
seu(-T(#) = —Feu®) = c(®)AQ — Unax(t) #0,

where Unmax(t) = u(&r)le, =—r(r) = w(&1)le,=r (1), see (5.17). Thus, it follows immediately that, while
the first condition in (5.22) is satisfied for m = 1, there is a ‘jump’ in the third derivative at z =0
and the second condition in (5.22) is not satisfied for n = 1. Specifically, this jump is given by:

o’U A%D? 4

where we have used the proper scales for the spatial variable é’r,l (4.2) and the wave speed c (4.2), as
well as (4.5). Moreover, there are jumps in all of the higher-order odd derivatives at z = 0 as well.
Therefore, the leading order approximation obtained from the quasi-stationary analysis has a defect
in that it does not give a smooth solution of the PDE (1.1). Also, this defect is inherent in the
leading order approximation, since the pulses are determined up to all orders in the perturbation
expansion by the m,n = 0 boundary conditions (5.22) applied to the ODE (4.6), and hence there is
no ‘freedom’ left in the ODE reduction to satisfy the other boundary conditions with m > 0,n > 0.

To remedy this defect in the leading-order quasi-stationary approximation we consider the
higher-order the explicit time derivative terms. Therefore, we introduce a slow time variable:

3
A\ 2 383
== Dt = —t. 2
. ( B) VD= (5.25)
Also, we look for two-pulse solutions of (1.1) that depend on both &, (or &) and 7:
(U0, V() = (U(6 (1), 1), V(& (1), ) for @30 526

(U(:L‘, t)a V(:L‘, t)) = (U(gl(T)a T)a

The slow time variable 7 makes it explicit that (U, V) evolves on the same (slow) time scale as
¢ and Upax (see (5.17)), and we note that the choice (5.25) can also be obtained by assuming a

V(&(r),7)) for z<O0.

general scaling for 7 and then determining its ‘significant degeneration’, see [6].

Working explicitly on the domain z > 0 and with the right moving pulse (i.e., using £ = &),
the boundary condition at z = 0 is:

U(-T(r),7) € Upax(r), and Ug(~T(r),7) =0 forallr > 0. (5.27)

24



So, now, assuming that V(£(7),7) is negligible near z = 0 (like v(£(7)) in the ODE) and that the
Umax(7) is the same (to leading order) as the one determined by the ODE approach, one finds:

0 d
EU(& =-T,7)= EUmaX(T), (5.28)

see (5.20) and (5.17) for the explicit leading order expression, and a similar expression can be
obtained for the left moving pulse.

Remark 5.4. Of course, at this stage, one still has to check for consistency whether the explicit
dependence of U,V on 7 only has a higher order influence on the behavior of U(£(7),7) and and
V(&(7),7) compared to u({(7)) and v(&(7)) (for all z, not only near z = 0).

With the formula (5.28) in hand, one readily verifies that the first boundary condition in (5.22)
is still satisfied with m = 1. In particular, by evaluating all of the terms in the PDE for the
U components of the solutions (5.26) at & = —I'(¢) and at & = ['(¢) and by neglecting terms
involving V (&, 7), V;(&,7), and their derivatives with respect to ¢ which are all exponentially small
in a neighborhood of z = 0, we find:

0? 0? d

52U L) = 52U, 1) = Z- V() = AL = V(1)) (5.29)

Finally, by differentiating the PDE for U once with respect to £ and again neglecting exponen-
tially small terms, we deduce the desired result:
ok Fox
8—53U(_P(T)’T) = 8—§Z3U(F(T)’T) =0, (5.30)
since differentiation of the second condition in (5.27) with respect to 7 and use of the chain rule
reveals that Ug, - (—I'(7),7) = ¢(7)Ug,¢, (=I'(7),7), and a similar equality holds for the solution on
z < 0. Similarly, one shows that all of the higher order derivatives of (U(&.(7),7), V(& (7),T))
and (U(&(7),7),V(&(7),7)) are equal at « = 0, d.e., that (U(&;(7),7),V(&.,(7), 7)) satisfies the
boundary conditions (5.21), (5.22) for all m,n > 0. Therefore, with the higher-order terms included,
the quasi-stationary approximation (5.26) is smooth at z = 0 to all orders.

We conclude this section by showing that the improved quasi-stationary approximation is
consistent, i.e., we show that the introduction of the explicit temporal behavior does not in-
fluence the ODE methods of the previous sections to leading order. In particular, we scale
(U(E(7),7),V(E(T), 7)) into (TU(E(r),7),V(E(r),T)), precisely as in (4.2), and we use (4.5) and
(5.25) to write the PDE for (U, V) in the form of the ODE for (i, %) (4.6) associated to the leading
order quasi-stationary approximation (for ¢ = ¢,, i.e., z > 0):

~ A~

Ué = EP
155 = e|OV2- ED('E(T)P —&b (1 — §(Af + Dﬁf)]
€
Q¢ = -UV24V —&%(r)Q+ V. (5.31)

The invariant slow manifold M of the ODE (4.6) persists, along with its fast stable and unstable
manifolds, for this system. Moreover, since the manifolds W5 (M) and WY (M) intersect trans-
versely in the phase space of the original ODE, the smallness of the coefficients in front of the U,
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and the V. terms implies that they continue to intersect in (5.31). Hence, the geometric singular
perturbation analysis by which the traveling pulses are constructed is not influenced by these terms,
and the ‘PDE contributions’ U, and V; cannot have a leading order effect on the analysis. Note,
however, that the term DU, will have a leading order effect on the flow on M when D > O(1).
As a consequence, the improved quasi-stationary approach will (a priori) only be consistent when
we impose that D < 1. We will find in Section 7 that the stationary 1-pulses can only be stable
when D < 1. Since the modulated two-pulses solutions converge to two copies of these stationary
1-pulses (¢ — 0 if ¢ — 00), there is no reason to expect that the case D > O(1) will be relevant in
the analysis the two-pulse solutions.

Thus, the improved quasi-stationary approach is consistent: the leading order behavior of (U, V)
is given by the solution (u,v) determined by the ODE dynamics (and thus it follows for instance
that V(z,t) is exponentially small near z = 0) and the transition from z < 0 to z > 0 is smooth.
The validity of the improved quasi-stationary approximation can now be proved by a combination
of the transversality results of the geometric analysis (see [10], [14]) and by explicitly showing that
U, and V; are both O(1). We do not consider the details any further here.

6 Geometric constructions of two-pulse solutions: Cases Ib & Ila

6.1 Case Ib: eD/é = O(1): the boundary of the existence domain for the slowly
modulated waves

In this subsection, we study the existence of slowly-modulated two pulse solutions in Case Ib,
i.e., in that part of parameter space where é/e < 1 but eD/§ = O(1). We will find that the
slowly-modulated solutions exist only for eD/§ < 3, and that there exist critical constant values
of ¢ # ¢(t) for which ‘classical’ traveling waves exist. These values of ¢ will later be interpreted as
critical points of the ODE for ¢().

A modulated traveling wave corresponds to an orbit that is asymptotically close to £V for
¢ <« —1 and to £° for £ > 1. These orbits lie exponentially close to intersections Y NT, and £° N7}
with the same u-coordinates (since, u does not change (to leading order) after one circuit through
the fast field (5.9)). Note that T, and T, are still given by (5.11). Thus, combining (5.11) with
(4.13), we obtain:

A= Z[eu— E]’ X = Z[eu+ E] (6.1)

By (4.12), this immediately yields that either ¢ = 0 or u = 7 (recall that vy = eD/é = O(1)). The
first solution, ¢ = 0, corresponds to the stationary waves of Section 2, while the second solution,

c=*c(y) = :t%1 /% -1 (6.2)

At v = 3 the traveling waves collide in a pitchfork bifurcation. Below we will show that the slowly
modulated traveling waves also disappear in this pitchfork bifurcation.

u = -y, yields

The construction of the slowly modulated waves closely follows that of the previous subsections.
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The points (us,pr(u+)) at which £° and T intersect are given by:
17 - =
Uy = — [—)\ +4/X2 — Gc] , (6.3)

where the condition A2 — 6¢ > 0 again gives an upper bound ¢pmay on ¢ (£° and Ty are tangent at
€ = Cmax)- Again, only the lower intersection point (u_,pr(u_)) can be the basis of the construction
of the modulated wave. This point determines the touch down point of an orbit that takes off at
the point (u_,pr(u_)), where, by (5.11)

1 6 p
pr(u_) = Ee(cu, — u__) = —e1/A2 — 6¢c

The final segment of the singular solution we need is the left slow orbit segment on M given by
the solution of (4.7) in the case that eD/d = ~y. Its general solution, in this case, is given by:

< zgg ) = Aes‘ﬁ”rg ( 55\1+ ) +Be€5;\‘§ < 65\1_ ) + ( 665 ) . (6.4)

Imposing the initial condition (u(0),p(0)) = (u—,pr(u_)) yields, to leading order:

Ao — /A2 —6¢ A — /A2 —6c
A=S Y , B=-—S [ VT . (6.5)
5 A — A 5 A — A

We proceed by determining the ‘time’ £ = £ax at which we have p(§) = 0 (the Neumann boundary
condition on the full solution at z = 0, see Figures 1 and 6). This yields:

-1 Ay — \/5\2_ — bc
émax = In ( i ) s (6.6)
2e04/1 + %7202

and one readily verifies that when v — 0 this reduces to the value of fmax calculated in (4.31) of

5\_1_(5\_ - AQ_ - 66)

subsection 5.3 (where v <« 1). However, in this more general case, we need to impose an extra
condition on ¢, since it is not a priori clear that &,,,x exists. In other words, the condition on ¢
follows from the geometrical observation that the slow segment on M through (u_,pr(u_)) only
intersects the {p = 0}-axis when (u_,pr.(u_)) lies between £V and £° (see Figure 6). From (4.12)
and (6.6) we see that only one term in the natural log expression can change sign. Thus, the

existence of &;,,x 1S equivalent to
Ay — /A2 —6c>0,

—eo(7) < oft) < cel). (6.7)

As a consequence, there are no slowly modulated traveling waves for v > 3, (eD/é§ > 3). In Figure

or, with (6.2):

3, the line labeled Ctw marks the bifurcation in which these traveling waves are created. It is given
by 8 = (a/3) + (1/3), where we recall that for the purposes of Figure 3, A = D® and B = D?.

Assuming that (6.7) holds we obtain the desired integral equation for ¢(¢) by equating the above
expression for &y, with that of the distance traveled by the pulse (given in (5.18)):

A e I
tn :\+(5\__\/ﬂ)] = 76 ) 1—I—470 /0 é(s)ds, (6.8)
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where we have reintroduced the ‘hats’ on the ¢(t) = &(t) for clarity. Note that Ay = Ay (&(t)) (4.12):
it is possible to rewrite this equation into a differential equation for é(t) (by differentiation, as in
subsection 5.4), but in this case the expression will be so complicated that it becomes prohibitive
to gain additional insight in the behavior of ¢ as function of .

Instead, we confine ourselves to answering two standard questions for autonomous first order
ODEs: what are the critical points? and since the stable critical points are the only possible
attractors, which are stable? Since the right hand side of (6.8) becomes unbounded as é(t) — ¢,

a constant, it follows that the critical points are given by 5\4_ — \/5\27 — 6¢ = 0. Thus, once again,
¢o = 0, £cc(y). Inserting é = ¢ < 1 in (6.8) yields the ‘linearization’

In [%(3 — 'y)&] = 2462 /Ot &(s)ds.

Thus, by differentiation, ¢y = 0 is stable, and it follows that as long as the slowly modulated waves
exist (i.e. v < 3), they will evolve towards the stationary wave as t — co. Moreover, the other two
critical points, ¢y = +c., are unstable.

Remark 6.1. The modulated two-pulse solutions constructed here for Case Ib can also be found
using the perturbation analysis of Section 3. Recall that in Case Ib, B3/2\/D/A =d/e < 1 and
c%(t) = O(A) (i.e. by (4.2) and (4.5) v = VAD/B3? = O(1)). Hence, one needs the full formulae
(3.8), (3.23) and (3.28) for u4, (6/85)(u/u0)520, and (ug)_, respectively, where (ug)_ is still small.
Using these in (3.25), one derives an uninsightful implicit relation for the slowly-varying wave speed
¢(t). In taking lim;_, o ¢(t) = ¢, and hence also I' — 0o, one finds nonzero, asymptotically constant
wave speeds. In particular, formula (3.23) yields: (8/85)(u/u0)é:0 = (3BD/u?)(c/V/c* + 4A).
Taking the same limit in (3.28) yields: (ug)_ ~ 6B%/2,/(D/c2 + 4A). Hence, by (3.25), one gets the
leading order relation ¢ = (¢v/D/6B%?)\/c2 + 4A. Therefore, either ¢ = 0 or ¢ = +2v/A % -1,

to leading order, as long as v+ AD/ B3/2 is strictly O(1) and < 3. The zero solution is the stationary
one-pulse (Section 2), and the nonzero solutions correspond to left and right traveling waves.

Remark 6.2. Note that the existence result for traveling waves for eD/é = O(1), or by (4.5)
AD = O(B?), does not contradict the non-existence result for traveling waves in [2]: there A, B
and D are scaled such that AD < B3, see Remark 2.2. We refer to [19] for the construction of
different types of traveling waves.

6.2 Case IlIa: Slowly-modulated two pulse solutions when §/e = O(1)

In this subsection, we establish the existence of a pair of slowly-modulated two pulse solutions in
Case Ila, i.e., when §/e = O(1) and eD/§ < 1. We employ the same method as used in Section 5
and in subsection 6.1, stating only the essential steps. As in the previous section we will find that
the modulated two-pulse solutions only exist up to a critical value. We define a new, O(1) parameter
o by 6 = oe and find that the modulated pulse solutions can only exist up to o = 1/12. At this
critical value the pulse solutions merge in a homoclinic saddle node bifurcation. Geometrically this
means that, in M, £° and Ty are tangent at this value of o (with ¢ = 0); £°NTy = () when o > 1/12
so that there can neither be slowly modulated nor stationary pulse solutions for o > 1/12. See the

curve labeled Cgy in Figure 3, which is determined by g = (a/3) — (1/3), since d/e = O(1) here,
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and we recall that we set A = D* and B = D? for the purposes of Figure 3. This saddle node
bifurcation has already been studied for the stationary pulses in subsection 4.3 of [2].

On the slow manifold M, the saddle fixed point is now at (u = 1/o,p = 0), and its restricted

unstable and stable manifolds are given by:

v p = Fe[l — ou] + h.o.t. (6.9)

Therefore, the term linear in u is also of leading order, whereas it was of higher order in Cases Ia

and Ib. Next, the zero set of AK is given by the line (5.7) here, just as it was in subsection 5.2,

the jump in p during the fast field is also determined by (5.8), and finally the take off and touch
down curves are given by (5.11) in this case, as well, all to leading order.

Due to the difference in the position of the line £° between this case and those encountered in
Cases Ia and Ib, the points (u+,pr(u+)) on M at which £9 intersects Ty are located at different
points from that (4.25) given in subsection 5.3:

1++/1—6c—120

= . 6.10
i c+ 20 ( )

Hence, (6.10) reveals that, in order for the intersection points to exist, it must be that:
1—6¢c—120 > 0. (6.11)

Otherwise, 5 and T are tangent when 1 — 6c— 120 = 0, and there are no intersection points when
this expression is negative. Moreover, (6.10) identifies the maximum wave speed c(t) as:

Cmax = = — 20, (6.12)

and, consequently, the interval 0 < o < 1/12 corresponds to the interval in which the slowly-
modulated two pulse solutions exist with positive wave speed. Finally, the lower intersection point
(u—,pr(u_)) exhibits the following asymptotics:

1-vi1-120 V21_12U as ¢— 0T,
uU_ —> 7

6 as € — Cmax-

(6.13)

Having obtained the necessary information about the lower intersection point, we now proceed
to piece together the right slow, fast, and left slow segments of the instantaneous (frozen ¢(t)) pulse
solution on the domain = > 0, following the same steps as in subsection 5.3. Inserting the above
formula (6.10) for u_ into the equation (4.14) for the line £ yields:

bl

c+ 20

where we define H = /1T — 6¢ — 120 in analogy with the expression H in subsection 5.3. For
simplifying the further computations, we note that ¢ + 20 = (1 — H?)/6. Next, we identify the
alpha-limit set of the reduced fast homoclinic pulse, which is the point (u_,pr(u_)) on T,, where

pulus) = pafu-) = Ap(u-) = —¢ (f + == ). (6.14)
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since Ap(u_) = 6e/u_. This point on the take off curve lies on a hyperbolic cosine solution on M
inside the triangle formed by S, ¢V, ¢° and the p—axis. The explicit form of the solution is

o1 : :
w(é) = = + Ae 7 4 Be= ¢,
g

~ ~

Imposing (u(¢ = 0),p(§ =0)) = (u_,pr(u_)), as before, we find to leading order:

o 1+H

Therefore, to leading order the slow solution is:

u(é) = % [2 — (1 + H)e ot 4 (H —1+ 11?;{) eezaé]
b€ = S ar et (o1 ) o], (6.15)

Hence, the desired time of flight along the slow manifold M for the slow segment to reach the
u—axis, where p = 0 and u is a maximum, is given explicitly by:

: 1 | 1—H 120 (6.16)
= n ~ — =~ . .
T 220 \1+H (14 H)?

The second expression for this same time of flight comes, just as in subsection 5.5, from recalling
the initial setup of the traveling wave variable: £ =z — fg ¢(s)ds and the subsequently-introduced
scalings, so that at z = 0, we have

_etg2 gt

émax = D

é(s)ds. (6.17)

Therefore, upon equating these two expressions (6.16) and (6.17) for {max, we have the desired
(implicit) equation that determines é(t):

1—-H?>—120 —2¢853
1 = = ¢(s)ds. 1
n ( 0102 > 5 A é(s)ds (6.18)

Differentiating both sides of (6.18) with respect to ¢ (and doing a little algebra) yields:

de  —2¢%0° , ( c+20 )
— = V1 —6¢— 120 . 6.19
dt D c+20v1—6¢—120 ( )

We conclude that the additional terms in (6.19) compared to (5.20) do not influence the qualitative
behavior of é(¢): there is an upper bound on é that is approached as ¢t becomes small and é — 0
monotonically (as 1/t) when ¢ — co. Moreover, one can recover (5.20) from (6.19) by replacing o
with §/e in (6.19) and taking the limit /¢ < 1.

Remark 6.3. As mentioned, in Case Ila, unlike in cases Ia or Ib, the second point (u,pr(u4))
at which £° and T} intersect can also give rise to two-pulse orbits. We restrict attention to the
triangle in the first quadrant of the ¢ — o plane bounded above by ¢ = —20 + (1/6). From
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(6.10) and the definition of H, u; = 6/(1 — H), one finds: pg(u,) = €[l — (60/1 — H)] and also
pr(uy) = pr(uy) — (6e/uy) = e[H — (60/1— H)]. Clearly, there is now a possibility to have pz, < 0.
This condition is equivalent to 6(c+ )2 — ¢ > 0. Then, by direct calculation, one verifies that there
is a subset of the triangle in which this condition holds, namely it holds for all (¢,o) pairs with
1/24 < 0 < 1/12, and when 0 < o < 1/24 it holds for those (c¢,o) pairs in which either ¢ > ¢, or

¢ < c_, where cy(0) = (1/12) — o £+ (1/12)y/1 — 240.

7 Stability analysis for slowly-modulated two pulse solutions

In this section, we carry out a formal linear stability analysis for the slowly-modulated two pulse
solutions constructed in the previous sections. In particular, we determine whether or not there
exist directions along which infinitesimal perturbations of the quasi-stationary two-pulse solutions
grow exponentially. Of course, the use of the quasi-stationary approximation imposes a restriction
on the instabilities one can detect with the approach used here, namely we can only check for
disturbances that grow on a time scale that is shorter than that corresponding to the rate of
change of Uy, V4, and the rate of change of the wave speed in time (see subsection 5.6). We follow
the ideas developed in [3] for the stability analysis of the stationary 1-pulse patterns of (1.1) which
was done there in the special scaling of [2] (see Remark 2.2). We refer to [3] for some of the technical
and computational details of the ‘NLEP method’. The validity of this method has been established
by a stability index analysis in [4], and it has been shown in [5] that this method can be applied to
a large class of reaction-diffusion equations.

This section is organized as follows. In subsection 7.1, we state the scaled fourth-order eigenvalue
problem. In subsection 7.2, we treat Case I by reducing the full problem to a second-order nonlocal
eigenvalue problem and analyzing this reduced system. Cases Ila is discussed in subsection 7.3;
the details of the analysis are given in Appendix B.

7.1 The scaled fourth-order eigenvalue problem

The Gray-Scott model (1.1) written in the unscaled modulated traveling wave variable is:
Uy = Uge + c(t)Ue — UV + A(1 - U), V; = DV + ¢(t)Ve + UV? — BV. (7.1)

Let (ug(&),v0(€)), denote a quasi-stationary, slowly-modulated two pulse solution, where the c(t)
dependence is implicit. Stability with respect to small perturbations is determined by setting

U(&,1) = uo(€) + u(&)e™ and V(1) =vo(¢) +v(&)e™, (7:2)

and then by studying the linearized eigenvalue problem:
AU = uge + cug — vau — 2ugvgy — Au, Av = Duge + cve + vau + 2ugvgv — Bu. (7.3)
As was shown in [3] for the stability of the stationary solutions (namely in the ¢ = 0 case of

(7.3)), the significant scaling of the variables (and here also of the wave speed) in this eigenvalue
problem is the same as that used in the existence analysis. Recalling (4.2), let:

g:@a u(s)=B3/2\/§a<é), o0 =i, =i
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and scale ug and vy as in (4.2), so the eigenvalue problem (7.3) becomes:

N A [r.5. NN 1. An

i = I [(vgu + 2u0vov) + BD (1 + Z)\) U — Dcué]

. 96 s 1 AT, . A 75
Ugg | 2Uo%0 — (14 5 ) 0= —0pU — S5C0 (7.5)

Finally, we scale the eigenvalue parameter as
A = B, (7.6)

see the Appendix of [3], and, in the stability analysis, we again use: ¢ = vVA/B < 1 and § =
VBD « 1 (4.5) with §/e < O(1). Therefore, dropping hats, we arrive at the final form of the

eigenvalue problem to be studied in this section:

uge = g2 (vgu + 2u01)0fu) +e26%u + DAu — 52Dcu§
vee + [2uovg — (14 N)]v = —vgu — 5201)5. (7.7)

7.2 Transformation of the eigenvalue problem to a second-order NLEP

In this subsection, we reduce the full fourth-order eigenvalue problem (7.7) to a second-order
nonlocal eigenvalue problem (NLEP). We treat Case Ia in detail in this subsection and discuss
Case IIa in subsection 7.3 (and Appendix B). This analysis extends to the ¢(t) > 0 case the
procedure for deriving an NLEP previously introduced in [3] for the ¢ = 0 case. In this section we
will assume that D < 1; as a consequence we will find that the first derivative terms with factors
of ¢(t) in them are of higher order. This simplifies the analysis considerably. The case D > O(1)
is discussed in Remark 7.2.

The essence of the procedure for deriving the NLEP is to exploit the fast-slow structure of the
underlying quasi-stationary solution to determine the fast-slow structure of the eigenfunctions. In
particular, we recall that vg(£) is exponentially small in the slow regimes. Hence, the first equation
in (7.7) reduces to:

uge = €26%u + Du — €? Deug + expo. small. (7.8)

Therefore, the u component of the eigenfunction consists of slow segments along which u undergoes
slow exponential decay as |z| — oo, and there is also a jump discontinuity in u¢ across £ = 0, since
there is a difference between the slopes of the right and left slow solutions as |£| approaches zero.
We label this jump discontinuity in the slow field (expressed in the scaled variables) by A,ue, and
it plays an essential role, as we saw in [3].

To determine the leading order behavior of A ug, we analyze the terms in the slow u equation
(7.8). The third term on the right is always subdominant to the second, because ¢ < 1. The
dominant term is then either the second or the first term, or both, depending on whether one is in:

2 52
: 2¢2 . 22 . €
Regimel : €6 < D, Regime2: ¢“6“ > D, or Regime3: o = O(1),

Remark 7.1. Tt must be noted that e262 = AD/B. In other words these three regimes are more
simply defined by: Regime 1: A < B; Regime 2: A > B; and, Regime 3: A/B = O(1).
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Next, we recall that the fast regime is a narrow interval about £ = 0 and, in this interval, vy(¢)
possesses a pulse. Hence, to leading order in the fast regime uge = e2(v3u + 2ugvgv) + DAu, which
implies that the u component of the eigenfunction is constant to leading order for ¢ <« 1 and for
small D. We label this constant k. Moreover, the derivative us has a jump discontinuity:

Agug = [ (wof +2uo000) d¢ + DX [ udé + hot. (7.9)

Here, we note that the limits have been obtained from the appropriate (exact) e— and §—dependent
times at which the pulse enters and exits the fast field and then sending € and § — 0. Hence, the
integral of the constant has a finite value (see [3, 4]).

Finally, the transformation to the NLEP is completed by determining the constant x. This
is now done on a regime-by-regime basis for different regimes in the e — § — D parameter space.
We will match the jump discontinuities Asu, and Ajug, as computed in the slow and fast fields,
respectively, and obtain formulae for . Different terms will be of leading order in different regimes.

Remark 7.2. The stability of the stationary 1-pulse patterns (see Section 2) follows immediately
from the results in this section by setting ¢ = 0. As a consequence, we do not have to assume that
D <« 1 when studying these 1-pulse patterns. The case D > O(1) is a subcase of Regime 1. We
will find in subsection 7.2.1 that the pulse patterns are always unstable for €2 < /D, i.e. there
cannot be stable pulse solutions when D > O(1) (in the parameter regime studied in this paper, see
remark 1.1). By construction, the modulated two-pulse solutions evolve toward 2 copies of these
stationary 1-pulse solutions as t — oo. Therefore, it is only of limited relevance to consider the
case D > O(1) for the modulated two-pulse patterns, since these solutions cannot be stable (at
least not for ¢ large), see also subsection 5.6.

7.2.1 Regime 1

In this subsection, we treat Regime 1 in detail. Since €262 < D, equation (7.8) implies that the
left and right slow segments of u are given (in terms of the fast variable) to leading order by:

u(f) = ketV PN, (7.10)
Hence, between the left and right slow solutions, the jump discontinuity in u¢ is to leading order:
Agug = lim ug — lim ug = =2V DAk, (7.11)

£—0- &0t
In order to match this slow jump discontinuity to the fast jump discontinuity A jue given by (7.9),
we first assume €2 > D, so that the first term in the right hand side of (7.9) is the dominant term.
This is done largely to facilitate the analysis, and the complementary regime (2/D < O(1)) will

be treated separately at the end of this subsection. The explicit leading order matching condition
needed to determine k is then readily at hand:

—2V DXk = €2 |:KZ /_0:0 vadE + 2ug /_0:0 ’U()’Udé-:| . (7.12)

Since the scaling included the assumption A = O(1), there are three subregimes to consider:

la:e2 < VD, 1b:e2=0(D), 1lc:e2>VD. (7.13)
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In subregime la, the matching condition (7.12) directly yields k = O(e?/v/D) < 1, i.e. the
constant value of u to leading order during the fast jump is asymptotically small. Hence, the
coupling of the slow field to the fast field is weak (i.e., of higher order), and the leading order fast
eigenvalue problem is precisely that associated to a single isolated fast homoclinic pulse:

vge + [2ugvg — (1 + A)]v =0,

which has a (scaled) positive eigenvalue at A = 5/4. Therefore, since the higher order terms will
only displace this eigenvalue by a small amount, there exists an eigendirection along which small
perturbations of the slowly-modulated two-pulse solution lead to exponential growth, and one may
say that these solutions are formally unstable in subregime 1a.

In subregime 1b, where €2 = O(v/D), we introduce the new O(1) parameter

vD
and remark that d = v/DB?/A in the original parameters. All of the terms in the leading order
matching condition (7.12) are now retained, and one finds:

3 9]
K= ——— vo(&)v(&)dE, 7.15
s [ o€ (7.19
Here we have again used [ vZ(£)d¢ = 6/u?. Clearly, this value of « is of O(1), since d, ug, and A
are O(1). Hence, by replacing the variable u with its leading order constant value x over the fast
field on the right hand side of the second equation in (7.7), by neglecting the higher order cv, term,
and by recalling k from (7.15), we find that the leading order eigenvalue problem becomes:

vee + [2ugvo — (1 + A)]v = —Kud. (7.16)

This turns out to be exactly the same NLEP analyzed in case IT of subsection 5.2 in [3] (8 = 1/2),
that is the significant scaling in which the solutions gain stability through a Hopf bifurcation (this
is not surprising since the parameters A, B, D are also related by €2 = A/B? = O(v/D) for 8 =1/2
in [3]). To make this correspondence precise, we simplify the notation in the expression for u_,
which we recall from (5.12) is: ug = L) (1 +4/1— GC(t)) . We introduce a new parameter £ = £(t)

c(t
via: u_ = 34. This new parameter will help greatly to keep the algebra to a minimum. Explicitly,
1
0= (1 —Vi— 6c) . (7.17)
3¢

Hence, we know £ € (1,2) for all 0 < ¢(t) < 1/6, since £ -+ 1 as ¢ — 0, £ — 2 as ¢ — cmax = 1/6,
and £ is a monotonically increasing function of ¢ on (0,1/6). (Also, d¢/dc ~ 3/2 as ¢ — 0 and
dt/dc — +o0 as ¢ — 1/6.)

Next, we follow the procedure used in Section 5 in [3], and change the independent and depen-

dent variables and parameters in the NLEP (7.16). Let ¢t = £¢/2, y(t) = v(¢) and

9

P? = 4(1+ ) d C=—— .
(1+2) on 1 + 3de2/x

(7.18)
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The NLEP (7.16) then becomes:

J+ [1256Ch2(t) - P2] y = Csech®(t) / y(t)sech?(t)dt, (7.19)
where " = d/dt, and we used vg(¢) = (3/2ug)sech?(¢/2) and ug = u_ = 3. Inverting the formula
for C' we get:

d2(t) = - \/% [ c (f;) - 1] , (7.20)

where C(P) is an explicitly known expression in terms of integrals over hypergeometric functions,
see subsection 5.1 in [3] for the derivation of C(P). This formula should be interpreted as follows:
an eigenvalue A of (7.7) corresponds by (7.18) to a solution P of (7.20). Note that this implies that
A = A(t), i.e. the eigenvalues X of the linearized stability problem (7.7) vary on the same slow time
scale 7 (5.25) as the speed c.

Formula (7.20) is identical to formula (5.15) from [3] with a = 0 = m = 1 and b = d¢%(t).
Therefore, it follows from the hypergeometric functions analysis in [3] (see (5.16) and Figure 5 in
[3]) that there are no eigenvalues A with Re(A) > 0 when

d?(t) < dg =~ (0.66)? ~ 0.44 (7.21)

Since £(t) decreases monotonically from 2 to 1 we can conclude that the modulated two-pulse
solutions are formally stable for all ¢ when

d
d< TH ~0.11, i.e. D <0.012..e2 or DB* < 0.012...A (7.22)

(by (7.14), (4.5)). Moreover, all modulated two pulse solutions (including the limiting stationary
1-pulse solutions) are unstable when

d>dyg ~0.44, i.e. D>0.19..> or DB*> 0.19..A. (7.23)

For 0.11 < d < 0.44, i.e. 0.012e2 < D < 0.19¢2, the situation is more ‘dynamic’. We know from
[3] that there are no eigenvalues A(t) with Re(\(t)) > 0 when d¢?(t) < dg (7.21), moreover there
are 2 unstable eigenvalues when d¢%(t) > dg. Therefore, we define for a given d € (dy/4,dy) =~
(0.11,0.44) a critical value of £, 1 < £, < 2 such that d¢2 = dy =~ 0.44. The modulated two pulse
solution is then stable for all ¢t > ¢, where t, is defined by £(t,) = £, since both eigenvalues have
crossed the imaginary axis at ¢t = t,. Equivalently, it is unstable for ¢ < t,. Note that this implies
that the limiting solutions, the stationary 1-pulse solutions, are stable for all d < dgy. However,
a pair of two pulse solutions will only be stable (i.e., numerically observable) for d € (dg/4,dy)
when the distance between the two pulses is ‘large enough’.

The bifurcation at which the 2 eigenvalues cross the imaginary axis is a Hopf bifurcation: the
eigenvalues are a complex conjugate pair and purely imaginary at the bifurcation. These two
eigenvalues merge and become real as d, or df2, is increased, see again [3] for explicit calculations.
In the limit d > 1, i.e. in the transition from Regime 1b to Regime 1a, one of these eigenvalues
will approach 5/4, the other decreases towards 0. Thus, we have recovered the instability result of
Regime 1la and deduced the existence of a second unstable eigenvalue near 0 in this case. Using
(7.20) we can write down an explicit approximation for this eigenvalue, using the fact that C(P) —
9/2 as P — 2,i.e. A — 0 by (7.18), see [3]: for d > 1

>

A(E) = gd%(t) <1or D)= Ef(t) ‘<1 (7.24)

N
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(at leading order). This eigenvalue will yield the instability result in the case D > &2 at the end of
this subsection.

Next, we turn to subregime 1c. The stability result of Regime 1b (7.22) can be extended into
this regime in a natural fashion, since d < dy/4 in Regime 1c. Thus, since VD < 2 we can take
the limit d — 0 in (7.15) and derive:

3
—uy [

2w, (7.25)

K =

i.e., the left hand side of (7.12), the slow jump in ug, has become of higher order compared to the
right hand side, the fast jump in ug. It follows from the analysis in [3] that both eigenvalues that
crossed the imaginary axis in Regime 1b remain at the stable side of this axis in this limit. In fact,
with this value of k, the NLEP (7.16) is the same as that derived in case III of subsection 5.2 in [3],
namely in the regime where the parameter 3 there satisfies 1/2 < 8 < 1. Hence, we may conclude
directly that all of the slowly-modulated two pulse solutions are formally stable with respect to
infinitesimal perturbations in this subregime.

Finally, in Regime 1, we skipped the case D > O(e?), which includes the case D > O(1). Here,
we do get the same instability result as in subregime 1a. However, the instability is not caused
by the unstable eigenvalue found near 5/4. This eigenvalue cannot exist when D > ¢? since then
the u-component of the eigenvalue problem (7.7) is given by ug = DAu at leading order, both in
the fast field and in the slow field. Therefore, there are for A = O(1) no eigenfunctions that are
bounded as |z| — oo. Nevertheless, the eigenvalue of O(¢*/D) <« 1 with A < 1, (7.24), is still
there. Its construction is not influenced by the fact that D >> ¢? since the term DAu is once again
only of higher order (in the fast field) for a A of this magnitude. We may conclude that the unstable
eigenvalue (7.24) exists for all D > O(e?) and thus that the slowly-modulating two pulse solutions
are also formally unstable in this part of Regime 1.

7.2.2 Regime 2

In this regime, D < €262, so that the first equation (7.8) is to leading order Uge = €262u. Hence,
the left and right slow segments (expressed in terms of the fast variable) are to leading order
u(€) = ke and the leading order jump discontinuity in ug at © = 0 between them is:

Agug = —2¢ebk. (7.26)

The corresponding jump discontinuity at = 0 in the fast field is given by the first term in (7.9):
Afu,g = 82/ (FL’U% + 2UOU()U) dg. (727)

—00
Finally, matching these leading order jump discontinuities, i.e., equating (7.26) and (7.27), and
recalling 0 /e < 1, we recover (7.25). This is not surprising since, as in Regime 1c: Ague < A pug.

Thus, like in Regime 1c¢, we can immediate conclude that the slowly-modulating two pulse solutions
are linearly stable in Regime 2 by refering to the analysis for Case III in subsection 5.3 of [3].
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7.2.3 Regime 3

In this final regime, €262/D = O(1), and we introduce the new O(1) parameter s = £262/D. The
slow eigenvalue problem (7.8) becomes to leading order uge = D(s + A)u, and hence the relevant
jump discontinuity in the slow field is

Asug = —24/D(s + A)k. (7.28)

The jump in u¢ in the fast field is still given by (7.9). Therefore, the matching condition is:

—24/D(s+ Nk = 52/ (uvg + 2u0vov) d¢ + D)\/ ud{ + h.o.t. (7.29)

Now, there are three subregimes as we saw in Regime 1, and the analysis of these proceeds in the
same fashion. In fact, the results from regime 1 may be applied directly here after taking into
account the shift in the spectrum by the parameter-dependent amount s.

Remark 7.3. Although we divided the parameter space up into a number of (sub)regimes, there is
only one in which there is a transition from stable to unstable, subregime 1b, where £ = O(v/D).
This relation determines the curve Cyopr in Figure 3.

7.3 Stability in Case Ila

In this subsection we will only give a brief sketch of the stability properties, the details are presented
in Appendix B.

There are two important subregimes in saddle-node bifurcation Case IIa, where ¢ = O(¢)
(subsection 6.2): e < \/E and €2 > \/E Refering to Figure 3 we see that the line Cgy is to the
right of Cropr in the first regime, while Cgy is to the left of Chopr in the second regime (note that
both A > 1 and B > 1 here). Therefore, it is a rather straightforward extension of the analysis
in the previous subsection, to show that in the first regime all pulse solutions are unstable with
respect to perturbations associated to a pair of complex conjugate eigenvalues with Re(A) > 0.

However, in the second regime, there are no complex eigenvalues, as in Regimes 1c and 2 above.
Yet, the stability analysis has become somewhat more involved, due to the more complicated
structure of the pulse solutions themselves. In Appendix B we show that the modulated pulse
solution constructed in subsection 6.2 are stable for 0 = §/¢ below a certain critical value that
varies slowly in time (and that can be determined explicitly). The situation here is similar to that
in the transition case dg/4 < d < dg of subregime 1b: the pulse solutions all become stable after
a certain time. The stationary 1-pulse solution is stable as long as it exists (for all 0 < 1/12). The
bifurcation is truly a saddle-node bifurcation, since it can be shown that the other modulating two
pulse pattern and its stationary 1-pulse limit (Remark 6.3) are always unstable.

Remark 7.4. We did not consider the stability of the modulating two pulse solutions or of the
traveling waves in Case Ib. The NLEP method can be used to studied this, although one should
not underestimate the necessary computations.
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8 Numerical simulations and discussion

8.1 The essential role of the slowly-varying U(z,t)

The existence and stability results presented in this work naturally lead to some questions and
observations about various aspects of pulse splitting. We focus here on those in which the slow
variation of U(z,t) plays a central role.

The stability analysis of Section 7 shows that there is a large domain in the parameter space
in which both the stationary 1l-pulse patterns of Section 2 (and [2]) and the slowly modulated
two-pulse solutions are stable, see Figure 3. Part of the boundary of this domain is given by a
line A = O(B?), and it is precisely when this line Cspr1T is crossed that the one-pusle patterns no
longer exist (see Section 6 of [3]) and that the self-replication process starts [3]. In particular, it
can be shown that there is a critical value of €, e4pt, so that for § < 1 there exists a stationary
1-pulse homoclinic solution to (1.1) for all € < egii¢. This result was obtained in Section 6 of [3]
using topological shooting arguments in the special choice for the parameters A, B, D as given in
Remarks 2.2, 3.1. Since the scaled ODE (6.1) in [3] has the same essential structure as the ODE
(4.6) here in so far as the topological shooting is concerned, a duplication of the arguments given
in [3] shows that the stationary homoclinic one-pulse solution of (4.6) cannot exist for

. 2 2
€ > Egplit i.e., A> esplitB .

In the terminology of [3], the solution ‘disappears,” and numerically, one observes the start of the
self-replication process for € > eqpii¢. In addition, it was found in [24, 23, 2, 25, 3, 21, 19] that there
are stable periodic multi-pulse patterns that appear as end products of the self-replicating process.
These solutions were constructed in [2]: their structure in phase space is very similar to that of
the homoclinic pattern: the solution is close to the slow manifold except for a homoclinic ‘jump’
through the fast field (see Figure 2 in [2]).

These observations raise two questions: why do (some of) the periodic multi-pulse patterns still
exist for € > eqp1;1? and, why does the pair of outward modulating pulses still exist for € > egpt
(as can be observed in the numerical simulations, see Figure 2)? After all, the construction of
both of these types of solutions is based on the same asymptotic method that breaks down for the
stationary 1-pulse at & = egpjs-

The formal answer to both these questions can be found by examining the magnitude and
dynamics of U(z,t) in the region where V(z,t) has a pulse. For both of these types of solutions,
the value of U in the pulse intervals is significantly larger than that of the stationary 1-pulse. For
the traveling pulses this can be seen, in terms of the scalings (4.2) U(z,t) = (up)_ = (6/e)u_ in a
pulse interval, from (3.29) in Section 3 or from (5.12) in Section 5, as follows: whereas one finds
u_ = 6 at the initial stage of the splitting process (where ¢ is near its maximum 1/6), one sees that
u_ = 3 for the stationary pulse (¢ = 0). Similarly, for the multi-pulse spatially periodic patterns,
formula (2.9) in [3] shows that the value of u_ is much larger than that of the stationary one-pulse.

What is the importance of this fact that the U values are significantly larger? and correspond-
ingly that the amplitudes V' are smaller (see (2.2), (3.6), (5.2))? Observe that in the (u, p)-equations
of (4.6) ii = €2[uv? + h.o.t. ], the term with v depends on u. As in Sections 2 and 3 (see (2.2),
(3.6)), one can reexpress this u dependence (to leading order) by introducing o: v(§) = 4(¢)/u;
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where # is now a solution of & = —#2 + 9, that is independent of u to leading order (see also (3.16)).
Hence, the leading order equation is:
€

2
i = —[6® + ho.t. ],
u

and the leading order influence of u occurs through the factor £2/u, which may be labeled as an
‘effective’ value of . This implies that those solutions having a higher value of u during the pulse
interval are really solutions of a system that has a lower effective . Interpreting this for modulating
two-pulse solutions, we see that they can exist in the regime where the actual € is greater than egy;;
as long as the value of U is large enough so that the effective ¢ lies below egpji¢. In this way, this
solution can exist in a regime where the stationary one-pulse no longer does. A similar argument
can be made for the multi-pulse solutions. This explains heuristically the existence of both the
pairs of traveling pulse solutions and the singular periodic multi-pulse solutions, respectively, in
the regime € > eqp)ir, Wwhere the stationary one-pulse no longer exists.

The same heuristic extrapolations of the asymptotic analysis explain why two slowly-modulating
pulses traveling apart from each other split again after long enough time (on a large enough interval).
Once again the value of U on intervals in which V' has a pulse is the key to understanding this:
¢(t) decreases monotonically to 0, and therefore, by (5.12), u_ decreases slowly from 6 to 3, the
value of the stationary pulse. Thus, the ‘effective ¢’ has increased to above egp,1i;. Moreover, for the
modulating two-pulses this also yields a certain time Tgp;; corresponding to when the effective value
of € crosses through egpit (i.e., the value of u_ becomes small enough), and both traveling pulses
undergo splitting. The time Tgpj;; will depend on Ae = & —egp5t, and Ty decreases as Ae increases,
as can be checked by numerical simulations. However, it should be noted that simulations of this
mechanism are highly sensitive to boundary effects, and one must be sure to work on a sufficiently
large domain (see subsection 8.3).

The above arguments are far from rigorous. The most important obstacle is the fact that g is
not an asymptotically small value. On the contrary, it is a well-defined O(1) number, see Table 1 in
[3]. Thus, we cannot expect that ‘u is constant to leading order’ or that v does not depend on u to
leading order’ in ‘the fast field”: this terminology is only applicable when ¢ is asymptotically small
and one can do a perturbation analysis. Nevertheless, the existence of an eq,);; value for slowly-
modulating two-pulse solutions can be made rigorous by employing the same topological shooting
method as was established in [3] for the stationary one-pulse solutions. We do not consider this in
any more detail in this paper.

In addition, we did not pay any attention to the ‘leading order’ perturbations of O(g?) in the
v-equation, although one can argue on formal grounds that these ‘perturbations’ do not give a net
contribution.

On a bounded interval, the splitting process will come to a halt as soon as the outward traveling
pulses approach the boundary of the domain [24, 23, 2, 25, 3, 21, 19]. The solution will settle in
a periodic multi-pulse pattern that has a ‘large enough’ value of U in the V-pulses. It has been
checked in [3] that this multi-pulse pattern will also split as soon as € is increased above a certain
critical value, which depends monotonically on the wave length, ¢.e. the distance between the pulses
of the pattern. See Table 3 in [3]. This is consistent with the heuristic arguments: the effective
value of € also increases when ¢ increases.

Finally, the reduction of the effective value of £ cannot be larger than O(1) x e. Therefore,
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one cannot expect to see the traveling pulses for e ‘far’ from eypyi¢, 4.e. for Ae ‘too large.” At
first, it seems that this contradicts the numerical simulations in [24, 23, 2, 25, 21, 19]; however,
a more careful study of these simulations reveals that there is no contradiction. On the contrary,
these simulations are consistent with our arguments, since they indicate that the traveling pulses
are no longer of the type studied in this paper when Ae becomes ‘too large.” Numerous figures in
[24, 23, 2, 25, 21, 19] clearly show that, in this case, the speed ¢ of the (most) outward traveling pulses
does not decrease as a function of time between two successive splittings. Furthermore, these pulses
are not stationary in a coordinate system traveling with speed c: the shape of the pulses changes
as function of time, especially at the trailing edges of the pulses, see Figure 7 here, Figure 9 in [2],
or Figure 5.3 in [21]. Thus, these pulses are of an essentially different type. These simulations also
strongly suggest that these traveling pulses can even be stable for certain parameter combinations:
Figure 5.3 in [21] shows a solitary pulse traveling with constant speed with a periodic modulation
of its trailing edge. Moreover, the distinction between a splitting process with pulses whose speeds
slowly decrease to 0 for € near eqy;¢ and a splitting process with pulses whose speeds are constant
for € not near eyp);; is of course not exact: numerical simulations also show that there is a transition
region where the speed of the pulses first decreases slowly, but after some time (on the slow time
scale), the speed remains constant, > 0. The existence analysis for these intriguing constant speed
solutions asks for an approach that differs essentially from that in this paper, since these solutions
appear from numerical simulations to exist only in regions where the existing asymptotic methods
are not applicable. On the other hand, some perturbation analysis may be possible, since the shape
of the pulses certainly is singular, and the modulations seem to evolve slowly.

Remark 8.1. Even for € > g4 there can still be spatially-periodic multi-pulse patterns. Heuris-
tically, for € large, but not too large, this follows from the fact that the maximum value of U in a
pulse interval increases monotonically (without bound) as the wave length decreases [2, 3]; i.e., the
effective value of € can ‘always’ be reduced below &g,);;. Once € becomes too large, however, then
this heuristic ‘scheme’ is no longer applicable, since the V-pulses lose their singular structure and
the wave length of the periodic patterns becomes smaller and smaller as ¢ increases (see Figure 10
in [2] and see [18]). This regime is studied in detail in [18], where it is shown that eventually the pe-
riodic solutions no longer ‘touch down’ on the slow manifold (in the phase space), and they become
non-singular periodic orbits. Moreover, it is shown there that these orbits are finally annihilated
in a Turing/Ginzburg-Landau bifurcation in the PDE (which is manifested in the associated ODE
as a reversible 1 : 1 resonant Hopf bifurcation).

Remark 8.2. The above explanation of why traveling pulses will only split after a certain (long)
time can be interpreted as a reformulation into more geometrical terms of the arguments given in
subsection 3.5: ‘perturbations’ that can be assumed to be small enough immediately after the first
splitting will grow slowly as time evolves.

8.2 Strongly coupled pulses

In subsection 8.1, we focused on the significance of the slowly-modulated two-pulse solutions for
the self-replication process. As we have shown in Sections 3-7, however, these solutions exist and
are stable for all parameter combinations within the region presented in Figure 3, i.e., not just
near Cgpryr- In Figure 2a, we have shown a simulation of such an asymptotically stable slowly-
modulated two pulse solution, where we refer to subsection 8.3 for a discussion of the effects of a
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bounded domain.

The analysis of two-pulse solutions in this paper can be interpreted as a study of strongly coupled
pulses in singular perturbed reaction-diffusion equations, as mentioned in the Introduction. This
coupling is ‘strong,’ since the U-components of the solutions are not assumed to be close to the
trivial state U = 1 and, in fact, vary by O(1) amounts. Hence, the interaction between the two
modulating pulses is stronger than that which occurs only via exponentially small ‘tail-interactions.’

As was shown in Section 3 for Case Ia, the general result is that the separation distance 2I'(¢)
obeys a highly nonlinear ODE (3.31), which is valid for any O(1) value of I'. The right hand side
of the ODE (3.31) contains both a denominator, which is important for accurately describing the
rate of change of ' for small to medium values of ', and a numerator, which captures the long
term dynamics to leading order after I" has become sufficiently large. In particular, in terms of the
scaling (5.25)), I'(7) has become sufficiently large already for I'(7) = O(In7) with 7 > 1. In this
regime, the ODE (3.31) reduces to

dr' _ 2 syare)

dr  3JA ’
which is precisely the equation that is appropriate for describing weakly coupled pulses, since
Umax(7) has approached U =1 (see (5.17)) and ¢(t) has become < 1.

Moreover, translating this equation for the weak interaction limit into an equation written in
terms of the scaled speed é(7), one gets to leading order

dé

— =2
dr ¢

Hence, this equation obtained for the limiting weak interactions is a significantly simplified version
than that (3.32), (5.20) derived in Sections 3 and 5 for strong interactions.

Remark 8.3. The form of the equation just obtained for sufficiently large I' agrees with that of
the equation determined concurrently in [8] for pulse interactions in the Gray-Scott model. The
results in [8] apply to more general equations which satisfy the requirement that the separation
distance between the two pulses exceed some threshold so that the concentrations of all species are
exponentially close to their homogeneous steady state values.

Remark 8.4. In order to present a detailed description of the dynamics during splitting events,
one needs a method to study ‘fully interacting’ pulses, which is stronger than that used to study
‘strongly interacting’ pulses in this paper (where it is always assumed that the V-pulses of the
modulating two pulse solutions are separated). This is because the splitting process itself is a
relatively fast one (see for instance [21] and Figure 6 in [2]) and hence the quasisationary approach
developed here is no longer applicable. So far, a detailed quantitative description of the behavior of
(U, V) for fully interacting pulses does not yet exist. See [24, 25] and [21, 8] for completely different
approaches to the details of this splitting process.

Remark 8.5. The methods developed in this paper for modulating two-pulse solutions can be
extended to strong pulse interactions in more general singular reaction-diffusion equations, including
the (generalized) Gierer-Meinhardt model [5], [20].
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8.3 Solutions on bounded domains, four-pulse solutions

In the parameter regime in which the two-pulse solutions have been shown to exist and be stable
on unbounded domains, we found that both pulses travel with a speed ¢ that decreases slowly
to 0 (as 1/7) and hence that that the distance 2I'(7) between the pulses becomes unbounded.
The analysis on bounded domains differs a bit from that carried out in this paper since there are
now two homogeneous Neumann boundary conditions that have to be imposed, one at each end
of the interval. In geometric terms, this implies that we construct an orbit that ‘jumps’ from a
hyperbolic cosine solution (5.14) on M to another hyperbolic cosine solution on M. By following
the geometric method developed in this paper, therefore, one may obtain ODE’s for the speeds
¢i(7) in each interval.

Numerically, we observe that a two-pulse solution will slow down faster than the rate given by
the ODE (3.32), (5.20) for ¢, due to the interaction with the boundaries. This comparison was done
for a sequence of L values with the largest values corresponding to an ‘infinite’ domain. In these
cases, two-pulse solutions converge toward the (asymptotically stable) periodic two-pulse solution
[3, 18] so that I'(7) — L/4, where L is the length of the interval. See Appendix A for a short
discussion of the effect of having a bounded interval on the methods developed in this paper.

The interactions of the two-pulse solutions with the boundaries of the domain can lead to
significantly different, and unexpected, behavior near the splitting bifurcation at eqp¢. See Figure
8. This periodic behavior disappears as L is increased.

In this paper, we did not pay attention to the analysis of the 4-pulse solutions that appear after
the second splitting (i.e. the first splitting of the traveling two-pulse), etc... or to any solutions with
more pulses. These solutions can be constructed using the same method as used in the previous
sections. For example, for four-pulse patterns, one introduces a function Xgpi;¢(7) and divides
the real line into four regions, (—oo, —Xpit(7)), (—Xepiit(7),0), (0, Xepiit(7)) and (Xepiit(7),00).
Then, the interior intervals support hyperbolic cosine solutions that satisfy Neumann boundary
conditions.

8.4 Cross-fertilization between the analytical and geometrical approaches

The two methods used in this paper for showing existence of modulating two-pulse solutions were
developed simultaneously, and each profited from the insights provided by the other. The analytical
approach to singular perturbation theory offers clear insights as to how to find the general scalings
of the independent and dependent variables. As stated in Sections 2 and 3, only one essential
Ansatz is made at the beginning of the analysis, namely that the spatial variations of U and V
occur on widely disparate length scales. The length scale for the activator concentration V', which is
precisely the pulse width, was found (see (2.2) and (3.6)) directly from the equation for V' assuming
U to be constant to leading order in the pulse interval. Then, the other scalings, namely the scaling
of U (see (2.14) and (3.28)), the wave speed c(t) (see (3.30)), and the global condition (2.15), were
delayed as long as possible and were determined during the course of the analysis. By contrast,
the method based on geometric singular perturbation theory, while it begins with these scalings
(see (4.2)), provides clear insight into the central structures in phase space, as well as into how
they vary with parameters. Geometrically, the persistent homoclinic orbits to the slow manifold
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correspond to the fast (or inner) pulse solutions. Also, the dynamics of orbits on the slow manifold
M precisely gives the slow evolution of U outside the pulse intervals, i.e., the outer solutions.

Finally, the geometric method leads directly to the identification of all four subcases Ia-IIb,
with the structural differences being clear from the dynamics on the slow manifold, see Figure 5. In
addition, it demonstrates constructively that the solutions constructed by the analytical approach
actually exist, and it leads naturally to the various bifurcations, as well as to the understanding of
the maximum wave speeds. Of course, the existence results derived from both methods agree. For
example, in the analysis of Case Ia, which is the only subcase for which we present both methods,
the same conditions for the existence (compare (3.19) and (3.25) with the Melnikov criterion (5.6)
and (5.7)) and the same ODEs for ¢(t) (compare (3.32) with (5.20)) are found.
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Research Fellowship (1995-1998, when most of this work was carried out). We also thank Paul
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A The effects of a finite interval for a stationary single-pulse

In [2], the numerical simulations were done on a finite interval, say = € [—L, L], and it was shown
experimentally that, if the interval is large enough, changing the length does not affect the numerical
solution.

We shall analyze here the finite-interval problem (with Dirichlet boundary conditions), by the
method of Section 2. The main task is to “solve” the equation (2.1) for u(z) with boundary
conditions u = 1 for £ = FL. This is an elementary exercise, but the formulas are lengthy. So, we
introduce the abbreviation

F(a) = ula 2. (A1)
Instead of (2.4), one gets

w(z) =1— ﬁ {eﬂm [cl + /_ mL VA f(a:’)da:'] VA [Cg 4 /m b var f(m')dx'] } . (A2)

:m[—n\ﬁ/ \Fz / fm ], (A.3)

1 —2LVA / —VAea! / VA
_ z Az A4

2sinh2Lv/A l US US (4-4)
These formulas greatly simplify when using the same approximations as in Section 2, that is, by

considering the pulse-function v2(z) to act approximately as a delta function in the integrals. One
thus obtains Cy = C; where:

kug —2LVA
=——— e —1]. A5
2sinh2IvVA [ ] (A.5)
Furthermore
1 x L
u(r) 21— W {eﬂm Ci + /7L vz(a:')dx'] +eVAr |y 4—/z U2($')d$'] } . (A.6)

The crucial quantity in further analysis is ug. From (A.6), we get

kug 14 e2LVA _q
2./ sinh2L.v/A

It is, therefore, clear that when L is large enough the correction due to the finite interval is
exponentially small. As in [24, 2, 25, 3] we performed numerical simulations of (1.1) in this paper
with the typical values A = O(D) < 1 and 2L = 100, so that 2LvA = O(1/v/D) > 1, and the

effect of finite interval is indeed negligible.

ug=1— (A.7)
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B Stability analysis in Case Ila

The substitution of § = o¢ into the full eigenvalue problem (7.7) yields:
Uge = 2 (vgu + 2u0v0v) +eto?u+ Diu — D€2cu§
vee + (2uovg — (1 +A))v = —vgu - 6201)5, (B.1)

with ug = u_. We restrict our attention in this Appendix to the regime in which D < e*02. i.e.
the regime left of Cyopr in Figure 3.

Since the leading order slow eigenvalue problem is uge = eto?u (recall vy is exponentially small),

the jump discontinuity in ug at £ = 0 (z = 0) in the slow field is to leading order:
Ague = —2¢%ko. (B.2)

The same jump discontinuity measured in the fast field is:

6
Af’U,E = 82 (—,; +2’LLO/
U

— 00

oo

w(€)ol€)de ) (B.3)
Hence, the matching condition, i.e., equating (B.2) and (B.3), yields:
3

P /WUMOMO%, (B.4)

- 3+0”U,(2) —o0

where £ is the constant, leading order value of u inserted into the NLEP (7.16).

As in subsection 7.2.1 here and in Section 5 of [3], we may further transform this NLEP by
setting t = £/2, y(t) = v(€), and again using P2 = 4(1 + \) and vy = (3/2ug)sech?(£/2):

J+ (12sech2(t) — PZ) Yy = ’ 2sech4(t) /_o:o y(t)sech?(t)dt. (B.5)

3+ ouj

Now, we introduce a new parameter m via the implicit formula:

1—+1—6c— 120 (1—,/1—1%)
=m e — -

B.6
c+ 20 20 ( )

The parameter m indexes the slowly-modulated two pulse solutions (in a 1-1 fashion with ¢), and:

120
ell, ————), B.7
i ( 1—+1-— 120) (B-7)

so that m must be 1 in the limit as ¢ — 1/12 (and ¢ — 0) and m € (1,2) in the limit as o — 0.
Therefore, we may write the constant coefficient on the right of the NLEP (B.5) as:

oo 2 540
3+ ouZ 60+m2[1—60—\/1—120]'

The compatibility condition also used in subsection 7.3, namely formula (5.12) from [3], gives C
as a function of P (see also subsection 7.2). In particular, we set C = C(P) in (B.8) and thereby

(B.8)
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obtain the graph of a function ¢ of P which will be used to determine the location of the eigenvalues
A with positive real parts, if any, for positive values of the parameter o. A little algebra with (B.8)
shows that m2Cy/1 — 120 = m?C + 60(C — m2C — 9), and hence it has solutions only if

m?C 4 60(C — m?C —9) > 0,

because the fact that the left hand side is nonnegative implies that the right hand side must be, as
well. Stated in terms of o, this requirement is:

2
oc<o1(P)= m’C

= 609+ (m2 —1)0)’ (B-9)

and one may observe that o7 is a monotonically decreasing function of P, with o1(P = 2) =
m?2/(6(m? + 1)) since C(P = 2) = 9/2 and o1(P = 3) = 0 since C(P = 3) = 0 [3]. Now, simplifying
the above identity involving (C — m2C — 9), we get:

—mAC2%0 = m?Co[C — m?C — 9] + 30%[C — m*C — 9]°.
Hence, the solution is either ¢ = 0, as found in the o < 1 case of subsection 7.2, or:

m2C(9 —C)
3(9— (1 —m2)C)*

ox(P) = (B.10)

The function o, (P) is a monotone function of C = C(P). At the two endpoints of the P—interval
under consideration it simplifies to

m2

ox(P=2) = m

since C(P:2):§, and o.(P=3)=0 since C(P =3)=0.

In between these endpoints, o, (P) is a monotonically decreasing function of P.

Thus, the function o, (P) lies below o (P) at P = 2. In addition, at P = 3, where both functions
vanish, one readily calculates that o, has the more negative slope. Hence, the two curves o1 (P) and
0 (P) must intersect at some point (P, 0, (m)) where P, € (2,3) and 0 < o,(m) < m?/(3(1+m?)?).
Therefore, for any m under consideration, the slowly modulated two pulse solution is formally
stable with respect to small perturbations when o < o,(m). In the special case of m = 1, we have
o«(m = 1) =1/12, and hence we recover that the stationary homoclinic is stable in this regime.

References

[1] J.G. Blom, P.A. Zegeling [1994], Algorithm 731: A Moving-Grid Interface for Systems of One-
Dimensional Time-Dependent Partial Differential Equations, ACM Transactions in Mathemat-
ical Software, 20, 194-214.

[2] A. Doelman, T.J. Kaper, and P. Zegeling [1997], Pattern formation in the one-dimensional
Gray-Scott model, Nonlinearity, 10, 523-563.

[3] A. Doelman, R. A. Gardner and T.J. Kaper [1998], Stability analysis of singular patterns in
the 1-D Gray—Scott model: a matched asymptotics approach, Physica D, 122, 1-36.

46



[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

A. Doelman, R. A. Gardner and T.J. Kaper [1998], A stability index analysis of 1-D patterns
of the Gray—Scott model, submitted.

A. Doelman, R. A. Gardner and T.J. Kaper [1999], Large stable pulse solutions in reaction-
diffusion equations, in preparation.

W. Eckhaus [1979], ‘Asymptotic Analysis of Singular Perturbations’, North-Holland Publishing
Company, Amsterdam.

W. Eckhaus and R. Kuske [1997], Pattern formation in systems with slowly varying geometry,
SIAM J. Appl. Math. 57, 112-152.

S. Ei, Y. Nishiura, and B. Sandstede [1999], Pulse-interaction approach to self-replicating
dynamics in reaction-diffusion systems (in preparation).

C. Elphick, A. Hagberg and E. Meron [1995], Dynamical front transitions and spiral vortex
nucleation, Phys. Rev. E, 51, 3052-3058.

N. Fenichel [1979], Geometrical singular perturbation theory for ordinary differential equations,

J. Diff. Eq., 31, 53-98.

P. Gray and S.K. Scott [1984], Autocatalytic reactions in the isothermal, continuous stirred
tank reactor: oscillations and instabilities in the system A 4+ 2B — 3B, B — C, Chem. Eng.
Seci., 39, 1087-1097.

J.K. Hale, L.A. Peletier, and W.C. Troy [1998], Exact homoclinic and heteroclinic solutions
of the Gray-Scott model for autocatalysis, to appear in STAM J. Appl. Math., University of
Leiden, Mathematics Department, Technical Report Number W98-03.

J.K. Hale, L.A. Peletier, and W.C. Troy [1999], Stability and instability in the Gray-Scott
model: the case of equal diffusivities, Appl. Math. Lett. 12, 59-65.

C.K.R.T. Jones [1995], Geometric singular perturbation theory, in Dynamical systems, Mon-
tecatini Terme, 199/, Lecture Notes in Mathematics, 1609, R. Johnson (ed.), Springer-Verlag.

B.S. Kerner and V.V. Osipov [1994], Autosolitons: a new approach to problems of self-
organization and turbulence, Kluwer, Dordrecht.

K.J. Lee and H.L. Swinney [1995], Lamellar structures and self-replicating spots in a reaction-
diffusion system, Phys. Rev. E, 51, 1899-1915.

K.-J. Lin, W.D. McCormick, J.E. Pearson, and H.L. Swinney [1994], Experimental observation
of self-replicating spots in a reaction-diffusion system, Nature, 369, issue no. 6477, 215-218.

D.S. Morgan, A. Doelman and T.J. Kaper [1998], Stationary periodic orbits in the 1-D Gray-
Scott model, Technical Report 13, Center for BioDynamics, Boston Univ., submitted.

C. Muratov and V. Osipov, [1998] Spike autosolitons in the Gray-Scott model, preprint.

W.-M. Ni [1998], Diffusion, cross-diffusion, and their spike-layer steady states, Notices AMS,
45(1), 9-18.

Y. Nishiura and D. Ueyama [1999], A skeleton structure for self-replication dynamics, to appear
in Physica D.

47



[22] J.E. Pearson [1993], Complex patterns in a simple system, Science, 261, 189-192.

[23] V. Petrov, S.K. Scott, and K. Showalter [1994], Excitability, wave reflection, and wave splitting
in a cubic autocatalysis reaction-diffusion system, Phil. Trans. Roy. Soc. Lond., Series A, 347,
631-642.

[24] W.N. Reynolds, J.E. Pearson, and S. Ponce-Dawson [1994], Dynamics of self-replicating pat-
terns in reaction diffusion systems, Phys. Rev. Lett., 72, 2797-2800.

[25] W.N. Reynolds, S. Ponce-Dawson, and J.E. Pearson [1997], Self-replicating spots in reaction-
diffusion systems, Phys. Rev. E, 56, 185-198.

[26] C. Robinson [1983], Sustained resonance for a nonlinear system with slowly-varying coefficients,

SIAM J. Math. Anal., 14, 847-860.

[27] A. van Harten [1978], Nonlinear singular perturbation problems: proofs of correctness of a
formal approximation based on a contraction principle in a Banach space, J. Math. Anal.

Appl. 65, 126-168.

48



Figure captions

Figure 1. (a) A two-pulse solution shown at time ¢ = 500 that is obtained from numerical
simulations of the PDE (1.1) with parameter values A = 0.01, B = 0.0696 and D = 0.01. The
U component is shown dashed, with U reaching a local maximum in between the V pulses (solid
curve) at Upax =~ 0.194. The two pulses move apart from each other with slowly varying speeds ¢(t),
and the U component is an O(1) distance away from the homogeneous state in between the pulses,
even though the pulses are quite far apart and the V' component (solid curve) is exponentially small
there. (b) The solution (U, V) from the same initial data shown at a later time (¢ = 5,000), and
the value of Uy ,x has slowly risen to = 0.730.

Figure 2. (a) Time evolution of the V' component of a modulating two-pulse solution of (1.1) with
A =0.01, B =0.0696 and D = 0.01, i.e., below egyjis. (b) A numerical simulation of pulse splitting
in (1.1), showing V pulses with slowly decreasing speeds which split when the speeds are small.
The parameter values are A = 0.01, B = 0.0674 and D = 0.01. In both plots, the vertical axis is
1,400V + t (where by default we use Teng/10 as the multiple of V'), and L = 100.

Figure 3. A summary of the existence and stability results obtained in this paper, shown in the
limit 0 < D <« 1. The scalings A = D* and B = DP are used for this figure only. The lines
shown are Cgn: 8 = (a/3) — (1/3) (see subsection 6.2); Csprir: 8 = /2 (see the Introduction
and subsection 8.1); Ctw: 8 = (/3) + (1/3) (see subsection 6.1); and, Cuopr: 8 = (/2) — (1/4)
(identified in Remark 7.3).

Figure 4. A stationary one-pulse solution of (1.1) whose existence is demonstrated in Section 2
and in [2]. The parameter values are A = 0.01, B = 0.1423, and D = 0.01.

Figure 5. A schematic illustration of the geometries on the slow manifolds in each of the four
distinct subcases identified in this paper. Frames (a)-(d) correspond to subcases Ia-IIb, respec-
tively. In (a) and (b), the dashed segment on the u-axis indicates that €/§ > 1. In (a) and (c), the
restricted manifolds ¢V and £° are symmetric about the u-axis, whereas they are not symmetric in

frames (b) and (d).

Figure 6. A schematic illustration of the rightward moving slowly-modulating pulse in the phase
space of the ODE (4.6) at a fixed instant of time ¢. The thickest curve corresponds to the singular
orbit for the slowly-modulating pulse, with the horizontal segment being a projection of the homo-
clinic excursion in the fast field onto the slow manifold M. The curves T, and Ty, as well as the
restricted stable and unstable manifolds £° and £V, are also shown.

Figure 7. Time evolution of the V' component of a modulating two-pulse solution of (1.1) with
A =0.01, B=0.0474 and D = 0.01, so that ¢ lies even further from ey,};;. The outermost pulses
appear to propagate at constant speed while significant oscillations take place on the trailing edges
before the splitting. The vertical axis is 700V + ¢.

Figure 8. A numerical simulation of (1.1) on a domain of length L = 100 with parameters
A = 0.01, B = 0.0676, and D = 0.01 which exhibits significant periodic oscillations (at least up
to time 30,000) that are due to boundary effects. The parameter values are extremely close to
Esplit- Lhe vertical axis is 3000V + t. This figure illustrates the fact that sufficiently large domains
must be used before determining if particular parameter values give rise to asymptotically stable
two-pulse solutions or to splitting.
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